Generalized $A B C$ Energy of Weighted Graphs

N. Feyza Yalçın

Abstract

In this work, weighted generalized $A B C$ matrix and weighted generalized $A B C$ energy of graphs are considered. Some upper and lower bounds are given for generalized $A B C$ energy of weighted graphs with positive definite matrix edge weights. Related to these bounds some bounds are obtained for number weighted and unweighted graphs.

Keywords: Edge weighted graph, graph energy, ABC energy.

MSC 2010: 05C22, 05C50.

1 Introduction and Preliminaries

Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. If v_{i}, v_{j} are adjacent vertices, it is denoted by $v_{i} \sim v_{j}$ or $v_{i} v_{j} \in E(G)$. Degree of a vertex v_{i} is denoted by d_{i}. The atom-bond connectivity index $A B C$ of G is introduced by Estrada et al. [7] as

$$
A B C=A B C(G)=\sum_{v_{i} v_{j} \in E(G)} \sqrt{\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}} .
$$

Estrada et al. [7] presented that $A B C$ can be used for modelling thermodynamic properties of organic chemical compounds. Furtula et al. [10] proposed a generalization of atom-bond connectivity index $A B C_{\alpha}$ for $\alpha=-3$ as

$$
A B C_{\alpha}=A B C_{\alpha}(G)=\sum_{v_{i} v_{j} \in E(G)}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\alpha}
$$

© 2021 by CSJM; N. Feyza Yalçın

N. Feyza Yalçın

is called augmented Zagreb index which is a significant predictive index in the study of the heat of formation in heptanes and octanes. Estrada [9] provided a probabilistic interpretation of the term $d_{i}+d_{j}-2 / d_{i} d_{j}$ which takes place in the definition of $A B C$ indices. He showed that it represents the probability of visiting the nearest neighbor edge from one side or the other of a given edge in a graph. This interpretation can be related to the polarizing capacity of the bond in a molecular context. He represented these probabilities in the form of an $A B C$ matrix as the generalized $A B C$ matrix $S_{\alpha}=S_{\alpha}(G)=\left(s_{i j}^{(\alpha)}\right)$ of order n and the (i, j) - th entry of S_{α} is defined as

$$
s_{i j}^{(\alpha)}(G)=\left\{\begin{array}{cl}
\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{\alpha}, & \text { if } v_{i} v_{j} \in E(G) \tag{1}\\
0, & \text { otherwise }
\end{array} .\right.
$$

In [13], energy of a graph G of order n is defined as

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

where λ_{i} are the eigenvalues of adjacency matrix $A(G)$. Graph energy is related to many chemical problems, so it is a remarkable concept for chemists and mathematicians ([2], [4], [5], [14], [16], [19], [15]).

In [9], generalized $A B C$ energy of G is defined as

$$
E_{A B C}^{(\alpha)}=E_{A B C}^{(\alpha)}(G)=\sum_{i=1}^{n}\left|\nu_{i}^{(\alpha)}\right|,
$$

where $\nu_{1}^{(\alpha)} \geq \nu_{2}^{(\alpha)} \geq \ldots \geq \nu_{n}^{(\alpha)}$ are the eigenvalues of $S_{\alpha}(G)$, which are called generalized $A B C$ eigenvalues of G. Notice that if $\alpha=\frac{1}{2}, E_{A B C}^{(\alpha)}$ is replaced by $E_{A B C}(G)$ called $A B C$ (total) energy of G with $A B C$ eigenvalues $\left(\nu_{1} \geq \nu_{2} \geq \ldots \geq \nu_{n}\right)$ of G.

Let G be a simple connected matrix weighted graph of order n. An edge weighted graph is a graph with numeric labels $w_{i j}$, which are associated with each edge $i j$, called the weight (cost) of the edge $i j$. The weights are usually chosen as nonnegative integers or square
matrices. If each edge weight is 1 , then the graph is called unweighted graph. Throughout this paper, we consider edge weighted graphs with positive definite matrix edge weights. Let $w_{i j}$ be a positive definite weight matrix of order p of the edge $i j$. Assume that $w_{i j}=w_{j i}$ and for all $i \in V, w_{i}=\sum_{j: j \sim i} w_{i j}$.

In this work, we introduce generalized $A B C$ energy of edge weighted graphs without loops and parallel edges. Accordingly, considering matrix multiplication, we can define weighted generalized $A B C$ matrix $S_{\alpha, w}=S_{\alpha, w}(G)=\left(s_{i j}^{(\alpha, w)}\right)$ of order $n p$, where the (i, j)-th entry of $S_{\alpha, w}$ is

$$
s_{i j}^{(\alpha, w)}(G)=\left\{\begin{array}{lc}
{\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{\alpha},} & \text { if } v_{i} v_{j} \in E(G) \\
0, & \text { otherwise }
\end{array} .\right.
$$

0 denotes zero matrix of order p. Obviously, $S_{\alpha, w}(G)$ is a real symmetric matrix, therefore the eigenvalues of $S_{\alpha, w}(G)$ can be arranged as $\nu_{1, w}^{(\alpha)} \geq \nu_{2, w}^{(\alpha)} \geq \ldots \geq \nu_{n p, w}^{(\alpha)}$ and also called weighted generalized $A B C$ eigenvalues of G. Thus, generalized $A B C$ energy of a (positive definite) matrix weighted graph G is defined as

$$
\begin{equation*}
E_{A B C_{w}}^{(\alpha)}=E_{A B C_{w}}^{(\alpha)}(G)=\sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right| \tag{2}
\end{equation*}
$$

The generalized $A B C$ energy of a weighted graph can be called as weighted generalized $A B C$ energy, briefly. If G is unweighted, then $E_{A B C_{w}}^{(\alpha)}(G)$ is replaced by $E_{A B C}^{(\alpha)}(G)$.

Some bounds are given for weighted generalized $A B C$ energy for (positive definite) matrix weighted graphs in this work. Through these bounds some results are presented for number weighted and unweighted graphs. In unweighted case, some new bounds are obtained for $E_{A B C}^{(\alpha)}(G)$, thus the weighted generalized $A B C$ energy $E_{A B C_{w}}^{(\alpha)}(G)$ can also be seen as the general form of generalized $A B C$ energy. Initially, we will give the required lemmas.

Lemma 1 ([18]). If a_{i} and $b_{i}(1 \leq i \leq n)$ are positive real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2} \leq \frac{1}{4}\left(\sqrt{\frac{M_{1} M_{2}}{m_{1} m_{2}}}+\sqrt{\frac{m_{1} m_{2}}{M_{1} M_{2}}}\right)^{2}\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \tag{3}
\end{equation*}
$$

where $M_{1}=\max _{1 \leq i \leq n}\left\{a_{i}\right\}, \quad M_{2}=\max _{1 \leq i \leq n}\left\{b_{i}\right\} ; m_{1}=\min _{1 \leq i \leq n}\left\{a_{i}\right\}, m_{2}=$ $\min _{1 \leq i \leq n}\left\{b_{i}\right\}$.

Lemma 2 ([17]). If a_{i} and $b_{i}(1 \leq i \leq n)$ are nonnegative real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq \frac{n^{2}}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{4}
\end{equation*}
$$

where M_{i} and m_{i} are defined in Lemma 1.
Lemma 3 ([1]). If a_{i} and $b_{i}(1 \leq i \leq n)$ are positive real numbers, then

$$
\begin{equation*}
\left|n \sum_{i=1}^{n} a_{i} b_{i}-\sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} b_{i}\right| \leq \beta(n)(A-a)(B-b), \tag{5}
\end{equation*}
$$

where a, b, A, B are real constants and for each $i, 1 \leq i \leq n, a \leq a_{i} \leq A$, $b \leq b_{i} \leq B$ and $\beta(n)=n\left\lfloor\frac{n}{2}\right\rfloor\left(1-\frac{1}{n}\left\lfloor\frac{n}{2}\right\rfloor\right)$.
Lemma 4 ([6]). If a_{i} and $b_{i}(1 \leq i \leq n)$ are nonnegative real numbers, then

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{2}+r R \sum_{i=1}^{n} a_{i}^{2} \leq(r+R) \sum_{i=1}^{n} a_{i} b_{i}, \tag{6}
\end{equation*}
$$

where r and R are real constants and for each $i, 1 \leq i \leq n, r a_{i} \leq b_{i} \leq$ $R a_{i}$ holds.

2 Main Results

In this section we present some upper and lower bounds for $E_{A B C_{w}}^{(\alpha)}(G)$, the generalized $A B C$ energy of matrix weighted graphs which have
positive definite matrix of order p edge weights. Also, some bounds are obtained for unweighted and number weighted graphs via these bounds. For $\alpha=\frac{1}{2}$ and unweighted case, the obtained bounds are for $E_{A B C}(G)$. Note that some bounds in (12) and (15) are presented in [11] (see Theorem 3.4); the bounds in (28) are given in [3] (see Theorem 4.3-4.8). Now we begin with an essential lemma for proving the theorems as follows.

Lemma 5. If G is a positive definite matrix (of order p) weighted graph with $n(\geq 3)$ vertices, then
(1) $\sum_{i=1}^{n p} \nu_{i, w}^{(\alpha)}=0$,
(2) $\sum_{i=1}^{n p}\left(\nu_{i, w}^{(\alpha)}\right)^{2}=2 \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}$.

Proof. (1) Since diagonal entries of $S_{\alpha, w}(G)$ are equal to zero, we have

$$
\sum_{i=1}^{n p} \nu_{i, w}^{(\alpha)}=\operatorname{tr}\left[S_{\alpha, w}(G)\right]=0
$$

where $\operatorname{tr}($.$) stands for trace of a matrix.$
(2) For $i=1,2, \ldots, n$, the (i, i)-th entry of $\left(S_{\alpha, w}(G)\right)^{2}$ is

$$
\sum_{j: j \sim i}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}
$$

Hence

$$
\begin{align*}
\sum_{i=1}^{n p}\left(\nu_{i, w}^{(\alpha)}\right)^{2}= & \operatorname{tr}\left[\left(S_{\alpha, w}(G)\right)^{2}\right]=\sum_{i=1}^{n} \sum_{j: j \sim i}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha} \\
& =2 \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha} \tag{7}
\end{align*}
$$

The proof is completed.

Remark 1. (i) If G is an unweighted graph, then $p=1, w_{i j}=1$ and for all i, j and $i \sim j, w_{i}=d_{i}$ in (7), then we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\nu_{i}^{(\alpha)}\right)^{2}=2 \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha} \tag{8}
\end{equation*}
$$

(ii) If we set $\alpha=\frac{1}{2}$ in (8), then

$$
\begin{align*}
\sum_{i=1}^{n} \nu_{i}^{2} & =2 \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right) \\
& =2 \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}}{d_{i} d_{j}}-\frac{2}{d_{i} d_{j}}\right) \\
& =2\left(n-2 R_{-1}(G)\right), \tag{9}
\end{align*}
$$

where $R_{-1}(G)=\sum_{u v \in E(G)} \frac{1}{d_{u} d_{v}}$ is the general Randić index of G, also known as modified second Zagreb index.

Theorem 1. If G is a matrix weighted graph with $n(\geq 3)$ vertices and zero is not an eigenvalue of $S_{\alpha, w}(G)$, then

$$
\begin{equation*}
E_{A B C_{w}}^{(\alpha)} \geq \frac{2 \sqrt{\nu_{1, w}^{(\alpha)} \nu_{n p, w}^{(\alpha)}} \sqrt{2 n p \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}}}{\nu_{1, w}^{(\alpha)}+\nu_{n p, w}^{(\alpha)}} \tag{10}
\end{equation*}
$$

where $\nu_{1, w}^{(\alpha)}$ and $\nu_{n p, w}^{(\alpha)}$ are maximum and minimum of the absolute value of $\nu_{i, w}^{(\alpha)}$'s, respectively.
Proof. If we put $a_{i}=\left|\nu_{i, w}^{(\alpha)}\right|$ and $b_{i}=1$ in (3), then

$$
\sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right|^{2} \sum_{i=1}^{n p} 1^{2} \leq \frac{1}{4}\left(\sqrt{\frac{\nu_{1, w}^{(\alpha)}}{\nu_{n p, w}^{(\alpha)}}}+\sqrt{\frac{\nu_{n, w}^{(\alpha)}}{\nu_{1, w}^{(\alpha)}}}\right)^{2}\left(\sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right|\right)^{2} .
$$

By (7), we have

$$
\begin{gathered}
2 n p \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha} \leq \\
\quad \leq \frac{1}{4} \frac{\left(\nu_{1, w}^{(\alpha)}+\nu_{n p, w}^{(\alpha)}\right)^{2}}{\nu_{1, w}^{(\alpha)} \nu_{n p, w}^{(\alpha)}}\left(E_{A B C_{w}}^{(\alpha)}\right)^{2}
\end{gathered}
$$

then

$$
E_{A B C_{w}}^{(\alpha)} \geq \frac{2 \sqrt{\nu_{1, w}^{(\alpha)} \nu_{n p, w}^{(\alpha)}} \sqrt{2 n p \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}}}{\nu_{1, w}^{(\alpha)}+\nu_{n p, w}^{(\alpha)}}
$$

and the proof is completed.
Corollary 1. If G is a number weighted graph of order $n(\geq 3)$ with positive number edge weights and zero is not an eigenvalue of $S_{\alpha, w}(G)$, then

$$
E_{A B C_{w}}^{(\alpha)} \geq \frac{2 \sqrt{\nu_{1, w}^{(\alpha)} \nu_{n, w}^{(\alpha)}} \sqrt{2 n \sum_{\substack{j, j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{w_{i}+w_{j}-2}{w_{i} w_{j}}\right)^{2 \alpha}}}{\nu_{1, w}^{(\alpha)}+\nu_{n, w}^{(\alpha)}}
$$

where $\nu_{1, w}^{(\alpha)}$ and $\nu_{n, w}^{(\alpha)}$ are maximum and minimum of the absolute value of $\nu_{i, w}^{(\alpha)}$'s, respectively.

Proof. If we write $p=1$ in (10), then the proof is obvious.
Corollary 2. If G is an unweighted graph of order $n(\geq 3)$ and zero is not an eigenvalue of $S_{\alpha}(G)$, then

$$
\begin{equation*}
E_{A B C}^{(\alpha)} \geq \frac{2 \sqrt{\nu_{1}^{(\alpha)} \nu_{n}^{(\alpha)}} \sqrt{2 n \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}}}{\nu_{1}^{(\alpha)}+\nu_{n}^{(\alpha)}} \tag{11}
\end{equation*}
$$

N. Feyza Yalçın

where $\nu_{1}^{(\alpha)}$ and $\nu_{n}^{(\alpha)}$ are maximum and minimum of the absolute value of $\nu_{i}^{(\alpha)}$'s, respectively. If $\alpha=\frac{1}{2}$, then

$$
\begin{equation*}
E_{A B C} \geq \frac{2 \sqrt{2 n \nu_{1} \nu_{n}\left(n-2 R_{-1}(G)\right)}}{\nu_{1}+\nu_{n}} \tag{12}
\end{equation*}
$$

where ν_{1} and ν_{n} are maximum and minimum of the absolute value of ν_{i} 's, respectively.

Proof. If G is an unweighted graph, then we write $p=1$ and take for all i, j and $i \sim j, w_{i}=d_{i}$ and $w_{i j}=1$ in (10). Thus

$$
E_{A B C}^{(\alpha)} \geq \frac{2 \sqrt{\nu_{1}^{(\alpha)} \nu_{n}^{(\alpha)}} \sqrt{2 n \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}}}{\nu_{1}^{(\alpha)}+\nu_{n}^{(\alpha)}}
$$

yields the result. If we set $\alpha=\frac{1}{2}$ in (11) and use (9), we obtain

$$
E_{A B C} \geq \frac{2 \sqrt{2 n \nu_{1} \nu_{n}\left(n-2 R_{-1}(G)\right)}}{\nu_{1}+\nu_{n}} .
$$

which completes the proof.

Theorem 2. If G is a matrix weighted graph with $n(\geq 3)$ vertices, then

$$
\begin{equation*}
\geq \sqrt{2 n p \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}-\frac{n^{2} p^{2}}{4}\left(\nu_{1, w}^{(\alpha)}-\nu_{n p, w}^{(\alpha)}\right)^{2}}, \tag{13}
\end{equation*}
$$

where $\nu_{1, w}^{(\alpha)}$ and $\nu_{n p, w}^{(\alpha)}$ are maximum and minimum of the absolute value of $\nu_{i, w}^{(\alpha)}$'s, respectively.

Proof. Setting $a_{i}=\left|\nu_{i, w}^{(\alpha)}\right|$ and $b_{i}=1$ in (4) yields

$$
\sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right|^{2} \sum_{i=1}^{n p} 1^{2}-\left(\sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right|\right)^{2} \leq \frac{n^{2} p^{2}}{4}\left(\nu_{1, w}^{(\alpha)}-\nu_{n p, w}^{(\alpha)}\right)^{2}
$$

From (7), we have

$$
\begin{gathered}
2 n p \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}-\left(E_{A B C_{w}}^{(\alpha)}\right)^{2} \leq \\
\leq \frac{n^{2} p^{2}}{4}\left(\nu_{1, w}^{(\alpha)}-\nu_{n p, w}^{(\alpha)}\right)^{2} .
\end{gathered}
$$

Hence

$$
\geq \sqrt{E_{A B C_{w}}^{(\alpha)} \geq} \sqrt{2 n p \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}-\frac{n^{2} p^{2}}{4}\left(\nu_{1, w}^{(\alpha)}-\nu_{n p, w}^{(\alpha)}\right)^{2}},
$$

and the proof is completed.
Corollary 3. If G is a number weighted graph of order $n(\geq 3)$ with positive number edge weights, then

$$
E_{A B C_{w}}^{(\alpha)} \geq \sqrt{2 n \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{w_{i}+w_{j}-2}{w_{i} w_{j}}\right)^{2 \alpha}-\frac{n^{2}}{4}\left(\nu_{1, w}^{(\alpha)}-\nu_{n, w}^{(\alpha)}\right)^{2}}
$$

where $\nu_{1, w}^{(\alpha)}$ and $\nu_{n, w}^{(\alpha)}$ are maximum and minimum of the absolute value of $\nu_{i, w}^{(\alpha)}$'s, respectively.

Proof. The proof is obvious by setting $p=1$ in (14).

N. Feyza Yalçın

Corollary 4. If G is an unweighted graph of order $n(\geq 3)$, then

$$
\begin{equation*}
E_{A B C}^{(\alpha)} \geq \sqrt{2 n \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}-\frac{n^{2}}{4}\left(\nu_{1}^{(\alpha)}-\nu_{n}^{(\alpha)}\right)^{2}}, \tag{14}
\end{equation*}
$$

where $\nu_{1}^{(\alpha)}$ and $\nu_{n}^{(\alpha)}$ are maximum and minimum of the absolute value of $\nu_{i}^{(\alpha)}$'s, respectively. If $\alpha=\frac{1}{2}$, then

$$
\begin{equation*}
E_{A B C} \geq \sqrt{2 n\left(n-2 R_{-1}(G)\right)-\frac{n^{2}}{4}\left(\nu_{1}-\nu_{n}\right)^{2}} \tag{15}
\end{equation*}
$$

where ν_{1} and ν_{n} are maximum and minimum of the absolute value of ν_{i} 's, respectively.

Proof. If we take $p=1$ and for all i, j and $i \sim j, w_{i}=d_{i}$ and $w_{i j}=1$ in (14) and use (8), the proof of (14) can be seen. If we write $\alpha=\frac{1}{2}$ in (14) and use (9), then it completes the proof of (15).

Theorem 3. If G is a matrix weighted graph with $n(\geq 3)$ vertices, then

$$
\begin{equation*}
\geq \sqrt{E_{\substack{(\alpha) \\ i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}-\beta\left(\left|\nu_{1, w}^{(\alpha)}\right|-\left|\nu_{n p, w}^{(\alpha)}\right|\right)^{2}}, \tag{16}
\end{equation*}
$$

where $\beta=n p\left\lfloor\frac{n p}{2}\right\rfloor\left(1-\frac{1}{\left.n p\left\lfloor\frac{n p}{2}\right\rfloor\right) . ~}\right.$
Proof. If we set $a_{i}=\left|\nu_{i, w}^{(\alpha)}\right|=b_{i}, a=\left|\nu_{n p, w}^{(\alpha)}\right|=b$, and $A=\left|\nu_{1, w}^{(\alpha)}\right|=B$ in (5), then

$$
\left.\left|n \sum_{i=1}^{n p}\right| \nu_{i, w}^{(\alpha)}\right|^{2}-\left(\sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right|\right)^{2} \mid \leq \beta\left(\left|\nu_{1, w}^{(\alpha)}\right|-\left|\nu_{n p, w}^{(\alpha)}\right|\right)^{2} .
$$

Thus, we have

$$
\begin{gathered}
2 n \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}-\left(E_{A B C_{w}}^{(\alpha)}\right)^{2} \leq \\
\leq \beta\left(\left|\nu_{1, w}^{(\alpha)}\right|-\left|\nu_{n p, w}^{(\alpha)}\right|\right)^{2},
\end{gathered}
$$

and the proof is completed.

Corollary 5. If G is a number weighted graph of order $n(\geq 3)$ with positive number edge weights, then

$$
E_{A B C_{w}}^{(\alpha)} \geq \sqrt{2 n \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{w_{i}+w_{j}-2}{w_{i} w_{j}}\right)^{2 \alpha}-\beta\left(\left|\nu_{1, w}^{(\alpha)}\right|-\left|\nu_{n, w}^{(\alpha)}\right|\right)^{2}} .
$$

Proof. The proof is obvious by setting $p=1$ in (16).

Corollary 6. If G is an unweighted graph of order $n(\geq 3)$, then

$$
\begin{equation*}
E_{A B C}^{(\alpha)} \geq \sqrt{2 n \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}-\beta\left(\left|\nu_{1}^{(\alpha)}\right|-\left|\nu_{n}^{(\alpha)}\right|\right)^{2}} \tag{17}
\end{equation*}
$$

If $\alpha=\frac{1}{2}$, then

$$
\begin{equation*}
E_{A B C}^{(\alpha)} \geq \sqrt{2 n\left(n-2 R_{-1}(G)\right)-\beta\left(\left|\nu_{1}^{(\alpha)}\right|-\left|\nu_{n}^{(\alpha)}\right|\right)^{2}} \tag{18}
\end{equation*}
$$

Proof. The proof of (17) can be seen by writing $p=1$ and for all i, j and $i \sim j, w_{i}=d_{i}$ and $w_{i j}=1$ in (16) and using (8). The proof of (18) is obvious from taking $\alpha=\frac{1}{2}$ in (17) and from (9) by simple calculation.

Corollary 7. Since $\beta \leq \frac{n^{2} p^{2}}{4}$, (17) is stronger than (14), that is

$$
\begin{aligned}
E_{A B C}^{(\alpha)} & \geq \sqrt{2 n \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}-\beta\left(\left|\nu_{1}^{(\alpha)}\right|-\left|\nu_{n}^{(\alpha)}\right|\right)^{2}} \\
& \geq \sqrt{2 n \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}-\frac{n^{2}}{4}\left(\left|\nu_{1}^{(\alpha)}\right|-\left|\nu_{n}^{(\alpha)}\right|\right)^{2}} .
\end{aligned}
$$

Theorem 4. If G is a matrix weighted graph with $n(\geq 3)$ vertices and zero is not an eigenvalue of $S_{\alpha, w}(G)$, then

$$
\begin{equation*}
\geq \frac{n p\left|\nu_{1, w}^{(\alpha)}\right|\left|\nu_{n p, w}^{(\alpha)}\right|+2 \sum_{\substack{j, j \sim i \\ i, j \in 1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}}{\left|\nu_{1, w}^{(\alpha)}\right|+\left|\nu_{n p, w}^{(\alpha)}\right|} . \tag{19}
\end{equation*}
$$

Proof. Setting $b_{i}=\left|\nu_{i, w}^{(\alpha)}\right|, a_{i}=1, r=\left|\nu_{n p, w}^{(\alpha)}\right|, R=\left|\nu_{1, w}^{(\alpha)}\right|$ in (6) yields

$$
\sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right|^{2}+\left|\nu_{1, w}^{(\alpha)}\right|\left|\nu_{n p, w}^{(\alpha)}\right| \sum_{i=1}^{n p} 1^{2} \leq\left(\left|\nu_{1, w}^{(\alpha)}\right|+\left|\nu_{n p, w}^{(\alpha)}\right|\right) \sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right| .
$$

Thus, from (2) and (7)

$$
\begin{aligned}
2 \sum_{\substack{j: j \sim i \\
i, j \in 1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha} & +n p\left|\nu_{1, w}^{(\alpha)}\right|\left|\nu_{n p, w}^{(\alpha)}\right| \\
& \leq\left(\left|\nu_{1, w}^{(\alpha)}\right|+\left|\nu_{n p, w}^{(\alpha)}\right|\right) E_{A B C_{w}}^{(\alpha)}
\end{aligned}
$$

which gives the required result.
Corollary 8. If G is a number weighted graph of order $n(\geq 3)$ with positive number edge weights and zero is not an eigenvalue of $S_{\alpha, w}(G)$,
then

$$
E_{A B C_{w}}^{(\alpha)} \geq \frac{n\left|\nu_{1, w}^{(\alpha)}\right|\left|\nu_{n, w}^{(\alpha)}\right|+2 \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{w_{i}+w_{j}-2}{w_{i} w_{j}}\right)^{2 \alpha}}{\left|\nu_{1, w}^{(\alpha)}\right|+\left|\nu_{n, w}^{(\alpha)}\right|}
$$

Proof. Writing $p=1$ in (19), the proof can be seen.
Corollary 9. If G is an unweighted graph of order $n(\geq 3)$ and zero is not an eigenvalue of $S_{\alpha}(G)$, then

$$
E_{A B C}^{(\alpha)} \geq \frac{n\left|\nu_{1}^{(\alpha)}\right|\left|\nu_{n}^{(\alpha)}\right|+2 \sum_{\substack{j, j \sim i \\ i, j \in 1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}}{\left|\nu_{1}^{(\alpha)}\right|+\left|\nu_{n}^{(\alpha)}\right|}
$$

If $\alpha=\frac{1}{2}$, then

$$
\begin{equation*}
E_{A B C} \geq \frac{n\left|\nu_{1}\right|\left|\nu_{n}\right|+2\left(n-2 R_{-1}(G)\right)}{\left|\nu_{1}\right|+\left|\nu_{n}\right|} . \tag{21}
\end{equation*}
$$

Proof. The proof of (20) can be seen by putting $p=1$ and for all i, j and $i \sim j, w_{i}=d_{i}$ and $w_{i j}=1$ in (19) and using (8) by simple calculation. The proof of (21) is obvious from setting $\alpha=\frac{1}{2}$ in (20) and from (9).

Theorem 5. If G is a matrix weighted graph with $n(\geq 3)$ vertices, then

$$
\begin{equation*}
\sqrt{\sqrt{E_{A B C_{w}}^{(\alpha)} \leq\left|\nu_{1, w}^{(\alpha)}\right|+}} \sqrt{(n p-1)\left[2 \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}-\left(\nu_{1, w}^{(\alpha)}\right)^{2}\right]} \tag{22}
\end{equation*}
$$

Proof. From (2), we have

$$
E_{A B C_{w}}^{(\alpha)}-\left|\nu_{1, w}^{(\alpha)}\right|=\sum_{i=2}^{n t}\left|\nu_{i, w}^{(\alpha)}\right| .
$$

If we set $a_{i}=1$ and $b_{i}=\left|\nu_{i, w}^{(\alpha)}\right|$ in Cauchy-Schwarz inequality and use (7), then

$$
\begin{aligned}
& \left(E_{A B C_{w}}^{(\alpha)}-\left|\nu_{1, w}^{(\alpha)}\right|\right)^{2}=\left(\sum_{i=2}^{n p}\left|\nu_{i, w}^{(\alpha)}\right| \cdot 1\right)^{2} \leq \sum_{i=2}^{n p}\left(\nu_{i, w}^{(\alpha)}\right)^{2} \sum_{i=2}^{n p} 1^{2} \\
& =(n p-1)\left(\sum_{i=1}^{n p}\left(\nu_{i, w}^{(\alpha)}\right)^{2}-\left(\nu_{1, w}^{(\alpha)}\right)^{2}\right) \\
& =(n p-1)\left[2 \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}-\left(\nu_{1, w}^{(\alpha)}\right)^{2}\right] .
\end{aligned}
$$

Thus, the proof is obvious.
Corollary 10. If G is a number weighted graph of order $n(\geq 3)$ with positive number edge weights, then

$$
\begin{equation*}
E_{A B C_{w}}^{(\alpha)} \leq\left|\nu_{1, w}^{(\alpha)}\right|+\sqrt{(n-1)\left[2 \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{w_{i}+w_{j}-2}{w_{i} w_{j}}\right)^{2 \alpha}-\left(\nu_{1, w}^{(\alpha)}\right)^{2}\right]} . \tag{23}
\end{equation*}
$$

Proof. Taking $p=1$ in (22) completes the proof.
Corollary 11. If G is an unweighted graph of order $n(\geq 3)$, then

$$
\begin{equation*}
E_{A B C}^{(\alpha)} \leq\left|\nu_{1}^{(\alpha)}\right|+\sqrt{(n-1)\left[2 \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}-\left(\nu_{1}^{(\alpha)}\right)^{2}\right]} . \tag{24}
\end{equation*}
$$

If $\alpha=\frac{1}{2}$, then

$$
E_{A B C} \leq\left|\nu_{1}\right|+\sqrt{(n-1)\left[2\left(n-2 R_{-1}(G)\right)-\nu_{1}^{2}\right]} .
$$

Proof. The proof is obvious by setting $\alpha=\frac{1}{2}$ in (24).
Theorem 6. If G is a matrix weighted graph with $n(\geq 3)$ vertices, then

$$
\begin{align*}
& \sqrt{2 \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}} \leq E_{A B C_{w}}^{(\alpha)} \leq \tag{25}\\
& \quad \leq \sqrt{2 n p \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha}} .
\end{align*}
$$

Proof. If we set $a_{i}=1$ and $b_{i}=\left|\nu_{i, w}^{(\alpha)}\right|$ in Cauchy-Schwarz inequality, then

$$
\left(E_{A B C_{w}}^{(\alpha)}\right)^{2}=\left(\sum_{i=1}^{n p} 1 .\left|\nu_{i, w}^{(\alpha)}\right|\right)^{2} \leq \sum_{i=1}^{n p} 1^{2} \cdot \sum_{i=1}^{n p}\left(\nu_{i, w}^{(\alpha)}\right)^{2}=n p \sum_{i=1}^{n p}\left(\nu_{i, w}^{(\alpha)}\right)^{2} .
$$

From (7), we have

$$
\left(E_{A B C_{w}}^{(\alpha)}\right)^{2} \leq 2 n p \sum_{\substack{j: j \sim i \\ i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha},
$$

which presents the upper bound. On the other hand, if we use (7), then

$$
\begin{aligned}
& \left(E_{A B C_{w}}^{(\alpha)}\right)^{2}=\left(\sum_{i=1}^{n p}\left|\nu_{i, w}^{(\alpha)}\right|\right)^{2} \geq \sum_{i=1}^{n p}\left(\nu_{i, w}^{(\alpha)}\right)^{2} \\
= & 2 \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left[\left(w_{i}+w_{j}-2\right) \cdot\left(w_{i} w_{j}\right)^{-1}\right]^{2 \alpha} .
\end{aligned}
$$

So, the proof is completed.

Corollary 12. If G is a number weighted graph of order $n(\geq 3)$ with positive number edge weights, then

$$
\begin{align*}
& \sqrt{2 \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left(\frac{w_{i}+w_{j}-2}{w_{i} w_{j}}\right)^{2 \alpha} \leq E_{A B C_{w}}^{(\alpha)} \leq} \\
& \quad \leq \sqrt{2 n \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left(\frac{w_{i}+w_{j}-2}{w_{i} w_{j}}\right)^{2 \alpha}} \tag{26}
\end{align*}
$$

Proof. Setting $p=1$ in (25) completes the proof.
Corollary 13. If G is an unweighted graph of order $n(\geq 3)$, then

$$
\begin{align*}
& \sqrt{2 \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha} \leq E_{A B C}^{(\alpha)} \leq} \\
& \quad \leq \sqrt{2 n \sum_{\substack{j: j \sim i \\
i, j \in\{1,2, \ldots, n\}}}\left(\frac{d_{i}+d_{j}-2}{d_{i} d_{j}}\right)^{2 \alpha}} \tag{27}
\end{align*}
$$

If $\alpha=\frac{1}{2}$, then

$$
\begin{equation*}
\sqrt{2\left(n-2 R_{-1}(G)\right)} \leq E_{A B C} \leq \sqrt{2 n\left(n-2 R_{-1}(G)\right)} \tag{28}
\end{equation*}
$$

Proof. If we write all i, j and $i \sim j, w_{i}=d_{i}$ and $w_{i j}=1$ in (25) and use (8), the proof of (27) can be seen. Taking $\alpha=\frac{1}{2}$ in (27) and using (9) completes the proof.

3 Conclusion

The generalized $A B C$ matrix and its energy $\left(E_{A B C_{w}}^{(\alpha)}(G)\right)$ of (positive definite) matrix weighted graphs are considered in this work and some upper and lower bounds are presented for $E_{A B C_{w}}^{(\alpha)}(G)$. By means

Generalized $A B C$ Energy of Weighted Graphs...
of these bounds, some bounds are obtained for number weighted and unweighted graphs. These bounds are valid for the generalized $A B C$ energy $E_{A B C}(G)$ for $\alpha=\frac{1}{2}$ and unweighted case.

References

[1] M. Biernacki, H. Pidek, and C. Ryll-Nardzewski, "On an inequality between definite integrals," (Transl. from "Sur une iné galité entre des intégrales définies,") Ann. Univ. Mariae Curie-Sklodowska, Sect. A, vol. 4, pp. 1-4, 1950. (in French)
[2] Ş. Büyükköse, N. Mutlu, and G. Kaya Gök, "A note on the weighted Wiener index and the weighted quasi-Wiener index," Gazi University Journal of Science, vol. 30, no. 4, pp. 413-419, 2017.
[3] X. Chen, "On ABC eigenvalues and ABC energy," Linear Algebra and its Applications, vol. 544, pp. 141-157, 2018.
[4] V. Consonni and R. Todeschini, "New spectral index for molecule description," MATCH Communications in Mathematical and in Computer Chemistry, vol. 60, pp. 3-14, 2008.
[5] N. De, "Vertex weighted Laplacian Energy of union of graphs," Computer Science Journal of Moldova, vol. 26, no. 1 (76), pp. 29-38, 2018.
[6] J. B. Diaz and F. T. Metcalf, "Stronger forms of a class of inequalities of G. Pólya-G.Szegö and L. V. Kantorovich," Bulletin of the AMS - American Mathematical Society, vol. 69, pp. 415418, 1963.
[7] E. Estrada, L. Torres, L. Rodríguez, and I. Gutman, "An atombond connectivity index: Modelling the enthalpy of formation of alkanes," Indian J. Chem., vol. 37A, pp. 849-855, 1998.
[8] E. Estrada, "Atom-bond connectivity and the energetic of branched alkanes," Chem. Phys. Lett., vol. 463, pp. 422-425, 2008.
[9] E. Estrada, "The ABC matrix," Journal of Mathematical Chemistry, vol. 55, pp. 1021-1033, 2017.

N. Feyza Yalçın

[10] B Furtula, A Graovac, and D Vukičević, "Augmented Zagreb index," Journal of Mathematical Chemistry, vol. 48, pp. 370-380, 2010.
[11] M. Ghorbani, X. Li, M. Hakimi-Nezhaada, and J. Wang, "Bounds on the ABC spectral radius and ABC energy of graphs," Linear Algebra Appl, vol. 598, pp. 145-164, 2020.
[12] I. Gutman and N. Trinajstić, "Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons," Chem. Phys. Lett., vol. 17, pp. 535-538, 1972.
[13] I. Gutman, "The energy of a graph," Berlin MathematicsStatistics Forschungszentrum, vol. 103, pp. 1-22, 1978.
[14] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Germany: Springer-Verlag, 1986, X+214 p. ISBN: 978-3-540-16235-3.
[15] X. Li, Y. Shi, and I. Gutman, Graph Energy, New York, NY, USA: Springer, 2012, XII+268 p. ISBN: 978-1-4614-4219-6.
[16] I. Ž. Milovanović, E. I. Milovanović, and A. Zakić, "A short note on graph energy," MATCH Communications in Mathematical and in Computer Chemistry, vol. 72, pp. 179-182, 2014.
[17] N. Ozeki, "On the estimation of inequalities by maximum and minimum values," Journal of College Arts and Science, Chiba University, vol. 5, pp. 199-203, 1968. (in Japanese)
[18] G. Pólya and G. Szegö, Problems and theorems in analysis. Vol. I: Series, integral calculus, theory of functions, New York-Berlin: Springer-Verlag, 1972.
[19] I. Shparlinski, "On the energy of some circulant graphs," Linear Algebra and its Applications, vol. 414, pp. 378-382, 2006.

