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On a modified M/M/m/n queueing model *

Mario Lefebvre

Abstract

The classic M/M/m/n queueing model is modified by allow-
ing a given task to require up to m servers to be performed.
Moreover, the maximum time that a task can wait in the queue
before being executed is a random variable having an exponen-
tial distribution. Both FIFO (First In, First Out) and priority
disciplines are considered. The case when m = 2 is treated: the
state space needed to fully describe the system is given, its size is
calculated and the balance equations are presented when n = 1, 2
and 3. The queueing process can be used to model cluster-type
multiprocessor computing systems.
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1 Introduction

We consider a system consisting of m (> 1) servers. For instance, it
could be a computing system having m processors. Tasks arrive at the
system according to a Poisson process with rate A. For every server,
the service time is an exponential random variable with mean p. The
times between the arrivals and the service times are assumed to be
independent random variables. The capacity of the system is n (> 1).
Finally, the queue discipline is FIFO (First In, First Out). Therefore,
using Kendall’s notation, the system can be denoted by M/M/m/n.
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In a recent paper, Vardanyan and Sahakyan [5] (see also [4]) pro-
posed the above model for cluster-type multiprocessor computing sys-
tems, with the following modifications: firstly, any task can require up
to m servers to be executed. More precisely, the number of servers
required to perform a task is a random variable K having a discrete
uniform distribution over the set {1,2,...,m}. Secondly, the maxi-
mum time €2 that a task can wait in the queue before being executed
is an exponentially distributed random variable with parameter w.

The authors defined the states (i, j), where ¢ is the number of tasks
being serviced and j is the number of tasks waiting for service in the
queue at a given time instant. They assumed that 0 < ¢ < m and
0 < j < n. There are m x (n+ 1) 4+ 1 possible states in the state space
(since ¢ = 0 implies that j is also equal to zero). Notice that n is taken
to be the capacity of the waiting queue, rather than that of the system
in their paper.

Remark 1.1. (i) The authors of [5] actually wrote that there are
m X n+ 1 possible states. But if m = n = 1, the possible states are
(0,0), (1,0) and (1,1). Thus, 3 =1x (1+1)+1.

(ii) For the classic M/M/m/n model, m = n means that there is no
waiting space, and the system is a so-called loss system. Here, because
any task can require more than one server (if m > 1), the incoming
tasks will only be lost (on arrival) when the system is in state (m,m),
so that all the (m) servers are servicing a different task. In particular,
all the servers could be servicing the same task, and there could be m—1
(= n—1) tasks waiting for service in the queue. We could also assume,
as in [5], that n is the capacity of the waiting queue, so that the case
n = 0 would indeed correspond to a loss system. Finally, note that
there is mo waiting if n < m.

In [5], the authors computed the limiting probabilities of the system.
However, their definition of the various states does not fully describe
the different possible states of the system. Indeed, the value of 7 only
gives us the number of tasks being serviced, so that the number of
servers working on each task is unknown. With this important addi-
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tional information, the number of possible states is much larger than
mx (n+1)+1

In this note, we first generalise the model considered by Vardanyan
and Sahakyan in [5]: the service time is an exponential random variable
with mean uy, for k = 1,2,...,m. That is, the service time may depend
on the server. Moreover, if two or more servers are working on a task,
the service time may also be different. Next, instead of assuming that
the random variable K has a discrete uniform distribution over the set
{1,2,...,m}, we denote the probability P[K = k| by px € [0,1] for
k =1,...,m. Finally, the maximum time 0 that a task requiring k
servers can wait in the queue before being executed is an exponential
random variable with parameter wy.

Remark 1.2. (i) Contrary to the definition in [5], here the system
capacity, n, is the maximum total number of tasks in the system at
any one time; that is, the number of tasks being serviced or awaiting
service. (ii) When a task requiring the two servers is completed and
the first two tasks in the queue only require one server each, then they
will both go into service at the same time.

This problem was also considered by Green [1], but with differ-
ent assumptions: firstly, n = oo; secondly, there is no maximum time
that a task can wait for service in the queue; thirdly, the mean service
time is equal to 1/u for every server; finally, and more importantly,
servers working together on a given task complete service at indepen-
dent times, so that they do not end service together. It follows that
the service times are not exponentially distributed random variables;
instead, they are distributed as the maximum of a random number of
exponentially distributed random variables. Consequently, the stochas-
tic process { X (t),t > 0}, where X (¢) is the state of the system at time ¢,
is not a continuous-time Markov chain.

In the next section, the case when m = 2 will be treated. We
will give a state space that is exhaustive, as well as the full balance
equations in simple cases. Then, the queue discipline will be modified:
instead of the FIFO discipline, we will consider priority disciplines.
Again, the balance equations will be presented in a simple case.
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2 A generalised model

We consider the M/M/m/n queueing model with the modifications
mentioned in the previous section. The tasks are generated by a Poisson
process with rate A, and the probability that a given task will require k
servers to be performed is P[K = k| = p € [0,1] for k =1,...,m, with
p1+...+pm = 1. It follows that tasks requiring k servers arrive in the
system according to a Poisson process with rate Ay := pp A. We could
instead assume that the various tasks are generated by m independent
Poisson processes with rates Ai, ..., Ap.

Because (with the FIFO discipline) a task requiring more than one
server can prevent a task behind it in the waiting queue to enter service,
even if a server is free, we need to determine the type of each task in
the system. Therefore, the number of possible states is very large. For
this reason, we will limit ourselves in this note to the case when there
are two servers. The results obtained below can be generalised to any
value of m.

Thus, we assume that the queueing model is an M/M/2/n queue,
where n > 1 is the capacity of the system. Moreover, an arriving task
requires one server with probability p; € [0,1] and two servers with
probability po = 1 — p; € [0,1]. The two servers do not necessarily
execute the various tasks at the same rate: the service time for server ¢
is an exponential random variable with parameter pu;, for ¢ = 1,2.
When the system is empty, an arriving (or waiting) task requiring only
one server (which we call a type 1 task) will be executed by server 1 or
2 with respective probabilities 1 € [0,1] and ro = 1 —7r;. Furthermore,
when a task requires the two servers, the service time becomes an
exponential random variable with parameter pus. It is indeed more
realistic to suppose that the service time depends both on the server and
on the type of the task. Finally, tasks requiring ¢ server(s) can spend
an exponential amount of time with parameter w;, for ¢ = 1,2, before
entering service. Note that we assume that once a task is taken into
service, it will remain in the system until it has been fully completed.

Let us start with the case when n = 1. Then, as mentioned above,
there is no waiting. Even if a server is free, if the other server is
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occupied then an incoming task will be rejected. In this case, which is
the simplest possible, there are four different states of the system:

the system is empty

server 1 is executing a task, server 2 is free
server 2 is executing a task, server 1 is free
servers 1 and 2 are executing a type 2 task

w N = O

Let m; denote the limiting probability that the system will be in
state j, for 7 = 0,1,2,3. Note that because the number of states is
finite, the limiting probabilities do exist. The balance equations of the
system (see Ross [3] or Lefebvre [2]) are the following;:

State j Departure rate from j = Arrival rate to j
0 ATy = p1T1+ poT + p3 T3
1 pim = T1p1ATo
2 poT2 = T2p1ATO
3 p3T3 = P2

To obtain the limiting probabilities, we can solve the balance equations,
together with the condition Z?:o m; = 1. Notice that we have four
equations in four unknowns, plus the preceding condition. Therefore,
we can drop one of the balance equations. Once the limiting probabil-
ities have been computed, we should check that they also satisfy the
equation that was neglected. We easily find that

MpiA  TapiA A
— {1+ 1A | T2piA P2 } 7
241 H2 u3
TP A _ mapiA P2
m™ = 70, Ty = 0 and T3 = —— T
H1 H2 K3

When n = 2, in addition to the above defined states (for which we
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must now mention that the waiting queue is empty), we have:

4: servers 1 and 2 are executing type 1 tasks

5: server 1 is executing a task, server 2 is free,
a type 2 task is waiting for service

6: server 2 is executing a task, server 1 is free,
a type 2 task is waiting for service

7: servers 1 and 2 are executing a type 2 task,
a type 1 task is waiting for service

8: servers 1 and 2 are executing a type 2 task,
a type 2 task is waiting for service

Thus, there are now nine possible states. The balance equations of the
system become

State j Departure rate = Arrival rate
0 ATy = p1T1 + poTo + U3 T3
1 (1 + AT = rip1 ATy + 2Ty + woTs + p3 T MY
2 (2 + N)T2 = rop1 Ay + pi1 T4 + WoTe + p3T2 T
3 (U3 +AN)m3 = paAmo + p17s + pome + wi Ty

+ (pg + wa2) 78

4 (1 +p2)my = prA(m + m2)
5 (1 +w2)ms = padm
6 (U2 +wo)mg = paAma
7 (u3 +wi)mr = p1AT3
8 (U3 +wo)mg = p2Am3

Next, when n = 3, we can add a waiting task to the states 4 to 8 of
the system. This waiting task can be either a type 1 or type 2 task. It
follows that the number of possible states increases to 9 +5 x 2 = 19.
In the general case n > 1, we have the following proposition.

Proposition 2.1. The size of the state space of the modified M/M/2/n
queueing model considered in this note is given by 4 +5(2"~1 — 1) for
n>1.
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Proof. We can use mathematical induction. The result holds true for
n =1 (as well as n =2 and n = 3). Assume that the formula is valid
for a fixed n > 2. Then, for n 4+ 1 the number of states is obtained by
adding any waiting task to the states that correspond to a full system
when the capacity is n. There are

[A+502" = 1)) —[4+5(2"2-1)=5x2""2

2n—1

such states. Hence, we add 5 x states to the state space. It implies

that the total number of states is
44502 1) 45 x 2l =44 502" - 1),

which proves the result. U

Remark 2.1. (i) If we assume that n is the capacity of the waiting
queue, rather than that of the system, then we find that the number of
possible states is 5+6 (2" —1) forn > 1, compared to 2(n+1)+1 = 2n+3
for the problem considered in [5].

(ii) Maple is able to solve the nine balance equations of the system
when n = 2. However, the solution it provides is very involved. In the
particular case whenpy =3/4, 11 =1/2, A\ =5, 11 =2, uo =2, ug =3
and w1 = wy = 0, the solution is

mo =~ 0.1469, w1 ~ 0.1277, mo ~ 0.1277,
w3 ~ 0.0745, w4 ~0.2394, 75~ 0.0798,
mg ~ 0.0798, 77 ~0.0931, wg =~ 0.0310.

We see that, in this example, state 4 is by far the most likely state
in stationary regime. Moreover, m; = mo and w5 = mg, which follows
from the fact that puq = po and 1 = 1/2.

Now for n > 3, with the FIFO discipline, sometimes a server is free
while a type 1 task is in the waiting queue, but behind a type 2 task
that is blocking access to the free server. If we then allow the type 1
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task to get serviced, it will reduce the average time that type 1 tasks
spend in the system and conversely increase this average time for type 2
tasks. When m and n are large, a task requiring m servers could block
the system for a long time. It is therefore worth examining the effect
of giving priority to type 1 or to type 2 tasks in our case.

Let us first assume that type 2 tasks always have priority over
type 1 tasks in the waiting queue. We can consider the general case
when n > 1. We will calculate the number of states needed to fully
describe the state of the system. Because our aim is to determine the
effect of giving priority to a type of task, we could assume that p; = ps.

If n = 1, priority does not make any difference, because there is
no waiting. Similarly, if n = 2, then there is at most one task in
the waiting queue, which again implies that priority is irrelevant. Let
n > 3. There are five possible states when the waiting queue is empty,
that we denote by 0,1,2,3 and 4 as defined above. Then, the other
states of the system can be characterised by a triple (s,ng,n1), where
s € {1,2,3,4} and n; is the number of type i tasks in the waiting queue,
for i = 1,2. We assume that a server can be free even if there is at
least one type 1 task in the waiting queue. However, we cannot have
triples of the form (s,0,n1) with s € {1,2} and ny; > 0.

When s = 1 or 2, we can write that ng > 1 and nq +ng < n — 1.
The number of states is given by

L4p—24tp 1 —PZDn
n n = 5 )
na=1 ng=2 na=n—1
If s = 3, we have n — 1 additional states of the form (3,0,n1), with
1 <n; <n-—1, so that the number of states is
(n—1)n n+2

5 +(n—-1)=(Mn-1) 5

Finally, the number of states of the form (4,n2,n1) is obtained by
replacing n by n— 1 in the above formula: (n—2)(n+1)/2. Therefore,
we can state the following proposition.

Proposition 2.2. The size of the state space of the queueing model
considered in this note, when type 2 tasks have priority over type 1
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tasks in the waiting queue, is given by

(n—1)n n+ 2 n+1

5+2———+(n—1) +(n=2)— =2n? —n+3

forn > 3.

Remark 2.2. (i) The formula is actually valid for n > 1.

(ii) If we assume that py = po, then there is no need to distinguish
between 1 and 2, and between (1,n9,n1) and (2,n2,n1). The number
of states is reduced to

(n—1)n n+2 n+1 3n’—n+4

4+ 5 +(n—1) + (n—2) 5 5

(iii) Compared with the FIFO discipline, the size of the state space is
greatly reduced when n is relatively large: for n = 3, it goes from 19 to
18, but from 639 to 123 if n = 8.

(iv) When type 1 tasks have priority over type 2 tasks in the waiting
queue, we have the states 0,1,2,3 and 4 as above, and triples of the
form (s,n1,n2), where s € {1,2,3,4}. We cannot have states of the
form (1,n1,n2) or (2,n1,n9) with ny > 0. For s = 3 and s = 4,
the number of different states is the same as when type 2 tasks have
priority. It follows that the total number of states is

n -+ 2 n+1

+ (n —2) =n?+2n+1

54+2(n—1)+(n—1)

forn >3 (n>1, actually). If p1 = pa, we can reduce the number of
states to

n-+2 n—+1

+ (n —2) =n’+n+1

44+ (n—1)+(n-1)

We give next the balance equations when n = 3 and @1 = p2, so that
there are 14 states. If we assume further, for the sake of simplicity, that
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w1 = wg = 0, then the system of equations is obviously much simpler.

State Departure rate = Arrival rate
0 ATg = 1T+ 3T
1(=2) A+p)m = piAmo+ 217y +weTs
+ 37y
3 (A p3)m3 = padmg+ py7s 4+ wi g
+ (p3 + w2) g
4 (A+2m)my = prAm +wo (77 + Tig)

+ psmin + (2p1 + wi)mis
(1,1,0) =5 (A+ut+w)ms = peAm + 2wy
+wimr + 21T
2,0):=6 (11 + 2wa)mg = paATs
1,1 7T (1 +w+we)mr = pi1ATs

(3,0,1) :=38 (A+pz+wi)mg = prAT3+ py w7 + 2w T
+ (p3 + w2) T2

(3,1,0) :=9 A+ pz+w2)m9g = paAT3+ p1me
+(N3+2w2)7'r10 + w9

(3,2,0) := 10 (u3 +2w2)mo = paAmg
(3,0,2) :=11 (t3 +2wy)m1 = prATs
(3,1,1) :==12 (us+wi +wa)m2 = poA7s+ p1Amg
(4,0,1) := 13 2p +wi)mz = p1Amy
(4,1,0) := 14 2 +w2)ma = paAmy

3 Concluding remarks

In this note, a modified M/M/m/n queueing model that can be used
for cluster-type multiprocessor computing systems was considered. The
main modification is that any task can require up to m servers to be
executed. Moreover, each task can spend a random (exponentially
distributed) maximum amount of time in the waiting queue before
being taken into service. The default queue discipline is FIFO.

We saw that to fully describe the state of the system, we need a very
large number of states. For this reason, we limited ourselves to the case
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when m = 2. There are then two types of tasks: type 1 (respectively
2) tasks require only one (respectively two) servers. If priority in the
waiting queue is given to either type 1 or type 2 tasks, then the size of
the state space is greatly reduced, at least when n is relatively large.
We presented the detailed balance equations in simple cases.

In any particular case, if n is small enough, we can use a mathemat-
ical software such as Maple to solve the balance equations, which are
a system of linear equations. For n relatively large, if the number of
states is too large to obtain precise numerical solutions, then one could
perhaps use simulation to estimate the various limiting probabilities.

Finally, an important question is whether one should use the FIFO
discipline or a priority discipline, particularly because in the general
case, with m large enough, a task requiring the m servers could block
the system for a large amount of time. The answer to this question
depends on the aim of the system administrators. Do they prioritise
the average number of tasks being serviced, or the average time spent in
the system for each (or a particular) type of task? Another important
criterion is the percentage of rejected tasks.
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