Computer Science Journal of Moldova, vol.29, no.1(85), 2021

Backtracking algorithm for lexicon generation®

Constantin Ciubotaru

Abstract

This paper is dedicated to generating process of the Roma-
nian Cyrillic lexicon used between 1967 and 1989. The rules for
transliteration of words from the modern Romanian lexicon to
their equivalents written in Cyrillic were established and argued.

A backtracking algorithm has been developed and imple-
mented that generates the Cyrillic lexicon using the transliter-
ation rules. This algorithm actually is a tool to facilitate the
work of the expert. The work of the expert is reduced to check-
ing the transliterated variants and changing the transliteration
rules.

Keywords: lexicon, transliteration, backtracking algorithm,
decyrillization, morpho-syntactic descriptions (MSD).

1 Introduction

The problem of digitizing and preserving the historical-linguistic her-
itage is a priority domain of the digital agenda for Europe. The dig-
itization process requires solving a series of problems related to the
recognition, editing, translation, and interpretation of printed texts.
The solving of these problems for the Romanian historical-linguistic
heritage faces difficulties and specific aspects: a large number of peri-
ods in the evolution of the language, a small volume of stored resources
that are also scattered, a great diversity of alphabets.

The presence of a digitized Romanian Cyrillic lexicon will contribute
to the regeneration, revitalization and preservation of the heritage re-
lated to this period. Various aspects of the problem have been exposed
in [1]-3].

©2021 by CSJM; Constantin Ciubotaru
*This work was supported by the project Nr. 20.80009.5007.22

135

Constantin Ciubotaru

The paper addresses the issues related to the digitization and
transliteration of the historical-linguistic heritage printed in Cyrillic
script during 1967-1989 on the territory of the Moldovan Soviet Social-
ist Republic (MSSR), in accordance with the linguistic norms of the
modern Romanian language.

During that period the Moldovan Cyrillic alphabet (AlphaCYR)
was used which actually represents the Russian alphabet without the
letters "é", "m" and "»" and extended by adding the letter ":k" in
1967. Complete lack of resources in electronic format and presence of
fragmentary grammatical descriptions that admit ambiguous interpre-
tations represent the main difficulties specific to the period.

According to the dexonline definition, transliteration is the “tran-
scription of a text from one alphabet to another, rendering the letters
by their equivalents, regardless of the phonetic value of the signs” [4].

The process of transliterating Romanian words into their written
equivalents with the characters of the AlphaCYR alphabet is called
cyrillization. For instance, "puiului "="mytonyit", "fiului"="buymryit",
"cenusiu"="1enymmy", "vierm:i"="Bepmp", "vierii"="Buepnit".

The inverse procedure for cyrillization is called decyrillization,
e.g. "uytonyit"= "puiului”, "oner"="biet", "60ep"="boter", "nent"=
"piept".

If the digitization of the text is relatively simple, the problem of
recognizing the digitized text is quite complicated, especially consider-
ing the total lack of Romanian Cyrillic resources for that period. This
paper extends the results presented in [5] and aims to develop a tool
for generating the lexicon corresponding to that period (noted by Lex-
CYR), starting from the lexicon of the modern Romanian language
(noted by LexROM).

The general scheme of the Romanian Cyrillic lexicon generator is
presented in Figure 1.

ROMANIAN CYRILLIC

MODERN ROMANIAN ’TRANSLITERATION LEXICON (1967-
LEXICON LEXROM 1989) LEXCYR

Figure 1. The general scheme of the Cyrillic lexicon generator

136

Backtracking algorithm for lexicon generation

2 Selection of the modern Romanian lexicon

For the choice of the modern Romanian lexicon, the following three
resources were examined:

1. Dexonline [4]. It contains over 900000 entries, with a convenient
interface for online use. The dictionary structure is less adaptable for
processing because it does not contain explicitly the inflected forms,
does not contain morpho-syntactic descriptions (MSD), and includes
both forms of spelling "i" from "i" and "&" from "a" ("fan"-"fin",
”péri"—"piri").

2. The lexicon developed at the "AlI.Cuza" University, Iasi (6]
with over 1000000 entries. The lexicon is well structured, contains
MSD labels in accordance with the tagset proposed in the project
MULTEXT-East [7]. But, as in dexonline, we find both spellings "i"
/ "a", also many proper names and words of foreign origin, to which
the rules of transliteration cannot be applied.

3. Reusable linguistic resources developed at the Institute of Math-
ematics and Computer Science “Vladimir Andrunachievici” |8] with
over 677000 entries, including inflected forms. The formalization
(packaging) of resources is quite complicated, the morpho-syntactic
descriptions are incomplete.

Finally, the lexicon developed at the "AlI.Cuza" University (LexROM)

was selected with minor modifications, as follows:

1. Proper nouns and words of foreign origin were removed,;

2. All words were transliterated using the spelling "4" from "a" accord-
ing to the provisions of the Romanian Academy. Duplications of
spellings "i" / "a" were avoided by applying an algorithm specially
developed for this purpose.

The problem of spelling "i"/"a" does not affect the cyrillization
process, because in both cases there is the same result at transliteration:
"¢"="p1", "$"="u1". Difficulties arise in the decyrillization process:
should we apply the rule "oi"= "a" or rule "v1" = "3"7

We denote by AlphaROM the Romanian language alphabet, and by
LexROM(«) — all the words from LexROM that start with the letter
a, a € AlphaROM.

137

Constantin Ciubotaru

3 Used tools

To formalize the transliteration rules and program the lexicon process-
ing algorithms there was selected the Common LISP functional pro-
gramming language [9],[10].

The Notepad++ editor was used for word processing [11], which

offers advanced editing capabilities, such as:
- select text both horizontally and vertically,

- store search results in separate files,

- mark lines and operations with these lines,

- allow the use of regular expressions,

- support UTF-8 encoding for Romanian letters with diacritics and
Russian, for example: A, t, A, a, S, 9, u, bl, I, X,

- rich set of plugins: exporting files in various formats (RTF,
HTML), the ability to launch applications (files with the extension
.exe), sorting and comparing files, etc.

4 Backtracking method

The backtracking method proposes to build the solution(s) of a problem
incrementally by applying iterative and/or recursive algorithms. It is
assumed that there is a finite set of candidates for solutions and some
internal criteria for verifying candidates. The method can be applied
to generate the lexicon, as all the necessary conditions are met:

e the modern LexROM lexicon is given,
e sets of rules for transliteration are defined,

e there is a finite set of intermediate transliterated words that rep-
resent candidates for solutions,

e there are internal criteria for verifying the variants: the order of
application of the rules, context-sensitive dependencies, prefixing
and suffixing, the involvement of the expert,

e the set of all solutions meets the LexCYR lexicon,

e iterative and recursive algorithms are applied.

138

Backtracking algorithm for lexicon generation

5 Algorithm of switching to the spelling "&"
from "a"

The transition to the spelling "a" from "a" also will be done by
transliteration. According to the provisions of the Romanian Academy,
the letter "1" will always be written at the beginning and end of the
word ("inceput", "inger", "in", "intoarce", "a cobori", "a uri"). Inside
the word, it is usually written "&" ("cuvant", "a marai", "roman",
"fan"). There are, however, a few exceptions to this rule. Words

an

formed by prefixing words that begin with the letter "i" will keep this
"i" inside. For example, "neimpacat", "neingrijit", "preintampinat",
"dezintors", "reinarma'". The same rule will be applied to compound
words: "bineinteles", "semiinchis", "altincotro". There are also a few
exceptions, for example, the word "altinghie" will be transliterated as
"altanghie", because it is not a compound word, this is the name of
a flower, also called "lady’s slipper". On the other hand, the word
"capintorturd" (the name of a bird) will be transliterated, together
with its derivatives, as "capintorturd". It is taken into account that the
word comes from "cap intors" ("turned head"). The specificity of the
LexROM lexicon will also be taken into account, that includes, along
with the lemma words and inflected forms, phrases and word combi-
nations, which can be spelled with "i" from "i". These words inside
the construction are separated by "™". For example, "pe~inserate",
"de"jur~imprejur" etc. All words w that contain at least one letter

"i" can be represented as w = wg e """ cwqp e MM e ewp_q e " s wy,.

If the word starts with "i", then wg = ””. We will mark by ”” the
empty string. For words ending with "i" we will have w, = ””. Thus,
for the letter "i" we get "i"=wqg -« "1" - w1, wog = w; = "”. For the
word "cobori" we obtain: "cobori"=wg + "i" . w;, with wg="cobor",
w1 = 7”. For the combination of words w="din~cind~Iin~cind" we
have- w = wo .”’1\". 'LU1 ."/1\”. wz. "/1\” . w3:77din"’c77 .77’1\77. 77nd~77 . 77/1\77. 77n'~'c77

«717."nd”. Note that wi="nd~" ends with "~" which means that the
next word will start with "i", analogous to the prefix situation. As a
result of the conversion we get "din~cand~in~cand".

Performing a statistical analysis of the LexROM lexicon leads to

139

Constantin Ciubotaru

selection of the set of all prefixes that can be inserted in front of words
that start with the letter "i". This set is denoted by PREFIXES.

ALGORITHM OF SWITCHING TO THE SPELLING "A" FROM "A"

0. Start

1. The lexicon of the modern Romanian language LexROM is given.
* We will modify this lexicon by substituting all words with their writ-
ten equivalents with "a" from "a" applying the transliteration method
*\

2. We modify the LexROM by applying transliteration rules for excep-
tional situations. For example, "altingie" = "altangie" (in other cases
"alt" will be a prefix).

3. We build the set of prefixes that can be placed in front of words which
start with the letter "i". PREFIXES={"alt" "arhi" "auto" "bine"
”bioﬂ ”de" ”deZ” "din” ”eX" ”ne" ||nemail‘ "Ori" "piti" "pre" ”prea”
”proﬂ "re" "Semi" "Sub” "Subt” "Super” ”Supra” ”tele)"}'

4. loop for all w € LexROM do
4.1. if w does not contain "i" then return(w).
4.2. We represent w = wg * 7’1" cwq "1 o cwp—1 » "7 w,, where
wg, W1, . . . , Wy, are words which do not contain "i", n > 1.
4.3. if (wo="") or (wo € PREFIXES) or (wy = w{,+"~”) or (wy ="")
then w, := wg « "1’ else w, := wg +"4”.
4.4. loop for i from 1 to (n — 1) do
4.4.1. w, = Wy * wW;
4.4.2. if (wip1="") or (w; = w}+""") then w, := w, + "’ else
Wy 1= wy "4
4.5. end loop
4.6. return(w, *+ wy,)
5. end loop

6. Stop

6 The structure of the lexicons

The LexROM lexicon is represented as a list in Common LISP, each
element of the list being composed of three components: (word, MSD-

140

Backtracking algorithm for lexicon generation

label, word-lemma). For each element of the LexCYR lexicon, the
fourth component — the cyrillized word (Figura 2) — is included.

nmn

ghiocei "Ncmprn" "ghiocel")
ridic "Vmspls" "ridica")
ridica "Vmn" "ridica")
ridicam "Vmiilp" "ridica")
ridicdm "Vmsplp" "ridica")
ridicare "Ncfsrn" "ridicare")
ridicat "Ncmson" "ridicat")
ridicat "Afpmson" "ridicat")
ridicat "Vmp" "ridica")
ridicat "Rg" "ridicat")
ridicatele "Ncfpry" "ridicat")
ridicatule "Ncmsvy" "ridicat")

ruoueit "ghiocei" "Ncmprn" "ghiocel")
puauk "ridic" "Vmspls" "ridica")

puuka "ridica” "Vmn" "ridica")

pummkam "ridicam" "Vmiilp" "ridica")
puauxom "ridicdm" "Vmsplp" "ridica")
puauxape "ridicare" "Ncfsrn" "ridicare")
pummkar "ridicat" "Ncmson" "ridicat")
puauxar "ridicat" "Afpmson" "ridicat")
puauxar "ridicat" "Vmp" "ridica")
pummkar "ridicat" "Rg" "ridicat")
puauxarese "ridicatele” "Ncfpry" "ridicat")
puauxaryse "ridicatule"” "Ncemsvy" "ridicat")

(a) LexROM structure (b) LexCYR structure

PRy
AN AN AN AN AN AN AN N N S N

Figure 2. The lexicons structure

The MSD label is a set of characteristics of the word viewed as
part of speech. The label represents a sequence of symbols, the first
symbol specifying the part of speech (for example, N - noun, V - verb,
A - adjective, Rg - adverb, etc). The rest of the symbols will specify
the morphological characteristics of the word, such as number, gender,
person, time, case, mode, etc. The scheme of the MSD label for the
noun is shown in Figure 3.

7| c-common m-masculine || s-singular ' y-definiteness
p-proper f-feminine p-plural n-indefiniteness

r-direct case (nominative-accusative),
o-oblique case (genitive-dative),
v-vocative

Figure 3. The MSD label structure for noun

The following algorithm based on the backtracking strategy is pro-
posed for generating the Cyrillic lexicon LexCYR. Sets of translitera-

141

Constantin Ciubotaru

tion rules are defined, cyrillization and decyrillization algorithms are
constructed. The cyrillization algorithm is applied on the Romanian
lexicon LexROM. A variant of the LexCYR lexicon will be obtained,
which can be subjected to decyrillization, thus a new variant for the Ro-
manian lexicon is obtained. The ideal situation would be to match these
two lexicons. If inconsistencies occur, the expert intervenes, who can
change the rules of cyrillization\decyrillization, can repeat the whole
process or can intervene with corrections on the constructed Cyrillic
lexicon.

7 Cyrillization

Unlike the problem of digitizing and recognizing printed text, which is
solved relatively simply, the problem of cyrillization is more difficult. To
solve this problem we will apply the transliteration method. By defini-
tion, the transliteration process consists in the consecutive application
of a set of substitutions (rewriting rules). For example, brad = 6rad =
opad = 0Opaj = Opay. Here the following rules have been applied
consecutively "b" = "6", "r" = "p" "d"="1", "a" = "a". We will call
these rules general rules. For them the order of application is irrelevant.

For the letter ":" we have the general transliteration rule "¢" =
"u" but the following rules are also possible: "¢" = "it" and "¢" = "s".
Examples: fuior = dyiiop, fior = duop, miere = mbepe.

In other cases the rules may be more complicated. For example,
two rules can be applied to the letter "¢": "¢"="r", "¢"="xk" -
gigant = kurant. Here comes the context-sensitive rule that requires
substitutions: "gi" = "xku", "ge" = "Kke", "ghi" = "ru", "ghe" = "re".

Thus, it becomes obvious that these rules must be applied be-
fore applying the general rule "g¢"="r". Moreover, substitutions
"gru" = "kuy", "giu" = "ki0" are also possible. For example, giulgiu=
JKroyizkny, giugiuli = KoK,

Randomly applying the transliteration rules for the word "ghiocei",
nmn nmn

the following variants are obtained: {"rxuokeu", "rxuoken", "rxuoxeit",
"rxmouen", "rxwmouen", "rxmoueit", "rmokem", "rmoxen", "rmokeii",
"ruouen", "ruouen", "ruoueit", "kxuoken", "}kxwuokep", "Jxwuokeit",

142

Backtracking algorithm for lexicon generation

"kxuouen", "skxuouen", "Jxuoueit"}.

r —X

N\ /\/

I ——— € — b

/ \/\

Figure 4. The transliteration scheme for "ghiocei"

In Figure 4 we show the transliteration scheme of the word "ghio-
cei". The scheme highlights the correct variant — "ruoueit". The back-
tracking method allows eliminating wrong options step by step and
selecting the correct one. This is done by changing the transliteration
rule set, establishing some contextual dependencies, changing the or-
der of the rules application and examining the MSD labels. In some
situations the correct option can only be selected by the expert.

To fix the situations with multiple variants, we will use a list of
options denoted by [w1][ws] ... [wy], finally being selected only one. For
example, for the words "ghiocei" and "preaiubiti" we get:

|rx|[r][#&x| * mo « |k]|[4] « e« [u]|p||it] ="rHOUEiT",

up « [eal[si]s [my][to] * Buiy « [u][b][it] ="upsr0bunp".

We denoted by "+" the concatenation operation.

8 C(Classification of transliteration rules

8.1 General rules

The general transliteration rules are presented in Table 1.

Table 1. General rules of transliteration

latin ala|a|blc|d|le|f |g|lh|i |1 |] |k
cyrillic | a |9 | B | © gale|d || x|u|w|x|K
latin]l m|n |o|lp|r|s|s |t|t|u|Vv |x |z
cyrillic | m | |ua |o|o|pl|lc|m|T|m|y|B |KC |3

143

Constantin Ciubotaru

To formalize (program) these substitutions, we will introduce the
function replace-all (w lat cyr), which will modify the word w substi-
tuting all occurrences lat with cyr. This is possible because the order
of application of these substitutions is not relevant. E.g, replace-all
(”dividend" nqn nﬂn) _ ",Tiviﬂenﬂ".

Depending on the filtering stage, it is possible to enter some new
general transliteration rules, for example, replace-all (w "gh" "r"),
replace-all (w "ch" "x").

Usually, these substitutions are the last filter in the process of cyril-
lization.

8.2 Rules for prefixes

Because the words are interpreted as strings, we have to use the notions
of prefix and suffix defined to process strings, as opposed to the gram-
matical notions of suffix and prefix. Thus, by prefix (suffix) of the string
w we will define any substring wy (ws) for which w = wy+wy. Substrings
wi and wg can also be empty, i.e. "". Often the transliteration rules
for prefixes differ from general rules. Thus, the prefixes "ia" and "iu",
with small exceptions, will be transliterated as "«" and "i0", as op-
posed to their appearance inside the word when in most cases they will
be transliterated as options "[s|[ual" and "[w0][ny|". Another example:
in the LexROM there are about 650 words that start with the prefix
"crea". Only for 6 situations it will be transliterated by "kps". All
other occurrences of the prefix will be transliterated by xpea'". These
6 situations can be easily highlighted and formalized. This observation
suggests the need to introduce a special set of transliteration rules for
prefixes.

We note these rules by replace-prefiv (w prefizlat prefizcyr). For
example, replace-prefix (w "creang” "kpanr"), replace-prefix (w "crea"
"kpea'). The order of application is important for this type of substitu-
tion, which is simple: prefixes that are prefixes of other prefixes will be
transliterated last. Thus, we first will try the transliteration "creang"
= "kpgaur", then the transliteration "crea" = xkpea'". Prefix rules are
defined separately for all words in the LexROM that begin with the

144

Backtracking algorithm for lexicon generation

same letter. Thus, for all letters there will be defined sets of rules for
prefixes that will be applied first in the transliteration process.

8.3 Rules for suffixes

Analogously to the situation with the transliteration of prefixes, also
there are defined transliteration rules for suffixes involving some specific
conditions. For example, for the termination "ci" transliterations are
possible: "ci" = "g" "ci" = "uyp", "ci" = "uu". To make the correct
decision, MSD labels are checked. The rule "ci" = "a" is applied, for
example, for masculine nouns to the singular, nominative-accusative
case (MSD = "Ncmsrn", "arici" = "apuu", "cinci"=" qunu").

The "ci" = "au" rule is applied to infinitive verbs and 3rd per-
son verbs (MSD = "Vmis3s" and MSD = "Vmn", for example, "a
munci" = "a mynun"), and the rules "ci" = "up", "ti" = "rp", "ti"
= "mp", "si"=" mn", etc. — for nouns and adjectives in the plural
dative-genitive case, and also for second-person present and past tense
verbs (MSD € {"Vmii2p", "Vmis2s", "Vmis2p", "Vmil2s", "Vmil2p",
"Vmip2s", "Vmip2p", "Vmsp2s", "Vmsp2p", "Vmmp2p" }). Some ex-
amples are presented in Table 2.

Table 2. Transliteration of verb terminations

MSD lat cyr MSD lat cyr
Vmii2p | citeati | wmrams Vmip2s | citesti | uuremrn
Vmis2s | citisi YUTHUITD Vmip2p cititi YUTHUIH
Vmis2p | citirdti | autups1mn Vmsp2s citesti | dmremTh
Vmil2s | citisesi | uuTuncemnn Vmsp2p | cititi YUTHUIH
Vmil2p | citirdti | gurupsns Vmmp2p | cititi YUTHUIH

Based on the above, unconditioned and conditioned rules are defined
for the transliteration of suffixes. Respectively, the functions are defined
replace-suffiz (w lat cyr) and replace-suffiz-if (w label lat cyr msd). The
"label" argument of the replace-suffiz-if function represents the label
MSD of the processed word w, and the argument "msd" — a set of valid

145

Constantin Ciubotaru

MSD labels for this rule. Unlike the rules for prefixes that are defined
separately for each letter, the rules for suffixes are universal and can be
applied to all words.

8.4 Context sensitive rules (for diphthongs and triph-
thongs)

As in the case of prefixes (suffixes), along with the usual grammatical
notions diphthong/triphthong, we examine other combinations consist-
ing of two, three or more letters. We mentioned above the behavior of
the diphthongs "ia" and "iu" as prefixes, but also as occurrences within
the word. Other examples are presented in Table 3.

Table 3. Transliteration of diphthongs/triphthongs

~ ~

b oo b oo

g g g g

o O - o O Aog

=< | 5.3 Examples =2 | ZF .8 Examples

= < g = = < g =

S5 | B F £ & | EE

AE |82 AE |82
[oa] | cloard=- "woaps" [a] | ceatd= "uamp"

"ioa" | [poa] | chioard= "kBoaps" "ea" | [a] | rea= "pa"
[uoa] | mioard=> "muoaps" [ea] | ocean=- "ouean"

g [mit] | fiicele= "duituene” "ch" | [x] | ochi= "oxb"
[uu] | viile= "Bunne" "gh" [r] | ghid= "rux"

Tejel [ee] | creier= "kpeep" "ge" | [ke] | ger= "skep"
leir] | conveier= "xouseiiep" "ei" | [am] | circ= "aupx"

Namely the transliteration of these constructions generates the most
ambiguities. More information on this topic can be found in [12]. To
make right decisions, sometimes contextual rules can be supplemented
with morpho-syntactic information (MSD labels). The order of appli-
cation of the rules is very important. Contextual dependencies always
have priority over general rules.

146

Backtracking algorithm for lexicon generation

9 Cyrillization algorithm

The cyrillization algorithm applies consecutively the transliteration
rules, previously defined, to all the words in the LexROM. It is impor-
tant to follow the order of application of the rules. Of course, optional
combinations will be generated, which correspond to the ambiguities.
This means that later it is necessary to modify the transliteration rules
or to request the intervention of the linguistic expert.

Below we present the formalized algorithm.

CYRILLIZATION ALGORITHM
0. Start

1. The lexicon of the modern Romanian language LexROM and transliter-

ation rules are given.
* We will build the Romanian Cyrillic lexicon LexCYR for the period
1967-1989 *\

2. Initial LexCYR = &, LexROM; = LexROM.

3. lIoop for all letters o € AlphaROM do

3.1. loop for all words w € LexROM;(a) do
3.1.1. Transliteration rules for prefixes are applied.

3.1.2. Transliteration rules for suffixes are applied.

3.1.3. Context-sensitive rules for transliteration are applied.

3.1.4. General rules for transliteration are applied. The obtained result
is denoted by wcyr.

3.1.5. weyr is included in LexCYR.

3.2. end loop
4. end loop
5. Stop

10 Decyrillization

Decyirillization faces the same problems as cyrillization. General and
contextual rules are also defined. The general rules are relatively simple,
for example, a = a, p = r, 10 = 4u, b = 4. If only the general rules are
applied to transliteration, we obtain, for example, nyromnyit = puiului,

147

Constantin Ciubotaru

ober = biet, 6oep = boer, nenr = pept. The last two transliterations are
incorrect. Correct would be 6oep = boier, nuenr = piept. In this case,
as for cyrillization, contextual rules are required (for prefixes/suffixes,
diphthongs/triphthongs). E.g, <5 = gh+3, if f€{e,u,s,10,6} and 1+ =
g0, if f¢{eu,a,10,6} (reopruns = gheorghind, roroais = gogoasd).

Rules for the letter si: s = ia (usually at the beginning of the word),
ng = ia (usually at the end of the word). If it is difficult to make the
right decision to transliterate the letter « inside the word, then the
algorithm will use the rule s = [ia||eqa], leaving the right decision to the
expert. More information on this topic can be found in [13].

Another difficult problem is the transliteration of the letter b1, which
can be replaced by either 7 or 4. The algorithm follows exactly the
recommendations of the Romanian Academy regarding this spelling.

DECYRILLIZATION ALGORITHM

0. Start

1. The Romanian Cyrillic lexicon for the period 1967-1989 LexCYR and
the decyrillization rules are given.
* We will build the lexicon of the modern Romanian language (noted by
LexROM3) applying the transliteration method *\

2. Initial LexROMy = @

3. lIoop for all letters § € AlphaCYR do
3.1. loop for all words w € LexCYR(f) do
3.1.1. Transliteration rules for prefixes are applied.
3.1.2. Transliteration rules for suffixes are applied.
3.1.3. Context-sensitive rules for transliteration are applied.
3.1.4. Transliteration rules for the letter kyr w1 are applied.

3.1.5. General rules for transliteration are applied. The obtained result
is denoted by wrom.

3.1.6. wrom is included in LexROMs.
3.2. end loop

4. end loop
5. Stop

148

Backtracking algorithm for lexicon generation

11 Lexicon generation technology

As it was mentioned above, there is a total lack of electronic resources
for the period 1967-1989, a complete exposition of the grammar used
is missing, and many of interpretations of the transliterated words are
ambiguous. Therefore, a major role in the process of generating the
lexicon belongs to expert. The proposed technology aims to automate
this process. Having the cyrillization and decyrillization algorithms
and the formalized sets of transliteration rules, the lexicon generation
process can be realized as an backtracking algorithm. The process runs
in several iterations, at each iteration the expert intervenes to modify
the set of rules and, possibly, directly the built Cyrillic lexicon. This
scheme is described in detail in Figure 5.

12 Conclusion

The paper proposes a backtracking technology for the generation of
the Romanian Cyrillic lexicon for the period 1967-1989 applying the
transliteration method. Starting from the lexicon of the modern Ro-
manian language [6] the cyrillization and decyrillization algorithms are
applied consecutively.

The intermediate results are made available to the experts, who
can modify\extend the set of rules applied to transliteration, and to
directly correct the built Cyrillic lexicon. The final lexicon is obtained
as a result of performing several such iterations. The main problems to
be solved by the experts are the ambiguities that appear as a result of
cyrillization\decyrillization.

For all words in the LexROM(c) (171846 words), 6381 ambiguities
were detected at the first iteration, which represents 3.7%. To overcome
these ambiguities there were required two iterations. Of course, the
degree of accuracy depends considerably on the qualification of the
expert. The proposed technology allows the return to the previous
intermediate variants, thus revising the lexicon.

In order to become aware of the role of the expert and that of con-

149

Constantin Ciubotaru

——
Cyrillization Decyrillization
rules rules

Decyrillization
algorithm - LexROMz

Modified Modified
cyrillization decyrillization
rules rules

Figure 5. The scheme for generating the Romanian Cyrillic lexicon

textual dependencies, a test was performed applying to the LexROM(c)
only the general rules of transliteration (paragraph 8.1). As a result,
42.2% of the correct words are obtained.

References
[1] S. Cojocaru, E. Boian, C. Ciubotaru, A. Colesnicov, V. Demidova,

and L. Malahov, “Regeneration of printed cultural heritage : chal-
lenges ang technolologies,” in The Third Conference of Matematical

150

Backtracking algorithm for lexicon generation

3]

4]

Society of the republic of Moldova, (19-23 August, Chigindu), 2014,
pp- 481-489.

C. Ciubotaru, A. Colesnicov, and L. Malahov, “Vitalization
of Moldavian Printings (1967-1989)”, in Proceedings of the 4th
Conference of Mathematical Society of Moldova, CMSM}’2017”,
(June 28-July 2, 2017, Chisinau, Rep. of Moldova), pp. 491-
494, ISBN 978-9975-71-915-5, Available: http://cmsmé4.math.md/
Proceedings_CMSM4.pdf.

C. Ciubotaru, S. Cojocaru, A. Colesnicov, V. Demidova, and L.
Malahov, “Regeneration of cultural heritage: problems related to
moldavian cyrillic alphabet”, in Proceedings of the 11th Interna-
tional Conference “Linguistics Resources and Tools for Process-
ing the Romanian Language (ConsILR-2015)”, (Alexandru Ioan
Cuza University, lasi, Romania, 26-27 November 2015), pp.177-
184, ISSN: 1843-911X, Available: http://consilr.info.uaic.
ro/2015/Consilr_2015.pdf.

Dezonline. Online Dex. Romanian language dictionaries. |[Online].
Available: https://dexonline.ro/definitie/translitera)
5#C8\%9Bie.

C. Ciubotaru, V. Demidova, and T. Bumbu, “Generation of the Ro-
manian Cyrillic lexicon for the period 1967 — 1989,” in Proceedings
of the Fifth Conference of Mathematical Society of Moldova IMCS-
55, (September 28 - October 1, Chisinau, Republic of Moldova),
2019, pp. 309-316.

The UAIC Natural Language Processing Group, Web-
PosRo/resources/, Alexandru loan Cuza University, Faculty
of Computer Science. [Online|. Available: http://nlptools.
info.uaic.ro/WebPosRo/resources/posDictRoDiacr.txt.

Tomaz Erjavec, ed., MULTEXT-East Morphosyntactic Specifica-
tions, Version 3.0, May 10th, 2004. [Online|. Available: http:
//nl.ijs.si/ME/Vault/V3/msd/html.

151

Constantin Ciubotaru

8]

[10]

[11]

[12]

[13]

Reusable Resources for Romanian Language Technology, Institute
of Mathematics and Computer Sciences, Moldova. [Online|. Avail-
able: http://www.math.md/elrr/res_main.php.

Guy L. Steele, Common Lisp the Language, 2nd ed., USA: Think-
ing Machines, Inc. Digital Press, 1990, 1029 p. ISBN:1-55558-041-6.

CLISP — an ANSI Common Lisp, Slashdot Media. [Online|. Avail-
able: http://sourceforge.net/projects/clisp/files/clisp/
2.49/.

Notepad++. Downloads. |Online|. Available: https:
//notepad-plus-plus.org/download/v7.7.1.html.

V. Demidova, “Particular Aspects of the Cyrillization Problem,”
in The Third Conference of Matematical Society of the Republic of
Moldova, (Chigindu, 19-23 August), 2014, pp. 493-498.

V. Demidova, “Peculiarities of decyrillization of the Romanian lan-
guage,” Studia universitatis Moldaviae. Seria “Stiinte exacte si eco-
nomice”, no. 2(82), pp. 1620, 2015. (in Romanian).

Constantin Ciubotaru Received March 2, 2021

Revised March 20, 2021

Vladimir Andrunachievici Institute of
Mathematics and Computer Science
Republic of Moldova

E-mail: chebotar@gmail.com

152

