
Computer Science Journal of Moldova, vol.29, no.3(87), 2021

To what extent is tuned neural network

pruning beneficial in software effort estimation?

Muhammed Maruf Öztürk

Abstract

Software effort estimation (SEE) is of great importance for
planning the budgets of future projects. The models of SEE are
developed depending on the enhancements of hardware technol-
ogy. However, developing such models based on neural networks
remarkably increases the burden of computation. Neural net-
work pruning may provide a suitable alternative to alleviate that
burden. By detecting the elements making insignificant contri-
butions to the output of a trained neural network, it is thus pos-
sible to obtain a reliable model. Otherwise, valuable information
extracted from a trained neural network may be lost in pruning.
In this work, the effects of pruning multi-layer perceptron (MLP)
are investigated on SEE. To experimentally evaluate those effects,
eight SEE data sets are employed. To find the optimal configura-
tion of MLP, four optimization methods are utilized along with
two pruning techniques. The results show that each optimiza-
tion method has a distinctive threshold to suspend pruning. The
model established to reach a low error of SEE, the number of fea-
tures having low standard deviations should be greater than that
of the features having high standard deviations. If a tuning pro-
cess is applied to the hyperparameters of the pruning algorithm,
the genetic algorithm is recommended to obtain high accuracy in
the classification. This work provides a guideline for researchers
to understand the effectiveness of neural network pruning in SEE.

Keywords: Effort estimation, hyperparameter optimization,
neural network pruning

MSC: 62M45,68T05

©2021 by CSJM; Muhammed Maruf Öztürk

340



Tuning effort estimation with pruned neural network . . .

1 Introduction

1.1 Motivation

Estimating an effort required to complete a product of a software sys-
tem is called software effort estimation (SEE) which helps plan the bud-
gets of future versions of the software. To that end, various methods
developed so far have required intensive efforts. Conducting SEE re-
sults in a higher quality of software project, improved task distribution
among team members, and preventing extreme optimal allocation [1].

Some mathematical models such as COCOMO [2] were predomi-
nant in SEE methods. However, conducting SEE with those methods
is outmoded and insufficient. Analogy-based techniques were devel-
oped to increase the success of SEE [3]. The methods utilizing fuzzy
logic were able to remove uncertainty and make knowledge integra-
tion [4]. Neuro-fuzzy models [5] remarkably increased the success of
SEE but they take much time, as compared to the primitive models.
Likewise, neural network models [6] showed a remarkable superiority
over simple linear regression. Pioneering studies were developed based
on mathematical models establishing classic regression analysis. How-
ever, software systems have a lot of versions that require more complex
evaluations to predict future efforts. To address this problem, deep
learning methods were proposed in recent years [7]. Deep learning
methods could be a possible way to cope with vast data sets. But
they dramatically increase the computational burden since ordinary
computer stores and processes data at different places.

Predictive models can be leveraged by adopting deep transforma-
tion. Deep learning methods produced a remarkable success (80%) [8]
in some phases of software including development [9], maintenance,
testing [8], and management [10]. Deep models bring a big work-
load due to the computer architectures regardless of the computational
strength. To solve that problem, some neurons of deep models can be
pruned in which they make insignificant contributions to the output.
Hence, the computational burden that originated from deep models
might be alleviated via employing compressed deep models.

The two points constitute the main motivation of this paper as
below:

341



M. Maruf Öztürk

1. Despite the fact that machine learning models increased the
success of SEE, it remained insufficient compared to deep learning.
Further, to exploit the optimal capacity of a machine learning model,
some tuning processes are needed to achieve the best configuration.

2. Employing only the tuning process to the deep models can not
alleviate the computational burden. Therefore, a tuning process should
be performed by applying a certain rate of compression to the deep
models.

Here we assert that using pruned neural networks helps alleviate
the computational burden of SEE established with deep models. This
paper explores whether pruned neural networks improve the success of
effort estimation. Last, we examine the effects of some derivative-free
optimization techniques including Bayes, Genetic algorithm, Nelder-
mead, and Random search on finding optimal parameters of pruning.

1.2 Contribution
This work claims the following contributions below:
1. To our knowledge, this work is the first to investigate the effects of
pruned neural networks on SEE.
2. Four derivative-free methods are employed to find the optimal con-
figuration of pruning.
3. An in-depth analysis is conducted to determine what is the com-
pression threshold for SEE.
4. The results reveal what sort of tuning strategy SEE tends to work
together harmoniously.
The remainder of the paper is organized as follows: Section II gives a
summary of related works. The proposed method is described in Sec-
tion III. Experimental steps are given in Section IV. The results are
presented in Section V and Section VI concludes the results.

2 Related work

2.1 Neural network pruning

One of the oldest and common methods for pruning a neural network is
Optimal Brain Damage (OBD) [11]. That method computes the second

342



Tuning effort estimation with pruned neural network . . .

derivative of each Hessian matrix for each parameter to be optimized,
thereby sorting the salience levels of the parameters. These processes
are sustained until a reasonable result is obtained.

Optimal Brain Surgeon (OBS), another popular method, takes ad-
vantage of Lagrangian computation of the invert Hessian matrix to
minimize the error of weights [12]. This operation is suspended once
the optimal error is achieved. On the other hand, magnitude-based
pruning compares the size of node weights to prune either related node
or edge [13]. The main threat posed by it is the risk of disregarding
the nodes creating remarkable effects on the output while pruning the
nodes having small sizes. This is the major disadvantage of magnitude-
based pruning.

The generic objective of OBD and OBS can be described as follows:
1. Improve the speed of the neural network, 2. Obtain a simple neural
network that can be denoted with a smaller number of connections
than that of the former neural network, 3. Provide various criteria to
the practitioners in order to stop pruning.

Initially performed by utilizing one layer [14], neural network prun-
ing has changed to multi-layer pruning over time [15]. However, doing
that procedure manually leads to a heavy cost and spending much time.
To address this problem, a method called MLPRUNE [16] was devel-
oped to set the compression rate automatically depending on the data
set.

Zhao et al. [17] proposed a new pruning method based on the princi-
ples of channel salience of neural networks by using Bayes probability.
Their method was tried on three convolutional networks specifically
for image classification. Although high compression networks can not
produce high accuracy, the burden on RAM is alleviated in that way,
according to the results.

There is abundant scientific literature on how does pruning affect
training loss. For instance, Laurent et al. [18] argued that the pruning
process can lead to a high training loss that can be removed with the
help of a fine-tuning process conducted with a few iterations. Likewise,
Ding et al. [19] also detected that accuracy declines with a certain
rate of pruning. However, employing a global compression rate yields

343



M. Maruf Öztürk

relatively high classification performance compared to the weighting-
based pruning.

Molchanov et al. [20] predicted the importance of weights of the
network by using Taylor expansion. Hence, they pruned less impor-
tant neurons with models solving memory constraints. In [21], it was
stressed that layer-wise pruning does not remarkably affect the pre-
diction performance of a neural network. Further, a great number of
training iterations, in such a way, are not required.

At the very least, magnitude-based pruning should be performed on
one layer. On the contrary, Park et al. [14] asserted that magnitude-
based pruning is much more compatible with multi-layers. In this con-
text, the main advantage of their method namely lookahead pruning
is that it requires hyperparameter optimization. Besides, lookahead
pruning also considers the effects of edges nearby the pruned nodes.

2.2 Effort estimation

SEE was being conducted in the light of expert opinions while ma-
chine learning algorithms were not being thought. Subsequently, some
mathematical models such as COCOMO [22] were applied to the SEE
data sets. Genetic programming was utilized in the early works related
to the SEE [23]. Even though genetic programming, which emerged
as an alternative for linear models, yielded promising results on some
data sets, it needs sophisticated experimental designs that are time-
consuming and bring huge computation.

The methods combining fuzzy-logic and analogy outperformed lin-
ear computations [5]. However, the scale of data sets limits the compre-
hensiveness of the experiment. Fuzzy models should be employed by
applying an optimization procedure according to their opinion. Fuzzy
models were also combined with artificial neural networks. In such a
study [24] neuro-fuzzy was found to be superior to the COCOMO.

Kocaguneli et al. [25] depicted that employing only one learning
model on SEE data sets is not sufficient and thus they demonstrated
the advantages of ensemble methods over single models. This is be-
cause the method chosen for SEE changes depending on the type of

344



Tuning effort estimation with pruned neural network . . .

software project [26]. Therefore, the following studies focused on data
preprocessing [27] and investigating configurable parameters for SEE
models [28].

3 Background

An MLP consists of three parts: the input layer, hidden layer, and
output layer. MLP, which has one hidden layer, is a basic type of
feed-forward neural networks. It is employed when there is little infor-
mation about the experimental problem. Let R be the search space,
where d is the dimension of inputs. H represents the hidden layer and
H = 1 for an MLP. If n denotes the number of total nodes, ni is the
number of nodes in ith layer, where n > ni. For an input vector x,
φi
j represents the output produced in the dense layers. Given k and

j as the independent units of MLP, wi
k,j denotes the weight of edges

between these units. Let bij be the bias in which j is the unit of ith

layer. The output is calculated as in Equation 1, where σ denotes an
activation function.

f(x) = σ(

nH∑

k=1

wH
k,jφ

H
k + bH+1

j ). (1)

In essence, a pruning function aims to remove some connections that
strongly depend on the type of pruning method and the configuration of
pruning function. If we have l layers and c connections, the distribution
of p may change on each iteration of the pruning method. Concretely,
pr shows the number of pruned connections. Subsequently, c − pr is
calculated to obtain the number of remaining connections in which np

denotes the number of remaining nodes. Thereafter, the output of the
neural network is calculated as:

f(x) = σ(

npH∑

k=1

wH
k,jφ

H
k + bH+1

j ). (2)

A pruning method is able to change a neural network as shown in

345



M. Maruf Öztürk

I1

I2

I3

I4

I5

I6

I7

Input_1

Input_2

Input_3

Input_4

Input_5

Input_6

Input_7

H1

H2

H3

H4

H5

O1

O2

O3

Output_large

Output_mediu

Output_small

Figure 1. A pruned neural network. Positive and negative connections
are represented with black and grey lines, respectively. Red dashed
lines denote pruned connections

Figure 1. Here I denotes an input and H represents a hidden node.
For Figure 1, l=3, c=50, pr=22, and np=12. There are seven inputs
and three outputs. Pruning algorithms have many configurable hyper-
parameters that change the structure of pruned network.

Let nI be the number of inputs and nO be the number of outputs.
The number of black, gray, and red edges are represented with eb, eg,
and er, respectively. The total weight related to the edges can be
formulated with:

Tw =

n∑

i=1

wi.e, (3)

where Tw denotes the total weight for the number of edges. To explicitly
define Equation 3, we have:

Tw =

n1∑

i=1

wi.eb +

n2∑

i=1

wi.eg +

n3∑

i=1

wi.er, (4)

where n1 is the number of edges associated with the nodes which greatly
contribute to the output of the neural network; n2 represents the num-
ber of gray edges having negative effects on deciding the outputs of
neural network; n3 is the number of pruned edges; and the number of
edges from (3) is n = n3 + n2 + n1.

346



Tuning effort estimation with pruned neural network . . .

Equation 4 is updated with er → 0 due to the pruning. Hence, we
define ultimate form of Tw:

Tw =

n1∑

i=1

wi.eb +

n2∑

i=1

wi.eg. (5)

The cost of Tw depends on the number of layers which are involved in
the pruning. For each layer, we obtain the output:

f
′

x =
z∏

i=1

Twt, (6)

where the calculation of cost is performed for the total layer z.

4 Experimental design

4.1 Hyperparameter optimization

Four optimization methods including Bayes, genetic algorithm, Nelder-
mead, and random search are involved in this paper.

Genetic algorithm. The main objective of the genetic algorithm
is to reach global optimum by evaluating various local optimums. It
thus needs a lot of iterations. To diversify the outcomes, the genetic
algorithm uses mutation that is utilized when there is a problem not
compatible with differentiable or continuous objective functions. The
use of a genetic algorithm, or its combination with other techniques, in
SEE is not new [24], [29]. However, to our knowledge, there is not any
comprehensive study evaluating the effects of tuning genetic algorithm
for SEE.

Bayesian optimization. Bayes establishes a probabilistic model
by utilizing a past event. There are abundant studies on how the
Bayesian network can be used to perform SEE [30]. However, most
of them did not consider tuning the hyperparameter of a Bayesian
network. The major advantage of employing a Bayesian model over
other competitors is its ability to cope with missing data.

347



M. Maruf Öztürk

Nelder-Mead optimization was presented in 1965. Nelder-Mead
generates a triangular shape to conduct optimization. That shape is
changed in every iteration to reach an optimal solution. Nelder-mead
was applied to the problems associated with energy and structural en-
gineering [31].

Random search seeks parameters in different places depending on
the search space. Random search is useful to reduce optimization time
because it is flexible with the configurable iteration threshold. Random
search is compatible with a parallel tuning process. Because it does
not need communication between threads. Random search-tuned SEE
models yield results as successful as those of grid search, according to
a recent study [32] to date shows.

4.2 Pruning methods

We utilized two pruning methods including OBD and OBS. These
methods can be considered as the most known and oldest pruning
methods in the literature. Although applying them to any classification
problem dates back to the ’90s, much of the research relevant to hy-
perparameter optimization has not focused on neural network pruning.
Our work intends to fill this information gap.

OBD is constructed via a gradient G and the Hessian matrix H.
They are calculated as follows:

Gi =
∂F

∂ci
, hij =

∂2F

∂ci∂cj
, (7)

where c is the component of perturbation and Gi denotes a component
of the gradient. h is an element of H and F represents the objective
function. The objective function F is minimized as follows:

φF =
1

2

∑

i

hii.φ.c
2
i , (8)

where φ denotes the change in the objective function.
OBS aims to reach local minimum error of a trained neural network.

H denotes the Hessian matrix of the inputs and it is calculated as

348



Tuning effort estimation with pruned neural network . . .

follows:

H = ∂2e/∂w2, (9)

where the second-order derivatives are utilized. One arbitrary weight
named wq is set to zero in order to minimize the increase detected in
the error. A set of nested functions are solved as in Equation 10:

Fq(Ffw(1/2.fwT .H.fw)), (10)

where f denotes a change either it is employed on the weight w or
its transposed form wT . F is the objective function that obeys the
constraint:

uTq .fw + wq = 0, (11)

where uq represents the unit vector that is associated with a wq. How-
ever, the optimal change of the weight is:

fw =
wq

[H−1]qq
.uq. (12)

4.3 Experimental data sets

In the experiment, eight data sets are chosen to expose the SEE process.
Table 1 gives a summary of experimental data sets. The column namely
”Instance” shows the number of instances. They are sampled and the
final values are given in ”Sampled”. It is worth noting that the range
of sampled instances is large. Hence, a large sample size contributes
to greater generalizability of the results. SMOTE [33] is employed to
oversample the experimental data sets.

SMOTE is a popular sampling algorithm proposed by Chawla et
al. [33], and its accuracy was tested on the increasing number of train-
ing instances. Given that SMOTE has been combined with the right
undersampling algorithm, it performs well. Blagus and Lusa [34] in-
vestigated SMOTE on large-scale data sets to prove its effectiveness.
From the finding, they deduced that SMOTE is suitable for small-scale
data and it requires specific preprocessing when the scale of the data
sets is large.

349



M. Maruf Öztürk

Table 1. The details of experimental data sets
Name Feature Instance Min Max Mean Std.Dev. Sampled

albrecht 7 26 0.5 105 20 27 416
china 18 499 26 54620 3921 6480 499
coc-81 6 74 128 41248 4375 8774 420

desharnais 11 81 546 23940 5046 4418 1641
kitchenham 9 145 219 113930 3113 9598 2111
maxwell 26 62 583 63694 8223 10499 1070

miyazaki94 7 48 6 1586 87 229 524
nasa93-dem 26 93 8 8211 624 1136 1225

Each effort data set has a column indicating effort as numeric. How-
ever, we herein intend to classify SEE data sets. To this end, effort
values are labeled as “small”, “medium”, and “large” depending on
the magnitude of a related effort. Algorithm 1 is devised to converting
numeric effort values to factor values. Step 4 calculates the number
of features for the given data set. rowCount denotes the number of
instances. In Steps 7-9, the sum of the effort values is calculated. mean
takes rounded mean effort value in Step 10. mediumThreshold is de-
fined to divide effort values into three parts. An empty list namely
Effort is created in Step 12. Factor assignments are done in Steps
13-21 by performing certain comparisons. Step 22 removes the effort
feature including numeric values. Factor values are combined with the
rest of the data set in Step 23. Lastly, the final data set is returned in
Step 24.

4.4 Performance parameter

In the experiment, accuracy was evaluated by changing the compression
rate for each data set. Equation 13 describes the details of accuracy
that consists of confusion matrix elements:

accuracy = (TP + TN)/(TP + TN + FP + FN). (13)

Compression ratio is computed via the following formula:

compressionRatio = PE/TE, (14)

350



Tuning effort estimation with pruned neural network . . .

Algorithm 1 Algorithm for converting effort feature to factor values

1: Input:D(SEE data set)
2: Output:Dp(processed SEE data set)
3: columnCount← length(D)
4: rowCount← length(D[, 1])
5: sum← 0
6: for i=0 to rowCount do

7: sum←sum+D[i,columnCount]

8: end for

9: mean← round(sum/rowCount)
10: mediumThreshold← round(mean/2)
11: Effort← emptyList()
12: for i=0 to rowCount do

13: if D[i, columnCount] < mediumThreshold then

14: Effort[i]← ”small”
15: elseifD[i, columnCount] > mean”
16: Effort[i]← ”large”
17: else

18: Effort[i]← ”medium”
19: end if

20: end for

21: columCount← columnCount− 1
22: Dp ← Data.Frame(D[, 1 : columnCount], Effort)
23: return Dp

351



M. Maruf Öztürk

where PE and TE denote the number of pruned and total edges,
respectively. To change the compression ratio, a varying learning rate
is applied to the multi-layer perceptron employed for the classification.
Further, the weighted sum of square error (WSSE) is used to evaluate
the iterative training and test error of the model as follows:

WSSE =

n∑

i=1

wi.(yi − yi), (15)

where n is the number of observations and wi is the wight of related ob-
servation. yi represents the observed value and yi denotes the predicted
value. The smaller the WSSE, the better the result of predictions.
Here, Equation 15 helps to perform a validation assessment.

4.5 Implementation details

The experiment is twofold. First, the classification is done with MLP so
that its hyperparameters are subjected to the tuning process. Second,
the hyperparameters of pruning methods are involved in such a process.
The description of hyperparameters and the search range of them are
presented in Table 2. The column namely ”method” shows the type of
hyperparameters.

Each data set is divided into three parts: 70% is for training, 15%
is for validation, and 15% is for testing. First, the training part is
exploited to fit the model. The validation part is utilized to tune hy-
perparameters. The testing part is used to reach the final model. These
processes are repeated 200 times by randomly generating those parts.
Last, average results are recorded. The main steps of the experiment
are given in Figure 2. Red dashed lines represent the transmission of
data parts. In the testing phase, validated configurations of the hyper-
parameters are employed. The results are produced in the last step.

For Bayesian optimization, the setting is as follows: the number of
initialization points is 2, the total number of iterations – 10, the type
of acquisition function (acq) – GP upper confidence bound, kappa of
acq – 2.576. That setting has been successfully employed in various
Bayesian optimization studies [35]. The genetic algorithm uses the

352



Tuning effort estimation with pruned neural network . . .

MLP

Bayes , Genetic algorithm, Nelder -mead, Random search

Database
Preprocessing

MLP

Training

Validation

Testing

Interpretation of
accuracy, WSSE

Classification
results

Optimal Brain Damage
Optimal Brain Surgeon

Figure 2. Overview of the experiment

Table 2. The details of hyperparameters and search space
Name method description range stepSize

learningrate MLP learning rate 0.1→0.9 0.01
maxit MLP maximum itera-

tion
10→250 10

initFuncParams MLP the parameters
for the initializa-
tion function

-0.3→0.8 0.1

max pr error increase pruning maximum error
increase for per
iteration

1→10 1

pr accepted error pruning accepted error for
per iteration

1→5 1

no of pr retrain cycles pruning number of retrain
cyles

1→10 1

min error to stop pruning stopping criteria 0.001→0.01 0.001

353



M. Maruf Öztürk

setting as follows: the probability of crossover used in chromosomes
is 0.8, the mutation probability – 0.1, the ratio of elitism – 5%. The
starting point of Nelder-mead is determined as follows: learningrate
– 0.1, maxit – 40, initFuncParams – −0.3, max pr error increase – 1,
pr accepted error – 1, no of pr retrain cycles – 1, min error to stop –
0.001.

5 Results

5.1 Do optimal configurations differ depending on the

optimization method?

The values presented in Table 3 are generated by taking averages of
OBD and OBS. Bayes and Nelder-mead need fewer iterations as com-
pared to the others. On the other hand, the genetic algorithm requires
the largest iterations as detected in the learning rate. The highest
stopping error is of random search.

Table 4. Accuracy details of the pruning methods
optimization method pruning method albrecht china coc-81 desharnais kitchenham maxwell miyazaki94 nasa93dem

Bayes
OBD 0.89 0.84 0.97 0.94 0.95 0.96 0.91 0.98

OBS 0.90 0.84 0.97 0.94 0.93 0.97 0.88 0.97

Genetic algorithm OBD 0.99 0.94 0.97 0.94 0.97 0.98 0.95 0.99

OBS 0.98 0.95 0.96 0.92 0.94 0.99 0.95 0.99

Nelder-mead OBD 0.95 0.96 0.97 0.89 0.97 0.98 0.92 0.99

OBS 0.95 0.95 0.96 0.94 0.94 0.99 0.93 0.99

Random search OBD 0.96 0.96 0.97 0.94 0.97 0.99 0.97 0.98

OBS 0.98 0.95 0.97 0.91 0.97 0.98 0.97 0.99

5.2 Is hyperparameter tuning beneficial to reduce WSSE?

Figure 3 shows the WSSE results of the comparison algorithms. Itera-
tive training and test errors are denoted with black line and red lines,
respectively. It is worth noting that there is a reasonable model if those
lines are very close and stable after a certain iteration. Otherwise, we
need to change the model setting or to focus on data preprocessing.
Random search and genetic algorithm yielded better curves than those
of other methods. Further, we can conclude that optimization has a
favorable effect on training vs. test lines.

The best observations of WSSE are related to the standard devi-
ation of the features. If a set of instances includes features having

354



Tuning effort estimation with pruned neural network . . .

T
ab

le
3.

O
p
ti
m
al

co
n
fi
gu

ra
ti
on

s
fo
u
n
d
b
y
th
e
op

ti
m
iz
at
io
n
m
et
h
o
d
s

D
a
t
a
s
e
t

M
e
t
h
o
d

le
a
r
n
in
g
r
a
t
e

m
a
x
it

in
it
F
u
n
c
P
a
r
a
m
s

m
a
x

p
r
e
r
r
o
r
in
c
r
e
a
s
e

p
r
a
c
c
e
p
t
e
d

e
r
r
o
r

n
o
o
f
p
r
r
e
t
r
a
in

c
y
c
le
s

m
in

e
r
r
o
r
t
o
s
t
o
p

al
b
re
ch
t

B
ay
es

0.
10
47

49
-0
.2
65
4

1.
84
86

1.
85
21

1.
66
04

0.
00
17

G
en

et
ic

al
go
ri
th
m

0.
50
99

74
-0
.2
08
6

1.
50
68

3.
09
49

2.
23
99

0.
00
19

N
el
d
er
-m

ea
d

0.
29
32

50
-0
.3

2.
99
27

1.
85
18

2.
84
07

0.
00
10

R
an

d
om

se
ar
ch

0.
77
29

90
0.
34
88

5.
64
13

4.
57
27

8.
07
11

0.
00
50

ch
in
a

B
ay
es

0.
10
35

47
-0
.2
96
5

1.
49
76

1.
43
59

1.
42
26

0.
00
16

G
en

et
ic

al
go
ri
th
m

0.
45
35

94
-0
.2
06
3

2.
26
75

1.
97
33

3.
06
27

0.
00
14

N
el
d
er
-m

ea
d

0.
48
82
2

78
-0
.2
56
9

2.
51
75

1.
67
60

1.
53
70

0.
00
25

R
an

d
om

se
ar
ch

0.
38
85

85
0.
38
25

9.
21
78

1.
20
36

9.
36
85

0.
00
44

co
c-
81

B
ay
es

0.
14
98

45
-0
.2
31
5

1.
69
52

1.
59
03

1.
65
65

0.
00
14

G
en

et
ic

al
go
ri
th
m

0.
47
89

66
0.
38
55

3.
71
64

2.
87
86

4.
86
13

0.
00
29

N
el
d
er
-m

ea
d

0.
28
02

41
-0
.2
73
1

2.
17
64

1.
00
50

1.
21
96

0.
00
11

R
an

d
om

se
ar
ch

0.
44
66

75
-0
.1
55
8

2.
51
10

1.
09
52

6.
19
39

0.
00
32

d
es
h
ar
n
ai
s

B
ay
es

0.
11
90

46
-0
.2
18
3

1.
74
88

1.
30
93

1.
24
80

0.
00
15

G
en

et
ic

al
go
ri
th
m

0.
70
93
2

93
0.
68
71

6.
56
98

2.
32
01

8.
57
41

0.
00
41

N
el
d
er
-m

ea
d

0.
37
34

53
-0
.1
83
7

1
1.
08
16

2.
06
26

0.
00
20

R
an

d
om

se
ar
ch

0.
27
27

80
0.
50
97

6.
78
89

1.
13
78

1.
30
45

0.
00
24

k
it
ch
en

h
am

B
ay
es

0.
12
09

45
-0
.2
13
7

1.
84
57

1.
80
14

1.
91
53

0.
00
13

G
en

et
ic

al
go
ri
th
m

0.
47
19

88
-0
.1
14
9

4.
23
76

3.
29
25

2.
63
07

0.
00
93

N
el
d
er
-m

ea
d

0.
35
21

56
-0
.1
72
5

2
1.
05
62

2.
04
56

0.
00
21

R
an

d
om

se
ar
ch

0.
41
78

90
0.
22
98

1.
38
69

4.
12
08

5.
62
94

0.
00
98

m
ax

w
el
l

B
ay
es

0.
14
83

48
-0
.2
89
8

1.
93
25

1.
81
15

1.
18
31

0.
00
15

G
en

et
ic

al
go
ri
th
m

0.
57
57

67
0.
33
82

7.
46
39

1.
08
06

3.
51
68

0.
00
38

N
el
d
er
-m

ea
d

0.
24
44

58
-0
.1
61
1

1.
4

1.
04
11

2.
11
22

0.
00
41

R
an

d
om

se
ar
ch

0.
49
45

63
0.
44
08

5.
28
71

3.
50
66

7.
55
17

0.
00
46

m
iy
az
ak

i9
4

B
ay
es

0.
13
35

48
-0
.2
96
0

1.
35
46

1.
65
46

1.
78
36

0.
00
12

G
en

et
ic

al
go
ri
th
m

0.
31
61

79
0.
54
87

3.
43
86

4.
83
22

2.
79
63

0.
00
49

N
el
d
er
-m

ea
d

0.
3

40
-0
.2
99
9

1.
42
18

1
1.
56
25

0.
00
10

R
an

d
om

se
ar
ch

0.
70
74

88
0.
30
05

5.
80
98

4.
92
89

9.
68
55

0.
00
26

n
as
a9
3-
d
em

B
ay
es

0.
12
55

43
-0
.2
13
6

1.
97
75

1.
76
83

1.
03
95

0.
00
17

G
en

et
ic

al
go
ri
th
m

0.
49
97

49
0.
73
23

7.
13
95

1.
99
84

1.
80
17

0.
00
59

N
el
d
er
-m

ea
d

0.
30
79

41
-0
.0
89
9

2.
98
56

1.
83
18

2.
79
21

0.
00
10

R
an

d
om

se
ar
ch

0.
83
85

81
0.
28
40

2.
20
25

4.
87
96

1.
42
65

0.
00
57

355



M. Maruf Öztürk

low standard deviations, the margin between training and test curves
becomes narrow.

The accuracy changes across the data sets are given in Table 4. Note
that the accuracy values are not dependent on the data set. Likewise,
the type of pruning method employed on the MLP has little impact
on accuracy. In summary, with respect to the compression rate, the
genetic algorithm is more durable than its counterparts. Likewise, it
was found to have the highest accuracy according to the overall perfor-
mance presented in Figure 4f. Bayes showed a low level of resistance
against compression that is not reasonable when optimizing pruned
networks. Interestingly, MLP becomes more tolerant to compression
if the pruning is performed without optimization when compared to
Nelder-mead and Bayes as shown in Figure 4e.

5.3 Does the compression create the same effect on the

optimization methods?

Figure 4 shows changing accuracies depending on the increasing com-
pression rates. The results of Figure 4 were generated via the mean
values of OBD and OBS. The best of Bayes given in Figure 4a is 93%
accuracy with 3% compression rate. It does not respond to the com-
pression rate above 18%. For that compression rate, the accuracy is
72%. Figure 4b is of the genetic algorithm that was able to achieve
90% accuracy with 1.7% of compression rate. The genetic algorithm
does not calculate the accuracy of the compression rate above 58%.
Nelder-mead can not perform optimization if the compression rate is
under 39%. Its accuracy sharply reduces from 96% to 87% if the com-
pression rate is augmented up to 20%. Such a decline is very high for
the data sets that do not converge fast in practice. This case may have
originated from a high number of features. Random search achieved
the highest accuracy 92% with 2% compression. It does not respond
to the compression rate above 32%.

In the experiment, the accuracy values were recorded with increas-
ing iteration. Here we intend to observe how fast optimization methods
reach a narrow and high accuracy range. Figure 5 presents accuracy
values for 250 iterations. Bayes needs more iterations than the other

356



Tuning effort estimation with pruned neural network . . .

0 10 20 30 40

50
10

0
15

0
20

0

Iteration

W
eig

hte
d S

SE

(a) Bayes

0 10 20 30 40 50 60 70

20
40

60
80

10
0

12
0

14
0

Iteration

W
eig

ht
ed

 S
SE

(b) Genetic algorithm

0 10 20 30 40 50

50
10

0
15

0

Iteration

W
ei

gh
te

d 
SS

E

(c) Nelder-mead

0 20 40 60 80

20
40

60
80

10
0

12
0

14
0

Iteration

W
ei

gh
te

d 
S

S
E

(d) Random search

0 10 20 30 40 50

50
10

0
15

0
20

0

Iteration

W
ei

gh
te

d 
SS

E

(e) Without optimization

Figure 3. The comparison of WSSE results including without optimiza-
tion. The results are produced with 2000 randomly selected instances
from the data sets. The pruning is performed via average setting of
OBD and OBS

357



M. Maruf Öztürk

Compression ratio%

A
c
c
u

ra
c
y
%

5 10 15
65

70

75

80

85

90

95 albrecht

china

coc81

desharnais

kitchenham

maxwell

miyazaki94

nasa93dem

(a) Bayes

Compression ratio%

A
c
c
u

ra
c
y
%

20 40

75

80

85

90

95
albrecht

china

coc81

desharnais

kitchenham

maxwell

miyazaki94

nasa93dem

(b) Genetic algorithm

Compression ratio%

A
c
c
u

ra
c
y
%

10 20 30

65

70

75

80

85

90

95
albrecht

china

coc81

desharnais

kitchenham

maxwell

miyazaki94

nasa93dem

(c) Nelder-mead

Compression ratio%

A
c
c
u

ra
c
y
%

10 20 30

75

80

85

90

95
albrecht

china

coc81

desharnais

kitchenham

maxwell

miyazaki94

nasa93dem

(d) Random search

Compression ratio%

A
c
c
u

ra
c
y
%

10 20 30

65

70

75

80

85

90

95
albrecht

china

coc81

desharnais

kitchenham

maxwell

miyazaki94

nasa93dem

(e) Without optimization

B
ay
es

G
en
et
ic

N
el
de
rm
ea
d

R
an
do
m
se
ar
ch

0.80 0.85 0.90 0.95 1.00

M
et
ho
d

Accuracy

(f) Box-plot of accuracy values

Figure 4. Accuracy comparison of the algorithms with varying com-
pression rates

358



Tuning effort estimation with pruned neural network . . .

methods to reach high and stable accuracy. The genetic algorithm was
found to produce the best accuracy as given in Figure 4f. It has shown
that it is no coincidence as demonstrated in Figure 5b.

50 100 150 200 250

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

iteration

ac
cu
ra
cy

(a) Bayes

50 100 150 200 250

0.
80

0.
85

0.
90

0.
95

1.
00

iteration

ac
cu
ra
cy

(b) Genetic algorithm

50 100 150 200 250

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

iteration

ac
cu
ra
cy

(c) Nelder-mead

50 100 150 200 250

0.
80

0.
85

0.
90

0.
95

1.
00

iteration

ac
cu
ra
cy

(d) Random search

Figure 5. Iteration and accuracy curves that show the details of accu-
racy changes about the comparison algorithms

6 Discussion

Some of the data sets have an insufficient number of instances in the
experiment. To perform oversampling, SMOTE was used. Instead, an
upgraded version of it such as LR-SMOTE [4] could change the ten-
dency of results to reduce the fluctuation. To generalize the findings,

359



M. Maruf Öztürk

Table 5. Kruskal-Wallis test results of the optimization methods
P value Significance Groups Kruskal-Wallis statistic Number of values

0.0003 P<0.05 4 18.75 964

an MLP is utilized to create the model. Adding some deep learn-
ing techniques including stacked autoencoder and deep belief network
may deepen our understanding of the effects of pruning on deep mod-
els. There is a major research gap we plan to investigate in future
works that optimization methods also have various hyperparameters
as machine learning algorithms have. For instance, Bayes has acq,
init points, n iter, kappa, and eps. They need to be correctly tuned
or initialized to obtain reliable outputs. Addressing that research gap
could provide new insight into neural network pruning. Further, adding
other techniques such as Magnitude-based to the pruning methods is
expected to shift research direction in this field. It is worthwhile to
note that conducting a multi-label classification on the SEE data sets
limits the scope of the experiment. Performing a twofold experiment
including both classification and regression may extend that scope. We
further checked the difference in accuracy results among the compari-
son methods. To that end, a non-parametric test called Kruskal-Wallis
is executed in no-pairing mode. According to the details of Table 5,
optimization methods employed in the experiment are significantly dif-
ferent (P<0.05) with respect to the accuracy.

7 Conclusion

In the era of complex computing, SEE mainly relies on expert knowl-
edge and basic machine learning methods employed with default config-
urations which remained insufficient especially for deep learning tech-
niques. Because they create an enormous computational burden if there
are large-scale data sets. In this work, we investigate in what ways that
burden can be alleviated. To this end, an MLP is devised to perform
SEE. Further, four optimization methods were employed to tune MLP
and two pruning methods. The experiment realized with eight data
sets shows that the genetic algorithm produces slightly better accuracy

360



Tuning effort estimation with pruned neural network . . .

than its counterparts when the compression rate is high. Without op-
timization, a pruned MLP produces higher performance as compared
to Bayes and Random search. As a result, a pruned neural network
may not be compatible with every optimization method. Further, the
data sets having high standard deviations pose a crucial threat to the
performance of SEE. Last, the type of pruning methods has a negligible
effect on the accuracy of SEE.

References

[1] M. Usman, K. Petersen, J. Börstler, and P. Santos Neto,
“Developing and using checklists to improve software effort
estimation: A multi-case study,” Journal of Systems and
Software, vol. 146, pp. 286–309, dec 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121218302073

[2] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and
R. Selby, “Cost models for future software life cycle processes:
Cocomo 2.0,” Annals of software engineering, vol. 1, no. 1, pp.
57–94, 1995.

[3] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort
estimation using analogy,” in Proceedings of IEEE 18th
International Conference on Software Engineering. IEEE
Comput. Soc. Press, pp. 170–178. [Online]. Available:
http://ieeexplore.ieee.org/document/493413/

[4] X. Liang, A. Jiang, T. Li, Y. Xue, and G. Wang, “Lr-smote–an
improved unbalanced data set oversampling based on k-means and
svm,” Knowledge-Based Systems, p. 105845, 2020.

[5] C. L. Martin, J. L. Pasquier, C. M. Yanez, and A. Tornes, “Soft-
ware development effort estimation using fuzzy logic: a case
study,” in Sixth Mexican International Conference on Computer
Science (ENC’05). IEEE, 2005, pp. 113–120.

[6] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural
network models for software development effort estimation:

361



M. Maruf Öztürk

a comparative study,” Neural Computing and Applications,
vol. 27, no. 8, pp. 2369–2381, nov 2016. [Online]. Available:
http://link.springer.com/10.1007/s00521-015-2127-1

[7] P. Suresh Kumar, H. Behera, A. K. K, J. Nayak, and B. Naik,
“Advancement from neural networks to deep learning in software
effort estimation: Perspective of two decades,” Computer Science
Review, vol. 38, p. 100288, nov 2020. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1574013720303889

[8] X. Li, H. Jiang, Z. Ren, G. Li, and J. Zhang, “Deep learning in
software engineering,” arXiv preprint arXiv:1805.04825, 2018.

[9] K. Madala, D. Gaither, R. Nielsen, and H. Do, “Automated iden-
tification of component state transition model elements from re-
quirements,” in 2017 IEEE 25th International Requirements Engi-
neering Conference Workshops (REW). IEEE, 2017, pp. 386–392.

[10] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the
best choice for modeling source code?” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, 2017,
pp. 763–773.

[11] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Ad-
vances in neural information processing systems, vol. 2, pp. 598–
605, 1989.

[12] B. Hassibi and D. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” Advances in neural information
processing systems, vol. 5, pp. 164–171, 1992.

[13] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” Advances in neural
information processing systems, vol. 28, pp. 1135–1143, 2015.

[14] S. Park, J. Lee, S. Mo, and J. Shin, “Lookahead: A Far-Sighted
Alternative of Magnitude-based Pruning,” feb 2020. [Online].
Available: http://arxiv.org/abs/2002.04809

362



Tuning effort estimation with pruned neural network . . .

[15] P. Singh, R. Manikandan, N. Matiyali, and V. P.
Namboodiri, “Multi-Layer Pruning Framework for Com-
pressing Single Shot MultiBox Detector,” in 2019 IEEE
Winter Conference on Applications of Computer Vision
(WACV). IEEE, jan 2019, pp. 1318–1327. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8658776/

[16] R. W. Zeng and Urtasun, “MLPrune: Multi-Layer Pruning for
Automated Neural Network Compression,” in ICLR 2019, 2019,
pp. 1–12.

[17] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and
Q. Tian, “Variational Convolutional Neural Network Pruning,”
in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, jun 2019, pp. 2775–2784. [Online].
Available: https://ieeexplore.ieee.org/document/8954234/

[18] C. Laurent, C. Ballas, T. George, N. Ballas, and P. Vincent, “Re-
visiting loss modelling for unstructured pruning,” arXiv preprint
arXiv:2006.12279, 2020.

[19] X. Ding, X. Zhou, Y. Guo, J. Han, J. Liu et al., “Global sparse mo-
mentum sgd for pruning very deep neural networks,” in Advances
in Neural Information Processing Systems, 2019, pp. 6382–6394.

[20] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Im-
portance estimation for neural network pruning,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 11 264–11 272.

[21] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural
networks via layer-wise optimal brain surgeon,” in Advances in
Neural Information Processing Systems, 2017, pp. 4857–4867.

[22] R. Smith, B. Dixon, A. Parrish, and J. Hale, “En-
hancing the Cocomo estimation models,” IEEE Software,
vol. 17, no. 6, pp. 45–49, 2000. [Online]. Available:
http://ieeexplore.ieee.org/document/895167/

363



M. Maruf Öztürk

[23] Y. Shan, R. McKay, C. Lokan, and D. Essam, “Software project
effort estimation using genetic programming,” in IEEE 2002 In-
ternational Conference on Communications, Circuits and Systems
and West Sino Expositions, vol. 2. IEEE, pp. 1108–1112. [Online].
Available: http://ieeexplore.ieee.org/document/1178979/

[24] X. Huang, D. Ho, J. Ren, and L. F. Capretz, “A soft computing
framework for software effort estimation,” Soft Computing, vol. 10,
no. 2, pp. 170–177, 2006.

[25] E. Kocaguneli, T. Menzies, and J. W. Keung, “On the value of
ensemble effort estimation,” IEEE Transactions on Software En-
gineering, vol. 38, no. 6, pp. 1403–1416, 2011.

[26] S. K. Palaniswamy and R. Venkatesan, “Hyperparameters tuning
of ensemble model for software effort estimation,” Journal
of Ambient Intelligence and Humanized Computing, sep 2020.
[Online]. Available: http://link.springer.com/10.1007/s12652-
020-02277-4

[27] J. Huang, Y.-F. Li, and M. Xie, “An empirical analysis of data pre-
processing for machine learning-based software cost estimation,”
Information and software Technology, vol. 67, pp. 108–127, 2015.

[28] L. Song, L. L. Minku, and X. Yao, “The impact of parameter
tuning on software effort estimation using learning machines,”
in Proceedings of the 9th International Conference on Predictive
Models in Software Engineering - PROMISE ’13. New York,
New York, USA: ACM Press, 2013, pp. 1–10. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2499393.2499394

[29] S.-J. Huang, N.-H. Chiu, and L.-W. Chen, “Integration of the
grey relational analysis with genetic algorithm for software effort
estimation,” European Journal of Operational Research, vol. 188,
no. 3, pp. 898–909, 2008.

[30] F. Zare, H. Khademi Zare, and M. S. Fallah-
nezhad, “Software effort estimation based on the op-

364



Tuning effort estimation with pruned neural network . . .

timal Bayesian belief network,” Applied Soft Comput-
ing, vol. 49, pp. 968–980, dec 2016. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1568494616303969

[31] S. Xu, Y. Wang, and Z. Wang, “Parameter estimation of
proton exchange membrane fuel cells using eagle strategy
based on JAYA algorithm and Nelder-Mead simplex method,”
Energy, vol. 173, pp. 457–467, apr 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0360544219303056

[32] L. Villalobos-Arias, C. Quesada-López, J. Guevara-Coto,
A. Mart́ınez, and M. Jenkins, “Evaluating hyper-parameter tuning
using random search in support vector machines for software effort
estimation,” in Proceedings of the 16th ACM International Con-
ference on Predictive Models and Data Analytics in Software En-
gineering. New York, NY, USA: ACM, nov 2020, pp. 31–40. [On-
line]. Available: https://dl.acm.org/doi/10.1145/3416508.3417121

[33] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp. 321–357, 2002.

[34] R. Blagus and L. Lusa, “Evaluation of smote for high-dimensional
class-imbalanced microarray data,” in Proceedings of the 2012 11th
International Conference on Machine Learning and Applications-
Volume 02, 2012, pp. 89–94.

[35] R. Astudillo and P. I. Frazier, “Bayesian optimization of composite
functions: Supplementary material,” 2019.

M. Maruf Öztürk Received January 17, 2021

Accepted September 23, 2021

Department of Computer Engineering

Faculty of Engineering

Isparta, TURKEY

Phone: +90 246 211 15 63

E–mail: muhammedozturk@sdu.edu.tr

365


