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Abstract

All cube roots of the identity in the special linear group of
2 × 2-matrices with entries in the ring of integers in Q[

√
d] are

described. These matrices generate subgroups of the third order;
it is shown that such subgroups may contain non-elementary ma-
trices in the sense of P. M. Cohn. All this is viewed with respect
to possible applications in lattice cryptography.
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1 Introduction

Some public-key cryptographic algorithms are believed to be secure
against attacks by quantum computers. Lattice-based cryptography is
believed to be one of them ( [1]). Another system is e. g. multivariate
public key cryptography (we discuss some of its features and possible
improvements in the papers [3] and [4], where the multivariate system
is called TTM, which means the Tame Transformation Method).

On the other hand, Shor’s algorithm for quantum computers is
designed to solve prime factorization of large primes and the discrete
logarithm problem in polynomial time.

In the paper, we will have in mind – in the background – lattices
represented by their generator matrices. We are concerned with design
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ideas based on linear algebra over certain domains. Regarding the
submission of these ideas into a lattice-based cryptosystem, we can
think, for instance, the GGH cryptosystem, which is perhaps the most
intuitive encryption scheme based on lattices. We remark that the
classical GGH cryptosystem has been subject to cryptanalytic attacks
and should be considered insecure, but we are not particularly limited
to this system, which we mention as an example only, and, moreover,
we present a completely different algebraic situation in which no attacks
have yet been proposed.

In some cryptographic protocols working over finite groups, we have
to be careful that we do not fall victim to what is called a small subgroup
attack. In order to counter this attack, the prime order groups are used,
in which all elements are primitive and small subgroups do not exist
( [8]).

So, our design is to consider lattice cryptography over imaginary
quadratic integers, involving not only large-size matrices but also 2× 2
matrices, then selecting non-elementary matrices that are difficult to
generate. In this paper we note that there exist also inappropriate,
small subgroups in this case. Our result can also be seen as a contri-
bution to matrix theory.

2 Some facts about orders of imaginary qua-
dratic fields and problem formulation

Let d be a negative square-free integer and C a positive integer. We
will distinguish two cases:

(I) d ≡ 1 (mod 4)

(II) d ≡ 2 or d ≡ 3 (mod 4)

We set

ε =

{
1 for the case (I)

0 for the case (II);

and
θ =

√
d+

ε

2

(
1−

√
d
)
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and

D = −d+
ε

4
(1 + 3d).

Further, we denote by Z [Cθ] an order of the imaginary quadratic field
Q[

√
d], so

Z [Cθ] = {x+ yCθ;x, y ∈ Z}.

The order Z [Cθ] is a normed ring with the norm | | : Z [Cθ] → R+ equal
to the complex numbers absolute value. Then for z = x+yCθ ∈ Z [Cθ]
we have

|z|2 = x2 + εxyC + y2C2D.

All orders are domains. For C = 1, the order Z [Cθ] is called the
maximal order or the ring of integers in Q[

√
d] (often denoted also by

O
Q[

√
d
).

The maximal orders are principal ideal domains (PID’s) if and only
if d is one of the numbers

−1,−2,−3,−7,−11,−19,−43,−67,−163.

For the (more usual) norm defined as the square root of our | |,
there does not exist any x ∈ Z [θ] with this norm between 1 and 2 (or
in our | | between 1 and 4) which holds for every negative square-free
d, excerpt when

d = −1,−2,−3,−7,−11

which are just the domains in which is a Euclidean algorithm for com-
puting the greatest common divisor. All other Z [θ] are non-Euclidean.

2.1 The fact that not all matrices are elementary

Let us consider SL (2,Z). By an elementary transvection Vij(r) 1 ≤ i 6=
j ≤ m, r ∈ R, we mean a matrix [aνµ] with

aνµ =





1R for ν = µ

r for ν = i, µ = j

0R otherwise.
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Finite products of elementary transvections form a subgroup SE (2,Z)
of elementary matrices in SL (2,Z). In other words, one can ob-
tain elementary matrices by a finite sequence of multiplyings a row
(or column) by a non-zero number r and adding the result to an-
other row (or column), starting from the identity matrix. However,
SE (2,Z) = SL (2,Z).

When we replace Z by another ring R, then it can happen that
SE (2, R) is a proper subgroup of SL (2, R). This problem was studied
by P. M. Cohn in 1966. He was the first to give an example of a matrix
with determinant 1 which is not elementary. In the paper [5] (published
in 2011), we introduced an algorithm how to detect such matrices for
any order of imaginary quadratic field.

2.2 Some classical examples of non-elementary matrices

Here are some known examples of non-elementary matrices that have
been studied before. By way of illustration, we also calculate their
twelfth power: these matrices are of infinite order, so the norms of
their entries are not bounded.

P. M. Cohn, [2], 1966: d = −19,

MCohn =

(
3− θ 2 + θ

−3− 2 θ 5− 2 θ

)
.

Then

M12
Cohn

=
(

−138533292392 + 7105318818 θ 1003585011 − 60934202901 θ
−29430829974 + 110698224819 θ −249231517211 + 23358797787 θ

)
.

R. Tuler, [9], 1983: d = −37,

MTuler =

(
29 7− θ

7 + θ 3

)
.

We compute

M12
Tuler

=
(

1033551428421627457 249747318595287744 − 35678188370755392 θ

249747318595287744 + 35678188370755392 θ 105918530781987265

)
.
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This paper shows that there are also small-order non-elementary
matrices for which even the third power is the identity matrix. For
example, for d = −163 all matrices

M1 =

(
1− 5 θ 2 + 2 θ
19− 12 θ −2 + 5 θ

)
,

M2 =

(
4− θ 5 + 2 θ
4 −5 + θ

)
,

M3 =

(
8− θ 4− 2 θ
−8 −9 + θ

)
,

and

M4 =

(
−10− 3 θ 25 + 4 θ
−2− 2 θ 9 + 3 θ

)

are examples of non-elementary matrices, the third power of which is I.

Theorem 2.7 of [6] allows us to calculate easily the possible orders of
elements of GL (2,Z). The result is that this group can have subgroups
of orders 2, 3, 4, and 6. We note that all these numbers are divisors of
12, whose power we have calculated above. 1

2.3 The problem

We search for matrices M whose entries are integers in Q[
√
d] satisfying

M3 = I =

(
1 0
0 1

)
.

1When we have already mentioned divisors of the number 12, we will also re-

member the efforts of the duodecimalists, by recalling Limerick from the Duodecimal

Bulletin 2015, No.1:

A base boasting reason and rhyme,

Sported factors full four at a time.

”Why the fourth and the third?”

”Cause just three is absurd;

And only two, sir, is a crime.”
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Our next requirement is that the determinant of the matrix M is equal

to 1. So, we do not consider matrices like

(
1 0

0 −1+
√−3
2

)
; in other

words, we are only in the group SL (2,Z [θ]).
Of course, trivial solutions of the problem M3 = I are diagonal

matrices
(

1 0
0 1

)
,

(
−1+

√
−3

2 0

0 −1+
√−3
2

)
and

(
−1−

√
−3

2 0

0 −1−√−3
2

)
,

the last two only in the case of Eisenstein integers. We want to classify
all other nontrivial matrices.

3 The result

Theorem 1. Let d be a negative square-free integer. Then the complete
classification of matrices of SL (2,Z [θ]) representing nontrivial cube
roots of identity is as follows.

(i) For every d 6= −3, a matrix of SL (2,Z [θ]) represents nontrivial
cube roots of identity if and only if it is of a form

(
a+Aθ b+B θ

c+ C θ −a− 1−Aθ

)
, (1)

where

bc+BC

(
d− ε

3d+ 1

4

)
= −1− a− a2 −A2

(
d− ε

3d+ 1

4

)
(2)

bC +Bc+ εBC = −A− 2aA−A2, (3)

a,A, b,B, c, C ∈ Z.

(ii) For d = −3, a matrix of SL (2,Z [θ]) is of the same form as in
the case (i).

(iii) The cardinality of the intersection of a 3-element subgroup gen-
erated by a nontrivial cube root of identity with SE (2,Z [θ]) can
be either 1 or 3.
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Proof. (i) Let us start with a matrix

M =

(
α β

γ δ

)
,

where α, β, γ, δ ∈ C. One can easily deduce that requirement
M3 = I implies the following system of equations:

α3 + 2αβγ + βγδ = 1; (4)

β
(
α2 + βγ + αδ + δ2

)
= 0; (5)

γ
(
α2 + βγ + αδ + δ2

)
= 0; (6)

αβγ + 2βγδ + δ3 = 1. (7)

Equations (5) and (6) are directed to three variants.

Variant I. Let β = 0. Then α3 = 1 and δ3 = 1. Let us denote

by σ = −1+
√
3

2 and by σ̄ its complex conjugate. Then the set of
complex cube roots of 1 is S = {1, σ, σ̄}. Then α = σ1, δ = σ2,
where σ1 and σ2 are some elements from S. Now, it follows from
the equation (6) that if σ1 = σ2, then γ = 0, and if σ1 6= σ2,
then γ can be taken completely arbitrarily. The conclusion of
this variant is therefore

(
σ1 0
γ σ2

)
with σ1, σ2, γ as mentioned. (8)

Variant II. Let γ = 0. Analogous to the previous Variant I. The
conclusion is

(
σ1 β

0 σ2

)
with σ1, σ2, β similarly as above. (9)

Variant III. Let β 6= 0 ∧ γ 6= 0. Then

βγ = −α2 − αδ − δ2.

If we substitute this into (4) or (7), we obtain equally

(α+ δ)3 = −1. (10)
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Let Ŝ = {−1,−σ,−σ̄} and let σ̂0 be an element from Ŝ and ¯̂σ0
its complex conjugate. Then

βγ = −α2 − σ̂0 + ¯̂σ0. (11)

In conclusion, we have
(

α β

γ −α+ σ̂0

)
, where σ̂0, β and γ satisfy

what has been just described.

Non-Eisenstein integers (d 6= −3) do not contain elements σ, −σ,
σ̄ and −σ̄. This brings a much simpler situation. In the Variant

I as in the Variant II, we obtain only the identity matrix I. The
Variant III reads as

(
α β

γ −α− 1

)
, where βγ = −α2 − α− 1.

For a precise description of the condition βγ = −α2 − α− 1, we
write down complex numbers into components:

α = a+Aθ, β = b+Bθ, γ = c+ Cθ.

We derive from θ =
√
d+ ε

2

(
1−

√
d
)
that θ2 = d+ ε

(
θ − 3d+1

4

)

and compute directly (2) and (3).

We remark that for given a,A ∈ Z, we can denote A1 = −1−a−
a2 −A2

(
d− ε3d+1

4

)
, A2 = −A− 2aA−A2 (the right hand sides

of (2) and (3)) and observe that there are many integer solutions
for b, B, c and C, for example, b = A1, B = A2, c = 1, C = 0.

(ii) For d = −3, θ =
√
−3 + 1

2

(
1−

√
−3
)
= 1+

√
−3

2 . Then

S =
{
1,−θ,−θ̄

}
and Ŝ =

{
−1, θ, θ̄

}
.

The Variant I and Variant II, namely (8) and (9), lead to three

trivial solutions, I,

(
−θ 0
0 −θ

)
and

(
−θ̄ 0
0 −θ̄

)
and for solu-

tions described in the special case.
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In the Variant III, we have to add to equations (10) and (11) the
additional equation, the requirement that the determinant of M
is equal to 1. However,

detM = αδ − βγ = α (σ̂0 − α)−
(
−α2 + ασ̂0 + ¯̂σ0

)
= − ¯̂σ0.

Nevertheless, − ¯̂σ0 = 1 means that ¯̂σ0 = −1 and σ̂0 = −1. There-
fore, we have no equations other than those already derived in
(iA).

(iii) We have a group with 3 elements

M =

(
α β

γ −α− 1

)
, M2 = M−1 =

(
−α− 1 −β

−γ α

)
,

M3 = I =

(
1 0
0 1

)
.

with βγ = −α2 − α − 1. Of course, M3 is elementary and M is
elementary if and only ifM2 is elementary as elementary matrices
form the group SE (2,Z [θ]). It remains to show that M can be
both elementary and non-elementary. This can be demonstrated
already for d = −5. Suitable matrices are, for example,

ME =

(
1 +

√
−5 −2 + 3

√
−5

−1 −2−
√
−5

)

which is elementary and

MN =

(
2− 7

√
−5 1 + 2

√
−5

28− 21
√
−5 −3 + 7

√
−5

)

which is non-elementary.

We present elementary transvections as elementary row opera-
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tions. We observe

(
1 0
0 1

)
r1=r1+(3+

√−5)r2−−−−−−−−−−−−→
(

1 3 +
√
−5

0 1

)

r2=r2−r1−−−−−−→
(

1 3 +
√
−5

−1 −2−
√
−5

)

r1=r1−
√−5r2−−−−−−−−−→

(
1 +

√
−5 −2 + 3

√
−5

−1 −2−
√
−5

)
= ME .

and that is why the matrix ME is elementary.

For the proof of the non-elementarity of MN , we use approach
presented in [5]. The (1, 2)-submatrix of MN is

A =
(
2− 7

√
−5 1 + 2

√
−5

)
,

and the reduction ellipse Ered has the equation

x2 + 5y2 +
136

21
x+

110

21
y +

76

7
= 0

(for the procedure of the computation see [5]). We can verify (or
observe on the Figure 1) that there are no interior lattice points
of the reduction ellipse with integer coordinates. Hence there are
no reduction elements for A, and thereforeMN is non-elementary.

Remark 1. It is easy to search for square roots from the identity. But
there are no non-trivial solutions in SL (2,Z), which the reader can
verify. Another problem would be to look for the fourth roots, where
the same procedure as in our paper could be used.
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- 6 - 5 - 4 - 3 - 2 - 1

- 3

- 2

- 1

0

1

2

Figure 1. The reduction ellipse Ered for the matrix A possessing no
interior lattice point.

4 The Goldreich–Goldwasser–Halevi crypto-
system (GGH)

The private key is a generator matrix Z of a complete lattice L with
good properties such as short and nearly orthogonal generators together
with a unimodular matrix M .

The public key is another (”bad”) generator matrix Y of L obtained
as Y = MZ.

Given an open message expressed as a vector m and a random (so-
called error) vector e which has to be small, we cipher by c = m ·Y +e.

To decrypt c, first compute d = c ·Z−1 and apply the rounding-off
which provides ⌊d⌉. Finally, we compute m as ⌊d⌉ ·M−1.

4.1 GGH cryptosystem – introductory example over
Gaussian integers

Let d = −1, then θ =
√
−1. We will present only a very basic example

to remind the reader of the principles of the GGH system.

Let the generator matrix of the complete 3-lattice L be

Z =



12 + θ 0 1 + 2 θ

1 15 + θ 1− θ

4− θ 3− 3 θ 11− 19 θ


 ,
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and the unimodular matrix

M =




8 + 3 θ −2 + 20 θ 3 + 2 θ
33 − 3 θ 39 + 8 θ 4− 6 θ
2 + 4 θ 2 + 5 θ 1




(detM = 1). Then the ”bad” generator matrix of L is

Y = M · Z =



105 + 69 θ −35 + 295 θ 91 + 6 θ
448 − 23 θ 571 + 129 θ 16− 110 θ
26 + 54 θ 28 + 74 θ 12− 8 θ


 .

Now, for the open messagem = (50 + θ, 11− θ, 34 + 15 θ) and the error
vector e = (1 + θ, 2− θ, 3− 2 θ), we compute the ciphered message as

c = m · Y + e = (10161 + 5081 θ, 4209 + 18498 θ, 5141 − 929 θ) .

The decryption: first, we compute d = c · Z−1 as
(

2989188391

3907301
+

1008368124

3907301
θ,

2423186121

7814602
+

4872178230

3907301
θ,

860187474

3907301
+

375699873

7814602
θ

)

which we round-off to

⌊d⌉ = (765 + 258 θ, 310 + 1247 θ, 220 + 48 θ) .

Finally, m is recovered with

m = ⌊d⌉ ·M−1 = (50 + θ, 11− θ, 34 + 15 θ) .

4.2 GGH cryptosystem – a use of non-elementary ma-
trices, where d = −163

For example, we can use a non-elementary unimodular matrix MU =
(M1 ·M2 ·M3 ·M4)

3 as

(

52573221941851385 + 7734170153866877 θ −108339682589377105 − 8450168415298437 θ

97004133663118053 + 22955204128735434 θ−224828457848433395 − 29213244459035477 θ

)

.

We can use it for construction of a ”bad” generator matrix. Then,
a finding of the inverse matrix is complicated not only by that we have
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used an ”innovation” ring of integers with completely different mul-
tiplication compared to Z but also by the fact that MZ can also be
non-elementary and attempting to break such an element of a cryp-
tosystem precludes, for example, a use of Gauss-Jordan elimination for
the inverse.

5 Conclusion

Computer science develops cryptographic protocols and judges how se-
cure certain protocols are. The purpose of cryptography is to prevent
other parties from accessing information they should not access. In
our digitized world, these questions have considerable importance as
communicating sides do not meet directly and use asymmetric cryp-
tographic protocols. Modern public-key cryptography uses advanced
algebraic methods. The paper deals with questions coinciding with the
so-called small subgroup attack. There are classified all cube roots of
the identity in the special linear group of second-order matrices with
entries in the ring of integers in imaginary quadratic fields. The re-
sult may be essential for designing new protocols, e.g. in lattice-based
cryptosystems.
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Miroslav Kureš Received May 3, 2021

Accepted July 18, 2021

Miroslav Kureš

Brno University of Technology
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