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Abstract

The theory of finitely supported algebraic structures repre-
sents a reformulation of Zermelo-Fraenkel set theory in which
every classical structure is replaced by a finitely supported struc-
ture according to the action of a group of permutations of some
basic elements named atoms. It provides a way of representing in-
finite structures in a discrete manner, by employing only finitely
many characteristics. In this paper we present some (finiteness
and fixed point) properties of finitely supported self-mappings
defined on the finite power set of atoms.
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1 Introduction

Finitely Supported Mathematics (FSM) is a general name for the the-
ory of finitely supported sets equipped with finitely supported internal
operations or with finitely supported relations [2]. Finitely supported
sets are related to the recent development of the Fraenkel-Mostowski
axiomatic set theory, to the theory of admissible sets of Barwise (par-
ticularly by generalizing the theory of hereditary finite sets) and to the
theory of nominal sets. Fraenkel-Mostowski set theory (FM) represents
an axiomatization of the Fraenkel Basic Model of the Zermelo-Fraenkel
set theory with atoms (ZFA); its axioms are the ZFA axioms together
with an axiom of finite support claiming that any set-theoretical con-
struction has to be finitely supported modulo a canonical hierarchically
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defined permutation action. An alternative approach for FM set theory
that works in the classical Zermelo-Fraenkel (ZF) set theory (i.e. with-
out being necessary to consider an alternative set theory obtained by
weakening the ZF axiom of extensionality) is related to the theory of
nominal sets that are defined as usual ZF sets equipped with canonical
permutation actions of the group of all one-to-one and onto transfor-
mations of a fixed infinite, countable ZF set formed by basic elements
(i.e. by elements whose internal structure is not taken into considera-
tion, called ‘atoms’) satisfying a finite support requirement (meaning
that ‘for every element x in a nominal set there should exist a finite
subset of basic elements S such that any one-to-one and onto transfor-
mation of basic elements that fixes S pointwise also leaves x invariant
under the effect of the permutation action with who the nominal set is
equipped’).

Nominal sets [5] are related to binding, freshness and renaming in
the computation of infinite structures containing enough symmetries
such that they can be concisely manipulated. Ignoring the require-
ment regarding the countability of A in the definition of a nominal set,
and motivated by Tarski’s approach regarding logicality (a logical no-
tion is defined by Tarski as one that is invariant under the one-to-one
transformations of the universe of discourse onto itself), we introduce
invariant sets. A finitely supported set is defined as a finitely sup-
ported element in the power set of an invariant set. Equipping finitely
supported sets with finitely supported mappings and relations, we get
finitely supported algebraic structures that form FSM.

In this paper we collect specific properties of finitely supported
mappings defined of the finite power set of atoms [2]–[4] and we present
some other new properties. We are particularly focused on proving
the equivalence between injectivity and surjectivity for such mappings,
together with some fixed point properties. Therefore, although the
finite power set of atoms is infinite, it has some finiteness properties.
Furthermore, although the finite power set of atoms is not a complete
lattice in FSM, some fixed points of Tarski type hold. Particularly,
finitely supported self-mappings defined on the finite powerset of atoms
have infinitely many fixed points if they satisfy some properties (such
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as strict monotony, injectivity or surjectivity).

2 Preliminary Results

A finite set (without other specification) is referred to a set that can be
represented as {x1, . . . , xn} for some n ∈ N. An infinite set (without
other specification) means “a set which is not finite”. We consider a
fixed infinite ZF set A (called ‘the set of atoms’ by analogy with ZFA
set theory; however, despite classical set theory with atoms, we do not
need to modify the axiom of extensionality in order to define A). The
atoms are entities whose internal structure is ignored and which are
considered as basic for a higher-order construction. This means atoms
can be checked only for equality.

A transposition is a function (a b) : A → A that interchanges only a
and b. A permutation of A in FSM is a bijection of A generated by
composing finitely many transpositions. We denote by SA the group of
all permutations of A. According to Proposition 2.11 and Remark 2.2
in [2], an arbitrary bijection on A is finitely supported if and only if it
is a permutation of A.

Definition 1.

1. Let X be a ZF set. An SA-action on X is a group action · of SA

on X. An SA-set is a pair (X, ·), where X is a ZF set, and · is
an SA-action on X.

2. Let (X, ·) be an SA-set. We say that S ⊂ A supports x when-
ever for each π ∈ Fix(S) we have π · x = x, where Fix(S) =
{π |π(a) = a,∀a ∈ S}. The least finite set (w.r.t. the inclusion
relation) supporting x (which exists according to [2]) is called the
support of x and is denoted by supp(x). An empty supported
element is called equivariant.

3. Let (X, ·) be an SA-set. We say that X is an invariant set if for
each x ∈ X there exists a finite set Sx ⊂ A which supports x.

Proposition 1. [2], [5] Let (X, ·) and (Y, ⋄) be SA-sets.
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1. The set A of atoms is an invariant set with the SA-action · :
SA × A → A defined by π · a := π(a) for all π ∈ SA and a ∈ A.
Furthermore, supp(a) = {a} for each a ∈ A.

2. Let π ∈ SA. If x ∈ X is finitely supported, then π · x is finitely
supported and supp(π · x) = {π(u) |u ∈ supp(x)} := π(supp(x)).

3. The Cartesian product X×Y is also an SA-set with the SA-action
⊗ : SA × (X × Y ) → (X × Y ) defined by π⊗ (x, y) = (π · x, π ⋄ y)
for all π ∈ SA and all x ∈ X, y ∈ Y . If (X, ·) and (Y, ⋄) are
invariant sets, then (X × Y,⊗) is also an invariant set.

4. The powerset ℘(X) = {Z |Z ⊆ X} is also an SA-set with the SA-
action ⋆ : SA × ℘(X) → ℘(X) defined by π ⋆ Z := {π · z | z ∈ Z}
for all π ∈ SA, and all Z ⊆ X. For each invariant set (X, ·), we
denote by ℘fs(X) the set of elements in ℘(X) which are finitely
supported according to the action ⋆ . (℘fs(X), ⋆|℘fs(X)) is an
invariant set.

5. The finite powerset of X denoted by ℘fin(X) = {Y ⊆ X |Y finite}
and the cofinite powerset of X denoted by ℘cofin(X) = {Y ⊆
X |X \ Y finite} are both SA-sets with the SA-action ⋆ defined as
in the previous item. If X is an invariant set, then both ℘fin(X)
and ℘cofin(X) are invariant sets.

6. We have ℘fs(A) = ℘fin(A) ∪ ℘cofin(A). If X ∈ ℘fin(A), then
supp(X) = X. If X ∈ ℘cofin(A), then supp(X) = A \X.

7. Any ordinary (non-atomic) ZF-set X (such as N,Z,Q or R for
example) is an invariant set with the single possible SA-action
· : SA ×X → X defined by π · x := x for all π ∈ SA and x ∈ X.

Definition 2. Let (X, ·) be an SA-set. A subset Z of X is called finitely
supported if and only if Z ∈ ℘fs(X). A subset Z of X is uniformly
supported if all the elements of Z are supported by the same set S (and
so Z is itself supported by S).
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From Definition 1, a subset Z of an invariant set (X, ·) is finitely
supported by a set S ⊆ A if and only if π ⋆ Z ⊆ Z for all π ∈ Fix(S),
i.e. if and only if π · z ∈ Z for all π ∈ SA and all z ∈ Z. This is because
any permutation of atoms should have finite order, and so the relation
π ⋆ Z ⊆ Z is equivalent to π ⋆ Z = Z.

Proposition 2. [2] Let X be a uniformly supported (particularly, a
finite) subset of an invariant set (U, ·). Then X is finitely supported
and supp(X) = ∪{supp(x) |x ∈ X}.

Definition 3. Let X and Y be invariant sets.

1. A function f : X → Y is finitely supported if f ∈ ℘fs(X × Y ).

2. Let Z be a finitely supported subset of X and T a finitely supported
subset of Y . A function f : Z → T is finitely supported if
f ∈ ℘fs(X×Y ). The set of all finitely supported functions from Z
to T is denoted by TZ

fs.

Proposition 3. [2], [5] Let (X, ·) and (Y, ⋄) be two invariant sets.

1. Y X (i.e. the set of all functions from X to Y ) is an SA-set
with the SA-action ⋆̃ : SA × Y X → Y X defined by (π⋆̃f)(x) =
π ⋄ (f(π−1 · x)) for all π ∈ SA, f ∈ Y X and x ∈ X. A function
f : X → Y is finitely supported (in the sense of Definition 3) if
and only if it is finitely supported with respect the permutation
action ⋆̃.

2. Let Z be a finitely supported subset of X and T a finitely supported
subset of Y . A function f : Z → T is supported by a finite set
S ⊆ A if and only if for all x ∈ Z and all π ∈ Fix(S) we have
π · x ∈ Z, π ⋄ f(x) ∈ T and f(π · x) = π ⋄ f(x).

3 Finitely Supported Self-Mappings

on the Finite Powerset of A

This section collects surprising finiteness and fixed point properties of
finitely supported self mappings defined on ℘fin(A). We involve specific
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FSM proving techniques, especially properties of uniformly supported
sets. Details regarding these aspects can be found in [2]–[4].

Theorem 1. A finitely supported function f : ℘fin(A) → ℘fin(A) is
injective if and only if it is surjective.

Proof. 1. For proving the direct implication, assume, by contradiction,
that f : ℘fin(A) → ℘fin(A) is a finitely supported injection having
the property that Im(f) ( ℘fin(A). This means that there exists
X0 ∈ ℘fin(A) such that X0 /∈ Im(f). We can construct a sequence
of elements from ℘fin(A) which has the first term X0 and the general
term Xn+1 = f(Xn) for all n ∈ N. Since X0 /∈ Im(f), it follows that
X0 6= f(X0). Since f is injective and X0 /∈ Im(f), according to the
injectivity of f we obtain that fn(X0) 6= fm(X0) for all n,m ∈ N

with n 6= m. Furthermore, Xn+1 is supported by supp(f) ∪ supp(Xn)
for all n ∈ N. Indeed, let π ∈ Fix(supp(f) ∪ supp(Xn)). According
to Proposition 3, π ⋆ Xn+1 = π ⋆ f(Xn) = f(π ⋆ Xn) = f(Xn) =
Xn+1. Since supp(Xn+1) is the least set supporting Xn+1, we obtain
supp(Xn+1) ⊆ supp(f) ∪ supp(Xn) for all n ∈ N. By induction on
n, we have supp(Xn) ⊆ supp(f) ∪ supp(X0) for all n ∈ N. Thus, all
Xn are supported by the same set of atoms S = supp(f) ∪ supp(X0),
which means the family (Xn)n∈N is infinite and uniformly supported,
contradicting the fact that ℘fin(A) has only finitely many elements
supported by S, namely the subsets of S.

2. In order to prove the reverse implication, let us consider a finitely
supported surjection f : ℘fin(A) → ℘fin(A). Let X ∈ ℘fin(A). Then
supp(X) = X and supp(f(X)) = f(X) according to Proposition 2.
Since supp(f) supports f and supp(X) supports X, for any π fixing
pointwise supp(f)∪ supp(X) = supp(f)∪X we have π ⋆ f(X) = f(π ⋆
X) = f(X) which means supp(f) ∪X supports f(X), that is f(X) =
supp(f(X)) ⊆ supp(f) ∪X (1).

For a fixed m ≥ 1, let us fix m (arbitrarily considered) atoms
b1, . . . , bm ∈ A\supp(f). Let F = {{a1, . . . , an, b1, . . . , bm} | a1, . . . , an ∈
supp(f), n ≥ 1}∪{{b1, . . . , bm}}. The set F is finite since supp(f) is fi-
nite and the elements b1, . . . , bm ∈ A\supp(f) are fixed. Let us consider
an arbitrary Y ∈ F , that is Y \ supp(f) = {b1, . . . , bm}. There exists
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Z ∈ ℘fin(A) such that f(Z) = Y . According to (1), Z must be ei-
ther of form Z = {c1, . . . , ck, bi1 , . . . , bil} with c1, . . . , ck ∈ supp(f) and
bi1 , . . . , bil ∈ A\supp(f) or of form Z = {bi1 , . . . , bil} with bi1 , . . . , bil ∈
A \ supp(f). In both cases we have {b1, . . . , bm} ⊆ {bi1 , . . . , bil}. We
should prove that l = m and hence the above sets are equal. Assume,
by contradiction, that there exists bij with j ∈ {1, . . . , l} such that
bij /∈ {b1, . . . , bm}. Then (bij b1)⋆Z = Z since both bij , b1 ∈ Z and Z is
a finite subset of A (bij and b1 are interchanged in Z under the effect of
the transposition (bij b1), while the other atoms belonging to Z are left
unchanged, meaning that the entire Z is left invariant under the action
⋆). Furthermore, since bij , b1 /∈ supp(f), we have that the transposi-
tion (bij b1) fixes supp(f) pointwise, and, because supp(f) supports f ,
from Proposition 3, we get f(Z) = f((bij b1) ⋆ Z) = (bij b1) ⋆ f(Z),
which is a contradiction, because b1 ∈ f(Z), while bij /∈ f(Z). Thus,
{bi1 , . . . , bil} = {b1, . . . , bm}, and so Z ∈ F . Therefore, F ⊆ f(F),
which means |F| ≤ |f(F)|. However, because f is a function and F is
a finite set, we obtain |f(F)| ≤ |F|. We finally get |F| = |f(F)| and,
because F is finite with F ⊆ f(F), we obtain F = f(F) (2), which
means that f |F : F → F is surjective. Since F is finite, f |F should be
injective, i.e. f(F1) 6= f(F2) whenever F1, F2 ∈ F with F1 6= F2 (3).

Whenever d1, . . . , du ∈ A\supp(f) with {d1, . . . , du} 6= {b1, . . . , bm},
u ≥ 1, and considering U = {{a1, . . . , an, d1, . . . , du} | a1, . . . , an ∈
supp(f), n ≥ 1}∪{{d1, . . . , du}}, we conclude that F and U are disjoint.
Whenever F1 ∈ F and U1 ∈ U , we have f(F1) ∈ F and f(U1) ∈ U by
using the same arguments used to prove (2), and so f(F1) 6= f(U1) (4).
If T = {{a1, . . . , an} | a1, . . . , an ∈ supp(f)} and Y ∈ T , then there is
T ′ ∈ ℘fin(A) such that Y = f(T ′). Similarly as in (2), we should have
T ′ ∈ T . Otherwise, if T ′ belonged to some U considered above, i.e. if
T ′ contained an element outside supp(f), we would get the contradic-
tion Y = f(T ′) ∈ U . Hence T ⊆ f(T ) from which T = f(T ) since T
is finite (using similar arguments as those involved to prove (3) from
F ⊆ f(F)). Thus, f |T : T → T is surjective. Since T is finite, f |T
should be also injective, namely f(T1) 6= f(T2) whenever T1, T2 ∈ T
with T1 6= T2 (5). The case supp(f) = ∅ is contained in the above
analysis; it leads to f(∅) = ∅ and f(X) = X for all X ∈ ℘fin(A). We
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also have f(T1) 6= f(U1) whenever T1 ∈ T and U1 ∈ U since f(T1) ∈ T ,
f(U1) ∈ U and T and U are disjoint (6). Since b1, . . . , bm and d1, . . . , du
were arbitrarily chosen from A\supp(f), the injectivity of f leads from
the claims (3), (4), (5) and (6) covering all the possible cases for two
different finite subsets of atoms and comparison of the values of f over
the related subsets of atoms.

Proposition 4. Let f : ℘fin(A) → ℘fin(A) be finitely supported and
injective. For each X ∈ ℘fin(A) we have X \ supp(f) 6= ∅ if and only
if f(X) \ supp(f) 6= ∅. Furthermore, X \ supp(f) = f(X) \ supp(f).
Moreover, if f is monotone (i.e. order preserving), then X \supp(f) =
f(X \ supp(f)) for all X ∈ ℘fin(A), and f(supp(f)) = supp(f).

Proof. Let us consider Y ∈ ℘fin(A). Then we have supp(Y ) = Y .
According to Proposition 3, for any permutation π ∈ Fix(supp(f) ∪
supp(Y )) = Fix(supp(f) ∪ Y ) we have π ⋆ f(Y ) = f(π ⋆ Y ) = f(Y )
meaning that supp(f)∪Y supports f(Y ), that is f(Y ) = supp(f(Y )) ⊆
supp(f) ∪ Y (1). If Y ⊆ supp(f), we have f(Y ) ⊆ supp(f) (2). Let
X ∈ ℘fin(X) with X ⊆ supp(f). From (2) we get f(X) ⊆ supp(f).
Conversely, assume f(X) ⊆ supp(f). By successively applying (2), we
obtain fn(X) ⊆ supp(f) for all n ∈ N∗ (3). Since supp(f) is finite,
there should exist l,m ∈ N∗ with l 6= m such that f l(X) = fm(X).
Assume l > m. Since f is injective, we obtain f l−m(X) = X, and
so by (3) we conclude that X ⊆ supp(f). Therefore, X ⊆ supp(f) if
and only if f(X) ⊆ supp(f), and hence X \ supp(f) 6= ∅ if and only if
f(X) \ supp(f) 6= ∅.

Let T ∈ ℘fin(A) such that f(T ) \ supp(f) 6= ∅ or, equiva-
lently, T \ supp(f) 6= ∅. Thus, T should have the form T =
{a1, . . . , an, b1, . . . , bm} with a1, . . . , an ∈ supp(f) and b1, . . . , bm ∈
A \ supp(f), m ≥ 1, or the form T = {b1, . . . , bm} with b1, . . . , bm ∈
A \ supp(f), m ≥ 1. According to (1), we should have f(T ) =
{c1, . . . , ck, bi1 , . . . , bil} with c1, . . . , ck ∈ supp(f) and bi1 , . . . , bil ∈ A \
supp(f), or f(T ) = {bi1 , . . . , bil} with bi1 , . . . , bil ∈ A \ supp(f), having
in any case the property that {bi1 , . . . , bil} is non-empty (i.e. it should
contain at least one element, say bi1) and {bi1 , . . . , bil} ⊆ {b1, . . . , bm}.
If m = 1, then l = 1, bi1 = b1, and we are done, so let m > 1.
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Assume by contradiction that there exists j ∈ {1, . . . ,m} such that
bj /∈ {bi1 , . . . , bil}. Then (bi1 bj) ⋆ T = T since both bi1 , bj ∈ T and T
is a finite subset of atoms (bi1 and bj are interchanged in T under the
effect of the transposition (bi1 bj), but the whole T is left invariant).
Furthermore, since bi1 , bj /∈ supp(f) we have that the transposition
(bi1 bj) fixes supp(f) pointwise, and hence by Proposition 3 we obtain
f(T ) = f((bi1 bj)⋆T ) = (bi1 bj)⋆f(T ) which is a contradiction because
bi1 ∈ f(T ) while bj /∈ f(T ). Thus, {bi1 , . . . , bil} = {b1, . . . , bm}, and so
T \ supp(f) = f(T ) \ supp(f).

Assume now that f is monotone. Let us fix X ∈ ℘fin(A), and
consider the case X \ supp(f) 6= ∅, that is X = {a1, . . . , an, b1, . . . , bm}
with a1, . . . , an ∈ supp(f) and b1, . . . , bm ∈ A\supp(f), m ≥ 1, or X =
{b1, . . . , bm} with b1, . . . , bm ∈ A \ supp(f), m ≥ 1. Therefore we get
X \ supp(f) = {b1, . . . , bm}, and by involving the above arguments, we
should have f(X \ supp(f)) = {x1, . . . , xi, b1, . . . , bm} with x1, . . . , xi ∈
supp(f) or f(X \ supp(f)) = {b1, . . . , bm}. In either case we obtain
X \ supp(f) ⊆ f(X \ supp(f)), and since f is monotone we construct
an ascending chain X \ supp(f) ⊆ f(X \ supp(f)) ⊆ . . . ⊆ fk(X \
supp(f)) ⊆ . . .. Since for any k ∈ N we have that fk(X \ supp(f))
is supported by supp(f) ∪ supp(X \ supp(f)) = supp(f) ∪ supp(X)
and ℘fin(A) does not contain an infinite uniformly supported subset,
the related chain should be stationary, that is there exists n ∈ N such
that fn(X \ supp(f)) = fn+1(X \ supp(f)), which, according to the
injectivity of f , leads to X \ supp(f) = f(X \ supp(f)).

It remains to analyze the case X ⊆ supp(f) or, equivalently, X \
supp(f) = ∅. We have f(∅) ⊆ supp(f). In the finite set supp(f) we
can define the chain of subsets ∅ ⊆ f(∅) ⊆ f2(∅) ⊆ . . . ⊆ fm(∅) ⊆
. . . which is uniformly supported by supp(f). Therefore the related
chain should be stationary, meaning that there should exist k ∈ N

such that fk(∅) = fk+1(∅). According to the injectivity of f , we get
X \ supp(f) = ∅ = f(∅) = f(X \ supp(f)).

According to (2), we have f(supp(f)) ⊆ supp(f), and because f
preserves the inclusion relation, we construct in supp(f) the chain . . . ⊆
fm(supp(f)) ⊆ . . . ⊆ f(supp(f)) ⊆ supp(f). Since supp(f) is finite,
the chain should be stationary, and so fk+1(supp(f)) = fk(supp(f))
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for some positive integer k, which, because f is injective, conduces to
f(supp(f)) = supp(f).

Remark 1. From the proof of Proposition 4, if f : ℘fin(A) → ℘fin(A)
is finitely supported (even if it is not injective) with X ⊆ supp(f), we
have f(X) ⊆ supp(f). If f(X) \ supp(f) 6= ∅, then X \ supp(f) =
f(X) \ supp(f).

Corollary 1. Let f : ℘fin(A) → ℘fin(A) be finitely supported and
surjective. Then for each X ∈ ℘fin(A) we have X \ supp(f) 6= ∅ if and
only if f(X) \ supp(f) 6= ∅. In either of these cases X \ supp(f) =
f(X) \ supp(f). If, furthermore, f is monotone, then X \ supp(f) =
f(X \ supp(f)) for all X ∈ ℘fin(A), and f(supp(f)) = supp(f).

Proof. From Theorem 1, a finitely supported surjective function f :
℘fin(A) → ℘fin(A) should be injective. The result now follows from
Proposition 4.

Theorem 2. Let f : ℘fin(A) → ℘fin(A) be finitely supported and
strictly monotone (i.e. f has the property that X ( Y implies f(X) (
f(Y )). Then we have X \ supp(f) = f(X \ supp(f)) for all X ∈
℘fin(A).

Proof. Let X ∈ ℘fin(A). According to Proposition 2, we have
supp(X) = X and supp(f(X)) = f(X). According to Proposition 3,
for any permutation π ∈ Fix(supp(f)∪ supp(X)) = Fix(supp(f)∪X)
we get π⋆f(X) = f(π⋆X) = f(X) meaning that supp(f)∪X supports
f(X), that is f(X) = supp(f(X)) ⊆ supp(f) ∪X (1).

If supp(f) = ∅, we obtain f(X) ⊆ X for all X ∈ ℘fin(A). If there
exists Y ∈ ℘fin(A) with f(Y ) ( Y , then we can construct the sequence
. . . ( fk(Y ) ( . . . ( f2(Y ) ( f(Y ) ( Y which is infinite and uniformly
supported by supp(Y ) ∪ supp(f). This is a contradiction because the
finite set Y cannot contain infinitely many distinct subsets, and so
f(X) = X for all X ∈ ℘fin(A).

Assume now that supp(f) is non-empty. If X ⊆ supp(f), then
f(X \ supp(f)) = f(∅) = ∅ = X \ supp(f). The second identity follows
because f is strictly monotone; otherwise we could construct an infinite
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strictly ascending chain in ℘fin(A), uniformly supported by supp(f),
namely ∅ ( f(∅) ( . . . ( fk(∅) ( . . ., contradicting the fact that
℘fin(A) does not contain an infinite uniformly supported subset.

Now we prove the following intermediate result. Let us consider an
arbitrary set T = {b1, . . . , bn} such that b1, . . . , bn ∈ A\supp(f), n ≥ 1
and f(T ) \ supp(f) 6= ∅. We prove that f(T ) = T (2). According to
(1), f(T ) should be f(T ) = {c1, . . . , ck, bi1 , . . . , bil} with c1, . . . , ck ∈
supp(f) and bi1 , . . . , bil ∈ A \ supp(f), or f(T ) = {bi1 , . . . , bil} with
bi1 , . . . , bil ∈ A \ supp(f). In both cases we have that {bi1 , . . . , bil} is
non-empty (i.e. it should contain at least one element, say bi1 , because
we assumed that f(T ) contains at least one element outside supp(f))
and {bi1 , . . . , bil} ⊆ {b1, . . . , bn}. If n = 1, then l = 1 and bi1 = b1.
Now let us consider n > 1. Assume by contradiction that there is j ∈
{1, . . . , n} such that bj /∈ {bi1 , . . . , bil}. Then (bi1 bj)⋆T = T since both
bi1 , bj ∈ T and T is a finite subset of atoms (bi1 and bj are interchanged
in T under the effect of the transposition (bi1 bj), while the other
atoms belonging to T are left unchanged, which means the entire T
is left invariant under the effect of the related transposition under the
induced action ⋆). Furthermore, since bi1 , bj /∈ supp(f) we have the
transposition (bi1 bj) fixes supp(f) pointwise, and by Proposition 3 we
get f(T ) = f((bi1 bj) ⋆ T ) = (bi1 bj) ⋆ f(T ) which is a contradiction
because bi1 ∈ f(T ) while bj /∈ f(T ). Thus, {bi1 , . . . , bil} = {b1, . . . , bn}.
Now we prove that f(T ) = T . Assume, by contradiction, that we are in
the case f(T ) = {c1, . . . , ck, b1, . . . , bn} with c1, . . . , ck ∈ supp(f). Then
T ( f(T ), and since f is strictly monotone we can construct a strictly
ascending chain T ( f(T ) ( . . . ( f l(T ) ( . . .. Since for any i ∈ N

we have that f l(T ) is supported by supp(f)∪ supp(T ) (this follows by
induction on l involving Proposition 3) and ℘fin(A) does not contain an
infinite uniformly supported subset (the elements of ℘fin(A) supported
by supp(f) ∪ supp(T ) are exactly the subsets of supp(f) ∪ supp(T )),
we get a contradiction. Thus, f(T ) = T .

We return to the proof of our theorem and we consider the
remaining case X \ supp(f) 6= ∅. We should have that X =
{a1, . . . , ap, d1, . . . , dm} with a1, . . . , ap ∈ supp(f) and d1, . . . , dm ∈
A\supp(f), m ≥ 1, or X = {d1, . . . , dm} with d1, . . . , dm ∈ A\supp(f),

51



A. Alexandru

m ≥ 1. We have that X \ supp(f) = {d1, . . . , dm}. Denote by
U = X \ supp(f). If f(U) \ supp(f) 6= ∅, then f(U) = U accord-
ing to (2). Assume, by contradiction, that f(U) \ supp(f) = ∅, that
is, f(U) = {x1, . . . , xk} with x1, . . . , xk ∈ supp(f), k ≥ 1 (we can-
not have f(U) = ∅ because f is strictly monotone f(∅) = ∅ and
∅ ( U). Since supp(f) has only finitely many subsets, A is infi-
nite and f is strictly monotone, there should exist V ∈ ℘fin(A),
V ( A \ supp(f) such that U ( V and f(V ) contains at least one ele-
ment outside supp(f); for example, we can choose finitely many distinct
atoms dm+1, . . . , dm+2|supp(f)|+1 ∈ A\(supp(f)∪{d1, . . . , dm}), and con-
sider V = {d1, . . . , dm, dm+1, . . . , dm+2|supp(f)|+1}; since {d1, . . . , dm} (

{d1, . . . , dm, dm+1} ( . . . ( {d1, . . . , dm, . . . , dm+2|supp(f)|+1} and f is
strictly monotone, we get that f(V ) should contain at least one ele-
ment outside the finite set supp(f). However, in this case, f(V ) = V
according to (2), and since f(U) ( f(V ) = V , we get {x1, . . . , xk} ⊆ V ,
i.e. x1, . . . , xk are outside supp(f), a contradiction. Therefore, we
necessarily have f(U) \ supp(f) 6= ∅, and hence f(U) = U , that is
X \ supp(f) = f(X \ supp(f)) for all X ∈ ℘fin(A).

Theorem 3. Let f : ℘fin(A) → ℘fin(A) be a finitely supported pro-
gressive function (i.e. f has the property that X ⊆ f(X) for all
X ∈ ℘fin(A)). There are infinitely many fixed points of f , namely
the finite subsets of A containing all the elements of supp(f).

Proof. Let X ∈ ℘fin(A). Since the support of a finite subset of
atoms coincides with the related subset (see Proposition 2 and use
the trivial remark that any finite set is uniformly supported), we have
supp(X) = X and supp(f(X)) = f(X). According to Proposition
3, for any permutation π fixing supp(f) ∪ supp(X) = supp(f) ∪ X
pointwise we have π ⋆ f(X) = f(π ⋆ X) = f(X) meaning that
supp(f)∪X supports f(X), that is f(X) = supp(f(X)) ⊆ supp(f)∪X
(1). Since we also have X ⊆ f(X), we obtain X \ supp(f) ⊆
f(X) \ supp(f) ⊆ X \ supp(f), that is X \ supp(f) = f(X) \ supp(f)
(2). If supp(f) = ∅, the result follows immediately. Let us con-
sider the case supp(f) = {a1, . . . , ak}. According to (1) and to
the hypothesis, we have supp(f) ⊆ f(supp(f)) ⊆ supp(f), and so
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f(supp(f)) = supp(f). If X has the form X = {a1, . . . , ak, b1, . . . , bn}
with b1, . . . , bn ∈ A \ supp(f), n ≥ 1, we should have by hypothesis
that a1, . . . , ak ∈ f(X), and by (2) f(X) \ supp(f) = X \ supp(f) =
{b1, . . . , bn}. Since no other elements different from a1, . . . , ak are in
supp(f), from (1) we obtain f(X) = {a1, . . . , ak, b1, . . . , bn} = X.

Theorem 4. Let f : ℘fin(A) → ℘fin(A) be a finitely supported func-
tion having the properties that f(X) ⊆ X for all X ∈ ℘fin(A) and
f(X) 6= ∅ for all X 6= ∅. Then f(Y ) = Y for all Y ∈ ℘fin(A) with
Y ∩ supp(f) = ∅.

Proof. Let Y ∈ ℘fin(A) with Y ∩ supp(f) = ∅. Thus, Y is either equal
to the empty set or Y is of form Y = {b1, . . . , bm} with b1, . . . , bm ∈
A\supp(f), m ≥ 1. Obviously, f(∅) = ∅ from our hypothesis. Further-
more, from the hypothesis we should have f(Y ) = {bi1 , . . . , bin} with
bi1 , . . . , bin ∈ A \ supp(f), n ≥ 1 and {bi1 , . . . , bin} ⊆ {b1, . . . , bm}.

Assume by contradiction that there exists bj ∈ {b1, . . . , bm} such
that bj /∈ {bi1 , . . . , bin}. Hence bj 6= bi1 and (bi1 bj)⋆Y = Y because we
have bi1 , bj ∈ Y and Y ∈ ℘fin(A). Moreover, since bi1 , bj /∈ supp(f),
we have that (bi1 bj) ∈ Fix(supp(f)). From Proposition 3, we obtain
{bi1 , . . . , bin} = f({b1, . . . , bm}) = f((bi1 bj) ⋆ {b1, . . . , bm}) = (bi1 bj) ⋆
f({b1, . . . , bm}) = (bi1 bj) ⋆ {bi1 , bi2 , . . . , bin} = {bj , bi2 , . . . , bin}, which
is a contradiction. Thus, f(Y ) = Y .

Theorem 5. Let f : ℘fin(A) → ℘fin(A) be a finitely supported func-
tion and let X ∈ ℘fin(A) such that X ⊆ f(X). If f is monotone or
progressive, then there exists n ∈ N∗ such that f l(X) is a fixed point of
f for all l ≥ n.

Proof. Since X ⊆ f(X) and f is monotone (i.e. order preserving)
or progressive, we can define the ascending sequence X ⊆ f(X) ⊆
f2(X) ⊆ . . . ⊆ fm(X) ⊆ . . ..

We prove by induction that the sequence (fm(X))m∈N∗ is uni-
formly supported by supp(f) ∪ supp(X), that is, supp(fm(X)) ⊆
supp(f) ∪ supp(X) for each m ∈ N∗. Let m = 1. For any permu-
tation π fixing supp(f) ∪ supp(X) pointwise, from Proposition 3 we
have π ⋆ f(X) = f(π ⋆ X) = f(X) meaning that supp(f) ∪ supp(X)
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supports f(X), that is supp(f(X)) ⊆ supp(f) ∪ supp(X). Let us sup-
pose that supp(fk(X)) ⊆ supp(f) ∪ supp(X) for some k ∈ N∗. We
have to prove that supp(fk+1(X)) ⊆ supp(f)∪ supp(X). Equivalently,
we have to prove that each permutation π fixing supp(f) ∪ supp(X)
pointwise also fixes fk+1(X). Let π ∈ Fix(supp(f) ∪ supp(X)).
From the inductive hypothesis, we have π ∈ Fix(supp(fk(X))), and
hence π ⋆ fk(X) = fk(X). According to Proposition 3, we have
π ⋆ fk+1(X) = π ⋆ f(fk(X)) = f(π ⋆ fk(X)) = f(fk(X)) = fk+1(X).
Therefore, (fm(X))m∈N∗ is uniformly supported by supp(f)∪supp(X).
Therefore, this sequence should be stationary because ℘fin(A) does
not contain an infinite uniformly supported subset. Thus, there exists
n ∈ N such that fn(X) = f l(X) for all l ≥ n. Fix some l ≥ n. We
have f(f l(X)) = f l+1(X) = fn(X) = f l(X), and so f l(X) is a fixed
point of f .

Corollary 2. Let f : ℘fin(A) → ℘fin(A) be a finitely supported mono-
tone function. Then there exists a least X0 ∈ ℘fin(A) supported by
supp(f) such that f(X0) = X0.

Proof. Since ∅ ⊆ f(∅) and f is monotone (order preserving), from
Theorem 5 we have that there exists m0 ∈ N∗ such that fm0(∅) is a
fixed point of f . This fixed point is supported by supp(f) ∪ supp(∅).
However, we prove that supp(∅) = ∅. Indeed, from the definition of ∅,
we have ∅ ⊆ π ⋆ ∅ and ∅ ⊆ π−1 ⋆ ∅ for each π, which means ∅ = π ⋆ ∅
and supp(∅) = ∅.

If T is another fixed point of f , then from ∅ ⊆ T , we get fn(∅) ⊆
fn(T ) for all n ∈ N. Therefore, fm0(∅) ⊆ fm0(T ) = T , and so fm0(∅)
is the least fixed point of f .

Theorem 6. Let f : ℘fin(A) → ℘fin(A) be a finitely supported func-
tion.

1. We have f(supp(f)) ⊆ supp(f);

2. If f is monotone, then there exists n ∈ N∗ such that f l(supp(f))
is a fixed point of f for all l ≥ n.
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Proof. According to Proposition 3, for any permutation π fixing
supp(f) pointwise we have π⋆supp(f) = supp(f) and π⋆f(supp(f)) =
f(π⋆supp(f)) = f(supp(f)) meaning that supp(f) supports f(supp(f)),
that is, supp(f(supp(f))) ⊆ supp(f). Since the support of a fi-
nite subset of atoms coincides with the related subset, we obtain
supp(f(supp(f))) = f(supp(f)), and so f(supp(f)) ⊆ supp(f).

Assume now that f is monotone. According to the previous
item, we can construct the sequence . . . ⊆ fm(supp(f)) ⊆ . . . ⊆
f2(supp(f)) ⊆ f(supp(f)) ⊆ supp(f). Since supp(f) is finite, the
related sequence should be finite, and so there exists n ∈ N such that
fn(supp(f)) = f l(supp(f)) for all l ≥ n. Fix some l ≥ n. We have
f(f l(supp(f))) = f l+1(supp(f)) = fn(supp(f)) = f l(supp(f)), and so
f l(supp(f)) is a fixed point of f .

Proposition 5. Let f : ℘fin(A) → ℘fin(A) be a finitely supported
injective and progressive function. Then f(Y ) = Y for all Y ∈ ℘fin(A).

Proof. Let Y ∈ ℘fin(A). As in the proof of Theorem 5, the as-
cending sequence Y ⊆ f(Y ) ⊆ f2(Y ) ⊆ . . . ⊆ fm(Y ) ⊆ . . . is uni-
formly supported by supp(f) ∪ supp(Y ). Therefore, this sequence
should be stationary because ℘fin(A) does not contain an infinite
uniformly supported subset. Thus, there exists n ∈ N such that
fn(Y ) = fn+1(Y ) = fn(f(Y )). Since f is injective (and so is fn),
we obtain f(Y ) = Y .

Corollary 3. Let f : ℘fin(A) → ℘fin(A) be a finitely supported sur-
jective and progressive function. Then f(Y ) = Y for all Y ∈ ℘fin(A).

Proof. According to Theorem 1, f should be injective. The result now
follows from Proposition 5.

Proposition 6. Let f : ℘fin(A) → ℘fin(A) be a finitely supported in-
jective function having the property that f(X) ⊆ X for all X ∈ ℘fin(A).
Then f(Y ) = Y for all Y ∈ ℘fin(A).

Proof. Let Y ∈ ℘fin(A). The sequence . . . ⊆ f i(Y ) ⊆ . . . ⊆ f2(Y ) ⊆
f(Y ) ⊆ Y should be finite since Y is finite. Therefore, there exists
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n ∈ N such that fn(f(Y )) = fn+1(Y ) = fn(Y ). Since f is injective
(and so is fn), we obtain f(Y ) = Y .

Corollary 4. Let f : ℘fin(A) → ℘fin(A) be a finitely supported surjec-
tive function having the property that f(X) ⊆ X for all X ∈ ℘fin(A).
Then f(Y ) = Y for all Y ∈ ℘fin(A).

Proof. According to Theorem 1, f should be injective. The result now
follows from Proposition 6.

Theorem 7. Let f : ℘fin(A) → ℘fin(A) be a finitely supported
function having the property that f(X ∪ Y ) = f(X) ∪ f(Y ) for all
X,Y ∈ ℘fin(A). If X0 ∈ ℘fin(A) and k ∈ N∗ such that X0 ⊆ fk(X0),
then ∪

n∈N
fn(X0) is a finite subset of A and a fixed point of f .

Proof. As in the proof of Theorem 5, the sequence (fn(X0))n∈N ⊆
℘fin(A) is uniformly supported by supp(f) ∪ supp(X0). Therefore,
this sequence should be finite, and so there exist ∪

n∈N
fn(X0) and

∪
n∈N

f(fn(X0)) which are proved to be supported by supp(f)∪supp(X0).

Clearly, {fn+1(X0) |n ∈ N} = {fn(X0) |n ∈ N∗} ⊆ {fn(X0) |n ∈ N},
and so ∪

n∈N
fn+1(X0) ⊆ ∪

n∈N
fn(X0). Since f0(X0) = X0 ⊆ fk(X0)

with k ≥ 1, we have f0(X0) ⊆ ∪
n∈N

fn+1(X0). However, obvi-

ously, f i(X0) ⊆ ∪
n∈N∗

fn(X0) = ∪
n∈N

fn+1(X0) for all i ∈ N∗, and so

∪
n∈N

fn(X0) ⊆ ∪
n∈N

fn+1(X0). Therefore, ∪
n∈N

fn+1(X0) = ∪
n∈N

fn(X0),

and so, according to the hypothesis, f( ∪
n∈N

fn(X0)) = ∪
n∈N

f(fn(X0)) =

∪
n∈N

fn+1(X0) = ∪
n∈N

fn(X0), which means ∪
n∈N

fn(X0) is a fixed point

of f .

Theorem 8. Let f : ℘fin(A) → ℘fin(A) be a finitely supported injec-
tive function. Then for any X ∈ ℘fin(A) there exists n ∈ N∗ such that
X is a fixed point of fn.

Proof. Let X ∈ ℘fin(A). As in the proof of Theorem 5, the sequence
(fm(X))m∈N ⊆ ℘fin(A) is uniformly supported by supp(f)∪ supp(X).
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Therefore, this sequence should be finite, and so there exist l, k ∈ N,
l > k, such that f l(X) = fk(X). Since f is injective, we get X =
f l−k(X) and so the result follows by denoting n = l − k.

Corollary 5. Let f : ℘fin(A) → ℘fin(A) be a finitely supported sur-
jective function. Then for any X ∈ ℘fin(A) there exists n ∈ N∗ such
that X is a fixed point of fn.

Proof. From Theorem 1, the surjective function f : ℘fin(A) → ℘fin(A)
should be injective, and the result follows from Theorem 5.

4 Conclusion

This paper is the extended and revised version of the conference pa-
per [1] presented at MFOI 2020. We are able to prove that for finitely
supported self-mappings (self-functions) defined on ℘fin(A) the injec-
tivity is equivalent with the surjectivity. These mappings also satisfy
some fixed point properties if some particular requirements (such as
injectivity, surjectivity, monotony or progressivity) are introduced.
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Iaşi, Romania

E–mail: andrei.alexandru@iit.academiaromana-is.ro

58


