
Computer S
ien
e Journal of Moldova, vol.29, no.1(85), 2021

Ba
ktra
king algorithm for lexi
on generation

∗

Constantin Ciubotaru

Abstra
t

This paper is dedi
ated to generating pro
ess of the Roma-

nian Cyrilli
 lexi
on used between 1967 and 1989. The rules for

transliteration of words from the modern Romanian lexi
on to

their equivalents written in Cyrilli
 were established and argued.

A ba
ktra
king algorithm has been developed and imple-

mented that generates the Cyrilli
 lexi
on using the transliter-

ation rules. This algorithm a
tually is a tool to fa
ilitate the

work of the expert. The work of the expert is redu
ed to
he
k-

ing the transliterated variants and
hanging the transliteration

rules.

Keywords: lexi
on, transliteration, ba
ktra
king algorithm,

de
yrillization, morpho-synta
ti
 des
riptions (MSD).

1 Introdu
tion

The problem of digitizing and preserving the histori
al-linguisti
 her-

itage is a priority domain of the digital agenda for Europe. The dig-

itization pro
ess requires solving a series of problems related to the

re
ognition, editing, translation, and interpretation of printed texts.

The solving of these problems for the Romanian histori
al-linguisti

heritage fa
es di�
ulties and spe
i�
 aspe
ts: a large number of peri-

ods in the evolution of the language, a small volume of stored resour
es

that are also s
attered, a great diversity of alphabets.

The presen
e of a digitized Romanian Cyrilli
 lexi
on will
ontribute

to the regeneration, revitalization and preservation of the heritage re-

lated to this period. Various aspe
ts of the problem have been exposed

in [1℄�[3℄.

©2021 by CSJM; Constantin Ciubotaru

∗

This work was supported by the proje
t Nr. 20.80009.5007.22

135

Constantin Ciubotaru

The paper addresses the issues related to the digitization and

transliteration of the histori
al-linguisti
 heritage printed in Cyrilli

s
ript during 1967�1989 on the territory of the Moldovan Soviet So
ial-

ist Republi
 (MSSR), in a

ordan
e with the linguisti
 norms of the

modern Romanian language.

During that period the Moldovan Cyrilli
 alphabet (AlphaCYR)

was used whi
h a
tually represents the Russian alphabet without the

letters "�e", "ù" and "ú" and extended by adding the letter " �æ" in

1967. Complete la
k of resour
es in ele
troni
 format and presen
e of

fragmentary grammati
al des
riptions that admit ambiguous interpre-

tations represent the main di�
ulties spe
i�
 to the period.

A

ording to the dexonline de�nition, transliteration is the �tran-

s
ription of a text from one alphabet to another, rendering the letters

by their equivalents, regardless of the phoneti
 value of the signs� [4℄.

The pro
ess of transliterating Romanian words into their written

equivalents with the
hara
ters of the AlphaCYR alphabet is
alled

yrillization. For instan
e, "puiului"⇒"ïóþëóé", "�ului"⇒"�èóëóé",

"
enus

,

iu"⇒"÷åíóøèó", "viermi"⇒"âåðìü", "vierii"⇒"âèåðèé".

The inverse pro
edure for
yrillization is
alled de
yrillization,

e.g. "ïóþëóé"⇒"puiului", "áüåò"⇒"biet", "áîåð"⇒"boier", "ïåïò"⇒

"piept".

If the digitization of the text is relatively simple, the problem of

re
ognizing the digitized text is quite
ompli
ated, espe
ially
onsider-

ing the total la
k of Romanian Cyrilli
 resour
es for that period. This

paper extends the results presented in [5℄ and aims to develop a tool

for generating the lexi
on
orresponding to that period (noted by Lex-

CYR), starting from the lexi
on of the modern Romanian language

(noted by LexROM).

The general s
heme of the Romanian Cyrilli
 lexi
on generator is

presented in Figure 1.

Modern Romanian

lexi
on LexROM

TRANSLITERATION

Romanian Cyrilli

lexi
on (1967-

1989) LexCYR

Figure 1. The general s
heme of the Cyrilli
 lexi
on generator

136

Ba
ktra
king algorithm for lexi
on generation

2 Sele
tion of the modern Romanian lexi
on

For the
hoi
e of the modern Romanian lexi
on, the following three

resour
es were examined:

1.Dexonline [4℄. It
ontains over 900000 entries, with a
onvenient

interfa
e for online use. The di
tionary stru
ture is less adaptable for

pro
essing be
ause it does not
ontain expli
itly the in�e
ted forms,

does not
ontain morpho-synta
ti
 des
riptions (MSD), and in
ludes

both forms of spelling "��" from "i" and "�a" from "a" ("f�an"-"f��n",

"p�ar��"-"p��r��").

2.The lexi
on developed at the "Al.I.Cuza" University, Ias

,

i [6℄

with over 1000000 entries. The lexi
on is well stru
tured,
ontains

MSD labels in a

ordan
e with the tagset proposed in the proje
t

MULTEXT-East [7℄. But, as in dexonline, we �nd both spellings "��"

/ "�a", also many proper names and words of foreign origin, to whi
h

the rules of transliteration
annot be applied.

3.Reusable linguisti
 resour
es developed at the Institute of Math-

emati
s and Computer S
ien
e �Vladimir Andruna
hievi
i� [8℄ with

over 677000 entries, in
luding in�e
ted forms. The formalization

(pa
kaging) of resour
es is quite
ompli
ated, the morpho-synta
ti

des
riptions are in
omplete.

Finally, the lexi
on developed at the "Al.I.Cuza" University (LexROM)

was sele
ted with minor modi�
ations, as follows:

1.Proper nouns and words of foreign origin were removed;

2.All words were transliterated using the spelling "�a" from "a" a

ord-

ing to the provisions of the Romanian A
ademy. Dupli
ations of

spellings "��" / "�a" were avoided by applying an algorithm spe
ially

developed for this purpose.

The problem of spelling "��"/"�a" does not a�e
t the
yrillization

pro
ess, be
ause in both
ases there is the same result at transliteration:

"�a"⇒ "û", "��"⇒ "û". Di�
ulties arise in the de
yrillization pro
ess:

should we apply the rule "û"⇒ "�a" or rule "û"⇒ "��"?

We denote by AlphaROM the Romanian language alphabet, and by

LexROM(α) � all the words from LexROM that start with the letter

α, α ∈ AlphaROM.

137

Constantin Ciubotaru

3 Used tools

To formalize the transliteration rules and program the lexi
on pro
ess-

ing algorithms there was sele
ted the Common LISP fun
tional pro-

gramming language [9℄, [10℄.

The Notepad++ editor was used for word pro
essing [11℄, whi
h

o�ers advan
ed editing
apabilities, su
h as:

- sele
t text both horizontally and verti
ally,

- store sear
h results in separate �les,

- mark lines and operations with these lines,

- allow the use of regular expressions,

- support UTF-8 en
oding for Romanian letters with dia
riti
s and

Russian, for example:

�

A, t

,

,

�

A, �a, S

,

, Ý, ö, Û, Ø, �æ,

- ri
h set of plugins: exporting �les in various formats (RTF,

HTML), the ability to laun
h appli
ations (�les with the extension

.exe), sorting and
omparing �les, et
.

4 Ba
ktra
king method

The ba
ktra
king method proposes to build the solution(s) of a problem

in
rementally by applying iterative and/or re
ursive algorithms. It is

assumed that there is a �nite set of
andidates for solutions and some

internal
riteria for verifying
andidates. The method
an be applied

to generate the lexi
on, as all the ne
essary
onditions are met:

• the modern LexROM lexi
on is given,

• sets of rules for transliteration are de�ned,

• there is a �nite set of intermediate transliterated words that rep-

resent
andidates for solutions,

• there are internal
riteria for verifying the variants: the order of

appli
ation of the rules,
ontext-sensitive dependen
ies, pre�xing

and su�xing, the involvement of the expert,

• the set of all solutions meets the LexCYR lexi
on,

• iterative and re
ursive algorithms are applied.

138

Ba
ktra
king algorithm for lexi
on generation

5 Algorithm of swit
hing to the spelling "�a"

from "a"

The transition to the spelling "�a" from "a" also will be done by

transliteration. A

ording to the provisions of the Romanian A
ademy,

the letter "��" will always be written at the beginning and end of the

word ("��n
eput", "��nger", "��n", "��ntoar
e", "a
obor��", "a ur��"). Inside

the word, it is usually written "�a" ("
uv�ant", "a m�ar�ai", "rom�an",

"f�an"). There are, however, a few ex
eptions to this rule. Words

formed by pre�xing words that begin with the letter "��" will keep this

"��" inside. For example, "ne��mp�a
at", "ne��ngrijit", "pre��nt�ampinat",

"dez��ntors", "re��narma". The same rule will be applied to
ompound

words: "bine��nt

,

eles", "semi��n
his", "alt��n
otro". There are also a few

ex
eptions, for example, the word "alt��nghie" will be transliterated as

"alt�anghie", be
ause it is not a
ompound word, this is the name of

a �ower, also
alled "lady's slipper". On the other hand, the word

"
ap��ntortur�a" (the name of a bird) will be transliterated, together

with its derivatives, as "
ap��ntortur�a". It is taken into a

ount that the

word
omes from "
ap ��ntors" ("turned head"). The spe
i�
ity of the

LexROM lexi
on will also be taken into a

ount, that in
ludes, along

with the lemma words and in�e
ted forms, phrases and word
ombi-

nations, whi
h
an be spelled with "��" from "i". These words inside

the
onstru
tion are separated by "~". For example, "pe~��nserate",

"de~jur~��mprejur" et
. All words w that
ontain at least one letter

"��"
an be represented as w = w0
•
"��"

• w1
•
"��"

• . . . • wn−1
•
"��"

• wn.

If the word starts with "��", then w0 = ””. We will mark by ”” the

empty string. For words ending with "��" we will have wn = ””. Thus,
for the letter "��" we get "��"=w0

•
"��"

• w1, w0 = w1 = ””. For the

word "
obor��" we obtain: "
obor��"=w0
•
"��"

• w1, with w0="
obor",

w1 = ””. For the
ombination of words w="din~
��nd~��n~
��nd" we

have: w = w0
•
"��"

• w1
•
"��"

• w2
•
"��"

• w3=�din~
�
•
����

•
�nd~�

•
����

•
�n~
�

•
����

•
�nd�. Note that w1="nd~" ends with "~", whi
h means that the

next word will start with "��", analogous to the pre�x situation. As a

result of the
onversion we get "din~
�and~��n~
�and".

Performing a statisti
al analysis of the LexROM lexi
on leads to

139

Constantin Ciubotaru

sele
tion of the set of all pre�xes that
an be inserted in front of words

that start with the letter "��". This set is denoted by PREFIXES.

Algorithm of swit
hing to the spelling "

�

a" from "a"

0. Start

1. The lexi
on of the modern Romanian language LexROM is given.

* We will modify this lexi
on by substituting all words with their writ-

ten equivalents with "�a" from "a" applying the transliteration method

*\

2.We modify the LexROM by applying transliteration rules for ex
ep-

tional situations. For example, "alt��ngie"⇒ "alt�angie" (in other
ases

"alt" will be a pre�x).

3.We build the set of pre�xes that
an be pla
ed in front of words whi
h

start with the letter "��". PREFIXES={"alt" "arhi" "auto" "bine"

"bio" "de" "dez" "din" "ex" "ne" "nemai" "ori" "pit

,

i" "pre" "prea"

"pro" "re" "semi" "sub" "subt" "super" "supra" "tele"}.

4. loop for all w ∈ LexROM do

4.1. if w does not
ontain "��" then return(w).

4.2.We represent w = w0
•
����

• w1
•
����

• . . . • wn−1
•
����

• wn, where

w0, w1, . . . , wn are words whi
h do not
ontain "��", n ≥ 1.

4.3. if (w0= ””) or (w0∈PREFIXES) or (w0 = w′

0
•
�~�) or (w1 = ””)

then wr := w0
•
���� else wr := w0

•
��a�.

4.4. loop for i from 1 to (n− 1) do
4.4.1. wr := wr

• wi

4.4.2. if (wi+1 = ””) or (wi = w′

i
•
�~�) then wr := wr

•
���� else

wr := wr
•
��a�.

4.5. end loop

4.6. return(wr
• wn)

5. end loop

6. Stop

6 The stru
ture of the lexi
ons

The LexROM lexi
on is represented as a list in Common LISP, ea
h

element of the list being
omposed of three
omponents: (word, MSD-

140

Ba
ktra
king algorithm for lexi
on generation

label, word-lemma). For ea
h element of the LexCYR lexi
on, the

fourth
omponent � the
yrillized word (Figura 2) � is in
luded.

(ghio
ei "N
mprn" "ghio
el")

(ridi
 "Vmsp1s" "ridi
a")

(ridi
a "Vmn" "ridi
a")

(ridi
am "Vmii1p" "ridi
a")

(ridi
�am "Vmsp1p" "ridi
a")

(ridi
are "N
fsrn" "ridi
are")

(ridi
at "N
mson" "ridi
at")

(ridi
at "Afpmson" "ridi
at")

(ridi
at "Vmp" "ridi
a")

(ridi
at "Rg" "ridi
at")

(ridi
atele "N
fpry" "ridi
at")

(ridi
atule "N
msvy" "ridi
at")

(a) LexROM stru
ture

(ãèî÷åé "ghio
ei" "N
mprn" "ghio
el")

(ðèäèê "ridi
" "Vmsp1s" "ridi
a")

(ðèäèêà "ridi
a" "Vmn" "ridi
a")

(ðèäèêàì "ridi
am" "Vmii1p" "ridi
a")

(ðèäèêýì "ridi
�am" "Vmsp1p" "ridi
a")

(ðèäèêàðå "ridi
are" "N
fsrn" "ridi
are")

(ðèäèêàò "ridi
at" "N
mson" "ridi
at")

(ðèäèêàò "ridi
at" "Afpmson" "ridi
at")

(ðèäèêàò "ridi
at" "Vmp" "ridi
a")

(ðèäèêàò "ridi
at" "Rg" "ridi
at")

(ðèäèêàòåëå "ridi
atele" "N
fpry" "ridi
at")

(ðèäèêàòóëå "ridi
atule" "N
msvy" "ridi
at")

(b) LexCYR stru
ture

Figure 2. The lexi
ons stru
ture

The MSD label is a set of
hara
teristi
s of the word viewed as

part of spee
h. The label represents a sequen
e of symbols, the �rst

symbol spe
ifying the part of spee
h (for example, N - noun, V - verb,

A - adje
tive, Rg - adverb, et
). The rest of the symbols will spe
ify

the morphologi
al
hara
teristi
s of the word, su
h as number, gender,

person, time,
ase, mode, et
. The s
heme of the MSD label for the

noun is shown in Figure 3.

N

[

-
ommon

p-proper

][

m-mas
uline

f-feminine

][

s-singular

p-plural

]





r

o

v





[

y-de�niteness

n-inde�niteness

]

r-dire
t
ase (nominative-a

usative),

o-oblique
ase (genitive-dative),

v-vo
ative

Figure 3. The MSD label stru
ture for noun

The following algorithm based on the ba
ktra
king strategy is pro-

posed for generating the Cyrilli
 lexi
on LexCYR. Sets of translitera-

141

Constantin Ciubotaru

tion rules are de�ned,
yrillization and de
yrillization algorithms are

onstru
ted. The
yrillization algorithm is applied on the Romanian

lexi
on LexROM. A variant of the LexCYR lexi
on will be obtained,

whi
h
an be subje
ted to de
yrillization, thus a new variant for the Ro-

manian lexi
on is obtained. The ideal situation would be to mat
h these

two lexi
ons. If in
onsisten
ies o

ur, the expert intervenes, who
an

hange the rules of
yrillization\de
yrillization,
an repeat the whole

pro
ess or
an intervene with
orre
tions on the
onstru
ted Cyrilli

lexi
on.

7 Cyrillization

Unlike the problem of digitizing and re
ognizing printed text, whi
h is

solved relatively simply, the problem of
yrillization is more di�
ult. To

solve this problem we will apply the transliteration method. By de�ni-

tion, the transliteration pro
ess
onsists in the
onse
utive appli
ation

of a set of substitutions (rewriting rules). For example, brad⇒ árad⇒

áðad ⇒ áðaä ⇒ áðaä. Here the following rules have been applied

onse
utively "b"⇒ "á", "r"⇒ "ð", "d"⇒ "ä", "a"⇒ "à". We will
all

these rules general rules. For them the order of appli
ation is irrelevant.

For the letter "i" we have the general transliteration rule "i"⇒

"è", but the following rules are also possible: "i"⇒ "é" and "i"⇒ "ü".

Examples: fuior⇒�óéîð, �or⇒�èîð, miere⇒ ìüåðå.

In other
ases the rules may be more
ompli
ated. For example,

two rules
an be applied to the letter "g": "g"⇒ "ã", "g"⇒ " �æ" �

gigant ⇒ �æèãàíò. Here
omes the
ontext-sensitive rule that requires

substitutions: "gi"⇒ " �æè", "ge"⇒ " �æå", "ghi"⇒ "ãè", "ghe"⇒ "ãå".

Thus, it be
omes obvious that these rules must be applied be-

fore applying the general rule "g"⇒ "ã". Moreover, substitutions

"giu"⇒ " �æèó", "giu"⇒ " �æþ" are also possible. For example, giulgiu⇒

�æþë�æèó, giugiuli⇒ �æþ�æþëè.

Randomly applying the transliteration rules for the word "ghio
ei",

the following variants are obtained: {"ãõèîêåè", "ãõèîêåü", "ãõèîêåé",

"ãõèî÷åè", "ãõèî÷åü", "ãõèî÷åé", "ãèîêåè", "ãèîêåü", "ãèîêåé",

"ãèî÷åè", "ãèî÷åü", "ãèî÷åé", " �æõèîêåè", " �æõèîêåü", " �æõèîêåé",

142

Ba
ktra
king algorithm for lexi
on generation

" �æõèî÷åè", " �æõèî÷åü", " �æõèî÷åé"}.

ã

ã

�æ

õ

õ

è î

ê

÷

å

è

ü

é

Figure 4. The transliteration s
heme for "ghio
ei"

In Figure 4 we show the transliteration s
heme of the word "ghio-

ei". The s
heme highlights the
orre
t variant � "ãèî÷åé". The ba
k-

tra
king method allows eliminating wrong options step by step and

sele
ting the
orre
t one. This is done by
hanging the transliteration

rule set, establishing some
ontextual dependen
ies,
hanging the or-

der of the rules appli
ation and examining the MSD labels. In some

situations the
orre
t option
an only be sele
ted by the expert.

To �x the situations with multiple variants, we will use a list of

options denoted by [w1][w2] . . . [wn], �nally being sele
ted only one. For
example, for the words "ghio
ei" and "preaiubit

,

i" we get:

[ãõ℄[ã℄[�æõ℄

•
èî

•
[ê℄[÷℄

•
å

•
[è℄[ü℄[é℄ =⇒"ãèî÷åé",

ïð

•
[åà℄[ÿ℄

•
[èó℄[þ℄

•
áèö

•
[è℄[ü℄[é℄ =⇒"ïðÿþáèöü".

We denoted by "

•
" the
on
atenation operation.

8 Classi�
ation of transliteration rules

8.1 General rules

The general transliteration rules are presented in Table 1.

Table 1. General rules of transliteration

latin a �a �a b
 d e f g h i �� j k

yrilli
 à ý û á ê ä å � ã õ è û æ ê

latin l m n o p r s s

,

t t

,

u v x z

yrilli
 ë ì í î ï ð ñ ø ò ö ó â êñ ç

143

Constantin Ciubotaru

To formalize (program) these substitutions, we will introdu
e the

fun
tion repla
e-all (w lat
yr), whi
h will modify the word w substi-

tuting all o

urren
es lat with
yr. This is possible be
ause the order

of appli
ation of these substitutions is not relevant. E.g, repla
e-all

("dividend" "d" "ä") = "äiviäenä".

Depending on the �ltering stage, it is possible to enter some new

general transliteration rules, for example, repla
e-all (w "gh" "ã"),

repla
e-all (w "
h" "ê").

Usually, these substitutions are the last �lter in the pro
ess of
yril-

lization.

8.2 Rules for pre�xes

Be
ause the words are interpreted as strings, we have to use the notions

of pre�x and su�x de�ned to pro
ess strings, as opposed to the gram-

mati
al notions of su�x and pre�x. Thus, by pre�x (su�x) of the string

w we will de�ne any substring w1 (w2) for whi
h w = w1
•w2. Substrings

w1 and w2
an also be empty, i.e. "". Often the transliteration rules

for pre�xes di�er from general rules. Thus, the pre�xes "ia" and "iu",

with small ex
eptions, will be transliterated as "ÿ" and "þ", as op-

posed to their appearan
e inside the word when in most
ases they will

be transliterated as options "[ÿ℄[èà℄" and "[þ℄[èó℄". Another example:

in the LexROM there are about 650 words that start with the pre�x

"
rea". Only for 6 situations it will be transliterated by "êðÿ". All

other o

urren
es of the pre�x will be transliterated by êðåà". These

6 situations
an be easily highlighted and formalized. This observation

suggests the need to introdu
e a spe
ial set of transliteration rules for

pre�xes.

We note these rules by repla
e-pre�x (w pre�xlat pre�x
yr). For

example, repla
e-pre�x (w "
reang" "êðÿíã"), repla
e-pre�x (w "
rea"

"êðåà"). The order of appli
ation is important for this type of substitu-

tion, whi
h is simple: pre�xes that are pre�xes of other pre�xes will be

transliterated last. Thus, we �rst will try the transliteration "
reang"

⇒ "êðÿíã", then the transliteration "
rea" ⇒ êðåà". Pre�x rules are

de�ned separately for all words in the LexROM that begin with the

144

Ba
ktra
king algorithm for lexi
on generation

same letter. Thus, for all letters there will be de�ned sets of rules for

pre�xes that will be applied �rst in the transliteration pro
ess.

8.3 Rules for su�xes

Analogously to the situation with the transliteration of pre�xes, also

there are de�ned transliteration rules for su�xes involving some spe
i�

onditions. For example, for the termination "
i" transliterations are

possible: "
i" ⇒ "÷", "
i" ⇒ "÷ü", "
i" ⇒ "÷è". To make the
orre
t

de
ision, MSD labels are
he
ked. The rule "
i" ⇒ "÷" is applied, for

example, for mas
uline nouns to the singular, nominative-a

usative

ase (MSD = "N
msrn", "ari
i" ⇒ "àðè÷", "
in
i"⇒" ÷èí÷").

The "
i" ⇒ "÷è" rule is applied to in�nitive verbs and 3rd per-

son verbs (MSD = "Vmis3s" and MSD = "Vmn", for example, "a

mun
i" ⇒ "à ìóí÷è"), and the rules "
i" ⇒ "÷ü", "ti" ⇒ "òü", "t

,

i"

⇒ "öü", "s

,

i"⇒" øü", et
. � for nouns and adje
tives in the plural

dative-genitive
ase, and also for se
ond-person present and past tense

verbs (MSD ∈ {"Vmii2p", "Vmis2s", "Vmis2p", "Vmil2s", "Vmil2p",

"Vmip2s", "Vmip2p", "Vmsp2s", "Vmsp2p", "Vmmp2p" }). Some ex-

amples are presented in Table 2.

Table 2. Transliteration of verb terminations

MSD lat
yr

Vmii2p
iteat

,

i ÷èòÿöü

Vmis2s
itis

,

i ÷èòèøü

Vmis2p
itir�at

,

i ÷èòèðýöü

Vmil2s
itises

,

i ÷èòèñåøü

Vmil2p
itir�at

,

i ÷èòèðýöü

MSD lat
yr

Vmip2s
ites

,

ti ÷èòåøòü

Vmip2p
itit

,

i ÷èòèöü

Vmsp2s
ites

,

ti ÷èòåøòü

Vmsp2p
itit

,

i ÷èòèöü

Vmmp2p
itit

,

i ÷èòèöü

Based on the above, un
onditioned and
onditioned rules are de�ned

for the transliteration of su�xes. Respe
tively, the fun
tions are de�ned

repla
e-su�x (w lat
yr) and repla
e-su�x-if (w label lat
yr msd). The

"label" argument of the repla
e-su�x-if fun
tion represents the label

MSD of the pro
essed word w, and the argument "msd" � a set of valid

145

Constantin Ciubotaru

MSD labels for this rule. Unlike the rules for pre�xes that are de�ned

separately for ea
h letter, the rules for su�xes are universal and
an be

applied to all words.

8.4 Context sensitive rules (for diphthongs and triph-

thongs)

As in the
ase of pre�xes (su�xes), along with the usual grammati
al

notions diphthong/triphthong, we examine other
ombinations
onsist-

ing of two, three or more letters. We mentioned above the behavior of

the diphthongs "ia" and "iu" as pre�xes, but also as o

urren
es within

the word. Other examples are presented in Table 3.

Table 3. Transliteration of diphthongs/triphthongs

D

i

p

h

t

h

o

n

g

/

t

r

i

p

h

t

h

o

n

g

T

r

a

n

s

l

i

-

t

e

r

a

t

i

o

n

Examples

"ioa"

[oà℄
ioar�a⇒ "÷îàðý"

[üîà℄
hioar�a⇒ "êüîàðý"

[èîà℄ mioar�a⇒ "ìèîàðý"

"ii"

[èé℄ �i
ele⇒ "�èé÷åëå"

[èè℄ viile⇒ "âèèëå"

"eie"

[åå℄
reier⇒ "êðååð"

[åé℄
onveier⇒ "êîíâåéåð"

D

i

p

h

t

h

o

n

g

/

t

r

i

p

h

t

h

o

n

g

T

r

a

n

s

l

i

-

t

e

r

a

t

i

o

n

Examples

"ea"

[à℄
eat

,

�a⇒ "÷àöý"

[ÿ℄ rea⇒ "ðÿ"

[åà℄ o
ean⇒ "î÷åàí"

"
h"

[ê℄ o
hi⇒ "îêü"

"gh"

[ã℄ ghid⇒ "ãèä"

"ge"

[�æå℄ ger⇒ " �æåð"

"
i"

[÷è℄
ir
⇒ "÷èðê"

Namely the transliteration of these
onstru
tions generates the most

ambiguities. More information on this topi

an be found in [12℄. To

make right de
isions, sometimes
ontextual rules
an be supplemented

with morpho-synta
ti
 information (MSD labels). The order of appli-

ation of the rules is very important. Contextual dependen
ies always

have priority over general rules.

146

Ba
ktra
king algorithm for lexi
on generation

9 Cyrillization algorithm

The
yrillization algorithm applies
onse
utively the transliteration

rules, previously de�ned, to all the words in the LexROM. It is impor-

tant to follow the order of appli
ation of the rules. Of
ourse, optional

ombinations will be generated, whi
h
orrespond to the ambiguities.

This means that later it is ne
essary to modify the transliteration rules

or to request the intervention of the linguisti
 expert.

Below we present the formalized algorithm.

CYRILLIZATION algorithm

0. Start

1. The lexi
on of the modern Romanian language LexROM and transliter-

ation rules are given.

* We will build the Romanian Cyrilli
 lexi
on LexCYR for the period

1967-1989 *\

2. Initial LexCYR = ∅, LexROM1 = LexROM.

3. loop for all letters α ∈ AlphaROM do

3.1. loop for all words w ∈ LexROM1(α) do
3.1.1. Transliteration rules for pre�xes are applied.

3.1.2. Transliteration rules for su�xes are applied.

3.1.3. Context-sensitive rules for transliteration are applied.

3.1.4. General rules for transliteration are applied. The obtained result

is denoted by wcyr.

3.1.5. wcyr is in
luded in LexCYR.

3.2. end loop

4. end loop

5. Stop

10 De
yrillization

De
yirillization fa
es the same problems as
yrillization. General and

ontextual rules are also de�ned. The general rules are relatively simple,

for example, a ⇒ a, ð ⇒ r, þ ⇒ iu, ü ⇒ i. If only the general rules are

applied to transliteration, we obtain, for example, ïóþëóé ⇒ puiului,

147

Constantin Ciubotaru

áüåò⇒ biet, áîåð⇒ boer, ïåïò⇒ pept. The last two transliterations are

in
orre
t. Corre
t would be áîåð ⇒ boier, ïåïò ⇒ piept. In this
ase,

as for
yrillization,
ontextual rules are required (for pre�xes/su�xes,

diphthongs/triphthongs). E.g, ã

•β ⇒ gh

•β, if β∈{å,è,ÿ,þ,ü} and ã

•β ⇒

g

•β, if β /∈{å,è,ÿ,þ,ü} (ãåîðãèíý ⇒ ghåîrghin�a, ãîãîàøý ⇒ gîgoas

,

�a).

Rules for the letter ÿ: ÿ⇒ ia (usually at the beginning of the word),

èÿ⇒ ia (usually at the end of the word). If it is di�
ult to make the

right de
ision to transliterate the letter ÿ inside the word, then the

algorithm will use the rule ÿ⇒ [ia℄[ea℄, leaving the right de
ision to the

expert. More information on this topi

an be found in [13℄.

Another di�
ult problem is the transliteration of the letter û, whi
h

an be repla
ed by either �� or �a. The algorithm follows exa
tly the

re
ommendations of the Romanian A
ademy regarding this spelling.

DECYRILLIZATION algorithm

0. Start

1. The Romanian Cyrilli
 lexi
on for the period 1967�1989 LexCYR and

the de
yrillization rules are given.

* We will build the lexi
on of the modern Romanian language (noted by

LexROM2) applying the transliteration method *\

2. Initial LexROM2 = ∅

3. loop for all letters β ∈ AlphaCYR do

3.1. loop for all words w ∈ LexCYR(β) do
3.1.1. Transliteration rules for pre�xes are applied.

3.1.2. Transliteration rules for su�xes are applied.

3.1.3. Context-sensitive rules for transliteration are applied.

3.1.4. Transliteration rules for the letter kyr û are applied.

3.1.5. General rules for transliteration are applied. The obtained result

is denoted by wrom.

3.1.6. wrom is in
luded in LexROM2.

3.2. end loop

4. end loop

5. Stop

148

Ba
ktra
king algorithm for lexi
on generation

11 Lexi
on generation te
hnology

As it was mentioned above, there is a total la
k of ele
troni
 resour
es

for the period 1967-1989, a
omplete exposition of the grammar used

is missing, and many of interpretations of the transliterated words are

ambiguous. Therefore, a major role in the pro
ess of generating the

lexi
on belongs to expert. The proposed te
hnology aims to automate

this pro
ess. Having the
yrillization and de
yrillization algorithms

and the formalized sets of transliteration rules, the lexi
on generation

pro
ess
an be realized as an ba
ktra
king algorithm. The pro
ess runs

in several iterations, at ea
h iteration the expert intervenes to modify

the set of rules and, possibly, dire
tly the built Cyrilli
 lexi
on. This

s
heme is des
ribed in detail in Figure 5.

12 Con
lusion

The paper proposes a ba
ktra
king te
hnology for the generation of

the Romanian Cyrilli
 lexi
on for the period 1967�1989 applying the

transliteration method. Starting from the lexi
on of the modern Ro-

manian language [6℄ the
yrillization and de
yrillization algorithms are

applied
onse
utively.

The intermediate results are made available to the experts, who

an modify\extend the set of rules applied to transliteration, and to

dire
tly
orre
t the built Cyrilli
 lexi
on. The �nal lexi
on is obtained

as a result of performing several su
h iterations. The main problems to

be solved by the experts are the ambiguities that appear as a result of

yrillization\de
yrillization.

For all words in the LexROM(
) (171846 words), 6381 ambiguities

were dete
ted at the �rst iteration, whi
h represents 3.7%. To over
ome

these ambiguities there were required two iterations. Of
ourse, the

degree of a

ura
y depends
onsiderably on the quali�
ation of the

expert. The proposed te
hnology allows the return to the previous

intermediate variants, thus revising the lexi
on.

In order to be
ome aware of the role of the expert and that of
on-

149

Constantin Ciubotaru

LexROM1

Cyrillization

algorithm

Cyrillization

rules

LexCYR

De
yrillization

algorithm

LexROM2

De
yrillization

rules

Modi�ed

yrillization

rules

Modi�ed

de
yrillization

rules

E X P E R T

LexROM1

=

LexROM2

?

LexCYR

No

Yes

Figure 5. The s
heme for generating the Romanian Cyrilli
 lexi
on

textual dependen
ies, a test was performed applying to the LexROM(
)

only the general rules of transliteration (paragraph 8.1). As a result,

42.2% of the
orre
t words are obtained.

Referen
es

[1℄ S. Cojo
aru, E. Boian, C. Ciubotaru, A. Colesni
ov, V. Demidova,

and L. Malahov, �Regeneration of printed
ultural heritage :
hal-

lenges ang te
hnolologies,� in The Third Conferen
e of Matemati
al

150

Ba
ktra
king algorithm for lexi
on generation

So
iety of the republi
 of Moldova, (19-23 August, Chi�sin�au), 2014,

pp. 481�489.

[2℄ C. Ciubotaru, A. Colesni
ov, and L. Malahov, �Vitalization

of Moldavian Printings (1967�1989)�, in Pro
eedings of the 4th

Conferen
e of Mathemati
al So
iety of Moldova, CMSM4'2017�,

(June 28-July 2, 2017, Chisinau, Rep. of Moldova), pp. 491�

494, ISBN 978-9975-71-915-5, Available: http://
msm4.math.md/

Pro
eedings_CMSM4.pdf.

[3℄ C. Ciubotaru, S. Cojo
aru, A. Colesni
ov, V. Demidova, and L.

Malahov, �Regeneration of
ultural heritage: problems related to

moldavian
yrilli
 alphabet�, in Pro
eedings of the 11th Interna-

tional Conferen
e �Linguisti
s Resour
es and Tools for Pro
ess-

ing the Romanian Language (ConsILR-2015)�, (Alexandru Ioan

Cuza University, Ias

,

i, Romania, 26-27 November 2015), pp.177�

184, ISSN: 1843-911X, Available: http://
onsilr.info.uai
.

ro/2015/Consilr_2015.pdf.

[4℄ Dexonline. Online Dex. Romanian language di
tionaries. [Online℄.

Available: https://dexonline.ro/definitie/translitera\

%C8\%9Bie.

[5℄ C. Ciubotaru, V. Demidova, and T. Bumbu, �Generation of the Ro-

manian Cyrilli
 lexi
on for the period 1967 � 1989,� in Pro
eedings

of the Fifth Conferen
e of Mathemati
al So
iety of Moldova IMCS-

55, (September 28 - O
tober 1, Chisinau, Republi
 of Moldova),

2019, pp. 309�316.

[6℄ The UAIC Natural Language Pro
essing Group, Web-

PosRo/resour
es/, Alexandru Ioan Cuza University, Fa
ulty

of Computer S
ien
e. [Online℄. Available: http://nlptools.

info.uai
.ro/WebPosRo/resour
es/posDi
tRoDia
r.txt.

[7℄ Toma�z Erjave
, ed., MULTEXT-East Morphosynta
ti
 Spe
i�
a-

tions, Version 3.0, May 10th, 2004. [Online℄. Available: http:

//nl.ijs.si/ME/Vault/V3/msd/html.

151

Constantin Ciubotaru

[8℄ Reusable Resour
es for Romanian Language Te
hnology, Institute

of Mathemati
s and Computer S
ien
es, Moldova. [Online℄. Avail-

able: http://www.math.md/elrr/res_main.php.

[9℄ Guy L. Steele, Common Lisp the Language, 2nd ed., USA: Think-

ing Ma
hines, In
. Digital Press, 1990, 1029 p. ISBN:1-55558-041-6.

[10℄ CLISP � an ANSI Common Lisp, Slashdot Media. [Online℄. Avail-

able: http://sour
eforge.net/proje
ts/
lisp/files/
lisp/

2.49/.

[11℄ Notepad++. Downloads. [Online℄. Available: https:

//notepad-plus-plus.org/download/v7.7.1.html.

[12℄ V. Demidova, �Parti
ular Aspe
ts of the Cyrillization Problem,�

in The Third Conferen
e of Matemati
al So
iety of the Republi
 of

Moldova, (Chi�sin�au, 19-23 August), 2014, pp. 493�498.

[13℄ V. Demidova, �Pe
uliarities of de
yrillization of the Romanian lan-

guage,� Studia universitatis Moldaviae. Seria �S

,

tiint

,

e exa
te s

,

i e
o-

nomi
e�, no. 2(82), pp. 16�20, 2015. (in Romanian).

Constantin Ciubotaru Re
eived Mar
h 2, 2021

Revised Mar
h 20, 2021

Vladimir Andruna
hievi
i Institute of

Mathemati
s and Computer S
ien
e

Republi
 of Moldova

E�mail:
hebotar�gmail.
om

152

