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A sharp upper bound on the independent
2-rainbow domination in graphs with minimum
degree at least two

Rana Khoeilar, Mahla Keibari, Mustapha Chellali,

Seyed Mahmoud Sheikholeslami*

Abstract

An independent 2-rainbow dominating function (I2-RDF) on
a graph G is a function f from the vertex set V(G) to the set of
all subsets of the set {1,2} such that {z € V' | f(x) # 0} is an
independent set of G and for any vertex v € V(G) with f(v) =0
we have U, e () f(u) = {1,2}. The weight of an I2-RDF f is
the value w(f) = > cy [f(v)], and the independent 2-rainbow
domination number i,2(G) is the minimum weight of an I2-RDF
on (G. In this paper, we prove that if G is a graph of order n > 3
with minimum degree at least two such that the set of vertices of
degree at least 3 is independent, then i,.9(G) < 4?”.

Keywords: independent k-rainbow dominating function, in-
dependent k-rainbow domination number.
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1 Introduction

In this paper, G is a simple graph with vertex set V(G) and edge set
E(G) (briefly V and E). For every vertex v € V', the open neighborhood
N(v) is the set {u € V(G) | wv € E(G)} and the closed neighborhood
of v is the set N[v] = N(v) U {v}. Similarly, the open neighborhood of
a set S CV is the set N(S) = UyesN(v), and the closed neighborhood
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of S is the set N[S] = N(S)U S. The degree of a vertex v € V is
degq(v) = deg(v) = |N(v)| and the minimum degree of a graph G is
denoted by 0 = 0(G).

For a positive integer k, a k-rainbow dominating function (k-RDF)
of a graph G is a function f from V(G) to the set of all subsets of the
set {1,2,...,k} such that for every vertex v € V(G) with f(v) = 0
the condition e, f(u) = {1,2,...,k} is fulfilled. The weight of a
k-RDF f is the value w(f) = > oy [f(v)|. The k-rainbow domination
number of a graph G, denoted by 7,1(G), is the minimum weight of
a k-RDF of G. Note that 7,1(G) is the classical domination number
7(G). The k-rainbow domination number was introduced by Bresar,
Henning, and Rall [4] and has been studied by several authors (see for
example [1],[5],[6],[8],[12], [13],[15], [16]).

If we additionally require that the set of vertices x € V(G) with
f(x) # () induces an independent set of G, then the situation is very
different. Let & > 1 be an integer, and let G be a graph. A k-RDF
f of G is an independent k-rainbow dominating function (Ik-RDF)
if {x € V(G) | f(z) # 0} is an independent set of G. The mini-
mum weight w(f) of an Ik-RDF f of G is called the independent k-
rainbow domination number of G, and is denoted by i,,(G). Clearly,
Yk (G) < i.x(G) holds for every graph G. Moreover, independent
k-rainbow domination can be seen as a generalization of independent
domination, since the number ,1(QG) is precisely the independent dom-
ination number i(G) of G which has been widely studied (see a sur-
vey [10]). The independent rainbow domination number was studied
in, for example, [3],[7],[9],[14]. Recently, Shao et al. [14] have shown
that the independent k-rainbow domination problem is NP-complete.
Therefore, it is natural to look for good bounds on the independent
k-rainbow domination number of graphs, especially for the case k = 2
which is the most studied. Our main contribution in this paper is
the following upper bound on the independent 2-rainbow domination
number for a class of graphs with minimum degree at least two.

Theorem 1. Let G be a connected graph of order n with §(G) > 2
such that the set of vertices with degree at least three is an independent
set. Then 4,2(G) < 2n. This bound is sharp for the cycle Cs.
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We recall that for trees, Amjadi et al. [2] showed that if T" is a tree
of order n > 3, then i,9 < %‘. This result has recently been extended
to connected bipartite graphs by Fujita et al. [9] who also gave other
results on i, (G) when k > 3. Moreover, it has been noticed in [7], that
for any graph G, i,2(G) < 2i(G). Therefore, the %n upper bound on
the independent 2-rainbow domination number holds for any connected
graph G of order n with i(G) < 2n.

2 Proof of Theorem 1

For the proof of Theorem 1, we need three preparatory results.

Proposition 1. For n > 5, the path P, has an I12-RDF f that assigns
0 to the end-vertices of P, and w(f) < 4.

Proof. Let P, = vjvy...v, and define f : V(P,) — P({1,2}) as
follows. If n = 0 (mod 3), then f(v3i42) = {1,2} for 0 <i < § —1,
and f(z) = 0 otherwise; if n = 2 (mod 3), then f(v,—1) = {1,2},
f(vsise) = {1,2} for 0 < i < 223 and f(z) = 0 otherwise, and if
n =1 (mod 3), then f(ve) = {1,2}, f(v4) = {1}, f(v3irs) = {1,2} for
0<i< %, and f(z) = () otherwise. Clearly, w(f) < %” and f is an
I2-RDF of P, assigning () to the end-vertices of P,. O

For integers r > 3 and s > 1, let C,, be the connected graph
obtained from a cycle C, = (ujus ... u,) and a path Ps = v1vs...vs by
adding the edge ujv;.

Proposition 2. For integers » > 3 and s > 1 with r+s > 4, the graph
C s has an I2-RDF f that assigns () to vs and w(f) < 4(7‘5+S)'

Proof. Define f: V(C, ) — P({1,2}) by:

5, 0=
=0 (mod
flusipr) = f(vsjys) = {1,2} for 0 < i < 52,0 < j < 254, and
f(x) = 0 otherwise, when r =0 (mod 3) and s =1 (mod
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flog) = {1,2}, flusiza) = f(vgjpa) = {1,2} for 0 < i < 233,
Ogjg%, and f(z) = () otherwise, when » = 0 (mod 3) and s =
(mod 3),

Flur) = {1}, fluziss) = fvzjea) = {1,2} for 0 <i < T34, 0 < j <
8;33, and f(x) = () otherwise, when r =1 (mod 3) and s =0 (mod 3),

flur) = {1,2}, flusiys) = f(ugjys) = {1,2} for 0 < i < 52,
0 <j <%=, and f(x) = 0 otherwise, when 7 =1 (mod 3) nd s =
(mod 3),

Fluzivs) = flvgjar) = {12} for 0 < i < 754, 0 < j < %32, and
f(x) = 0 otherwise, when r = 1 (mod 3) and s =2 (mod 3),

fluzisn) = flusje2) = {1,2} for 0 <@ < 732, 0 < j < 5%, and
f(x) = 0 otherwise, when r = 2 (mod 3) and s E (mod 3),

Flugisr) = flvgjes) = {1,2} for 0 < i < 52,0 < j < #4 and
f(x) = 0 otherwise, when r = 2 (mod 3) and s E 1 (mod 3),

f(ur) = {1}, f(usi+s) = fluzje1) = {1,2} for 0<i <552, 0<j <

£22 and f(z) = () otherwise, when 7 =2 (mod 3) and s = 2 (mod 3).

In either case, f is an I2-RDF of (). 5 of weight at most @ with
the desired property. ]

Let F be the family of all simple graphs obtained from some con-
nected multigraph H without loops with 6(H) > 3 by subdividing
every edge of H at least once and at most four times. By definition,
the smallest graph of F has order at least 5. Also, we note that if
G € F, then the set {z € V(G) | deg(z) > 3} is an independent set of
G.

Proposition 3. If G € F, then G has an 2-RDF f that assigns a
non-empty set to every vertex of degree at least 3 and w(f) < 4nTG).

Proof. Let G € F be a graph of order n. We proceed by induction
on n. Clearly, the result is immediate for n = 5. Let n > 6 and
assume that the result holds for all graphs in F of order less than n.
Let G € F be a graph of order n. Set A = {x € V(G) | deg(x) > 3}
and B = V(G) — A. Since G € F, A is independent. In the sequel,
we will call an induced path P of G an A-ear path if V(P) C B and
P is connected to A by either its unique vertex (if [V(P)| = 1) or by

376



A sharp upper bound on the independent 2-rainbow domination...

each of its two end-vertices. For each i € {1,2,3,4}, let Q; be the set
of all A-ear paths P of GG of order ¢ and let Q = Uf.‘zl Q;. Clearly, B =
Upeco V(P). Moreover, for each A-ear path P, let Xp = {u € A|u is
adjacent to a vertex of P}. Hence, A = (Jpco Xp and since G € F,
we have | Xp| = 2 for each P € Q. Therefore, |A| > 2.

Assume first that |A] = 2 and let A = {u,v}. Note that n =
|A|+m1+2ma+3mg+4my and my+mo+ms+my > 3, where m; = |Q;]
for i € {1,2,3,4}. Let Q4 = {viviviv] | 1 < i < my} if Qs # 0,
Q3 = {mimym3} | 1 < j < mg} if Q3 # 0, Q2 = {wfwh | 1 <k < mg}
if Q2 # 0 and Q = {z{ | 1 <1 < m}if Q1 # 0. Suppose that
uvi,um{,uw’f,uzi,viv,mgv,w’;v,ziv € E(QG) for each i, j,k,l. Define
g: V(G) = P({1,2}) by g(u) = g(v) = {1,2}, glok) = {1,2} for
1 <i<myand g(mj) = {2} for 1 < j < mg, and g(z) = 0 otherwise.
Obviously, g is an 12-RDF of GG that assigns a non-empty set to every
vertex in A. In addition, we have

4(2 + 4 3 2 4
2(G) < 4+ 2my g < WET AT I A B k) _ S

Next, we assume that |A| > 3. Suppose first, there are two vertices
u,v € A such that deg(u), deg(v) > 4 and there is an A-ear path
P = vy...v; with & > 3 connecting v and v. Let G' = G — V(P).
Since G’ € F, by the induction hypothesis G’ has an I12-RDF f such
that |f(w)],|f(v)] > 1 and w(f) < @. Assume, without loss of
generality, that 1 € f(u). Then f can be extended to an I12-RDF g¢
of G as follows: assign {1,2} to vsj42 for 0 < i < % — 1 and 0 to
other vertices, when k = 0 (mod 3); assign {2} to vg, {1,2} to v3;11
for 1 <i < % and () to other vertices, when k = 2 (mod 3); assign
{1,2} to u, vs; for 1 < i < % and () to other vertices, when k = 1

(mod 3). Clearly, g is an I2-RDF of G of weight at most @ with the
desired property. Hence, we can assume that there is no two vertices of
degree at least four connected by A-ear path P of order at least three.

Consider the following cases.

Case 1. Q4 # 0.
Let P, = zlzlzizl € Q4 and let uxl, zlv; € E(G), where u,v; € A.
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By assumption, u or vy has degree three, say deg(u) = 3. Consider also
the following situations.

(I) u is adjacent to two A-ear paths in Qy.
Let Py, = 23232323 € Q4 — { P} such that uaz?, vaz3 € E(G). Let G’
be the graph obtained from G by removing vertices {z1, x1, x%, x? 22}
and adding edges uz},uzr?. Clearly, G’ € F, and by the induction
hypothesis, there exists an I2-RDF f of G’ of weight at most @
assigning a non-empty set to every vertex of degree at least 3. It follows
that f(23) = 0 and f(23) = 0, and, thus, f(u) = f(v2) = {1,2} (to
2-rainbow dominate x3,2%). Define g : V(G) — P({1,2}) by g(zi) =
9(a2) = {1,2}, g(a}) = g(x}) = g(a?) = g(ad) = 0, and g(a) = f()
otherwise. Clearly, g is an 12-RDF of G that assigns a non-empty set
to all vertices of A and has weight w(g) = w(f) +4 < @ +4="2

According to the previous situation, we may assume that P; is the
unique A-ear path in Q4 adjacent to w.

(IT) u is adjacent to an A-ear path in Qs.
Let Py = 2223 be an A-ear path in Q such that ux?, vox3 € E(G). Let
G’ be the graph obtalned from G by removing vertices z1,x3, x1 and
adding the edge uxl. Clearly, G’ € F, and by the induction hypothesis,
there exists an 12-RDF f of G’ of weight at most (n 3) assigning a
non-empty set to every vertex of degree at least 3. L1kew1se to situation
(I), one can see that f(u) = f(v2) = {1,2}. Now define g : V(G) —
P({1,2}) by glal) = {1,2}, g(a}) = glal) = 0, and g(a) = f()
otherwise. Clearly, g is an I12-RDF of G that assigns a non—empty set
to every vertex of A and has weight w(g) = w(f)+3 < ( D49 < i

(I11) w is adjacent to an A-ear path in Qs.
Let P, = 232323 be an A-ear path in Q3 such that uml, v2x3 € E(G)
Let G’ be the graph obtained from G by removing z},z3, 23, 2% and
adding edges uz}, uz?. Since G’ € F, by the induction hypothesis there
is an I2-RDF f of G’ of weight at most @ that assigns non-empty
sets to every vertex of degree at least 3. As above, f(u) = f(vy) =

{1,2}. Define g : V(G) — P({1,2}) by g(z%) = {1}, g(a3) = {1,2},
g(xl) = g(zd) = g(2?) = 0, and g(z) = f(x) otherwise. Clearly, g is an
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I2-RDF of G of weight w(g) = w(f) +3 < ( D43< 4 having the
desired property.

(IV) u is adjacent to two A-ear paths in Q1.
Let P, = a;% and P3 = x:{’ be A-ear paths in Q; such that
ux?, urd, vor? var$ € E(G), where vg,v3 € A.

® U1 € {Ug,?]g}.

Let G’ be the graph obtained from G by removing z1, 23, JE%, T, u
and adding the edges vz} and viz$. Since G’ € F, by the in-
duction hypothesis there is an I2-RDF f of G’ of weight at most
@ assigning non-empty sets to every vertex of degree at least
3. Since |f(v2)l,|f(v3)] > 1, we must have f(x?) = f(z3) = 0.
Now the function g : V(G) — P({1,2}) defined by g(u) =
g(xz3) = {1,2}, g(z1) = g(z3) = g(ag) = 0, and g(z) = f(x)
otherwise, is an I2-IRDF of G with the desired property and
weight w(g) =w(f)+4 < 4(" B p4< n

o vy € {vg,u3}.

Without loss of generality, assume that vy = vs. Suppose first
that v; # v3 and let G’ be the graph obtained from G by removing
ri, 21, 23, v and adding the edges v3z?, v3zi. Clearly, G’ € F and,
thus, by the induction hypothesis, there is an 12-RDF f of G’ of
weight at most w(f) < @ that assigns a non-empty set to
every vertex of degree at least 3. As above, one can easily see that
f(v1) = f(v3) = {1,2} and, thus, f(zi) = f(z}) = f(z?) = 0.
Now define the function g : V(G) — P({1,2}) by g(z3) = {1,2},
glxl) = g(@3) = 0, g(u) = {1}, and g(x) = f(z) otherwise.
Clearly, g is an I2-RDF of G with the desired property and weight
w(g) =w(f)+3< 4(" D 43<in

Now assume that v = v9 = vs. Slnce |A| > 3 and G is connected,
we have deg(v1) > 4. Let w € A — {u,v1} and let G’ be the
graph obtained from G by removing x1, 2}, u, 23 and adding the
edges wx},}, wz?. Since G’ € F, by the induction hypothesis,

there is an 12-RDF f of G’ of weight at most w(f) < @ such
that f assigns a non-empty set to every vertex of degree at least
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3. As above, we must have f(v;) = {1,2}. Now the function
g : V(G) — P({1,2}) defined by f(z3) = {1,2}, g(u) = {1},
g(xl) = g(a3) = 0, and g(x) = f(x) otherwise, is an 12-RDF of
G such that ¢ assigns a non-empty set to every vertex in A and
wig) =w(f)+3< = 43 <40,

Seeing Case 1, we can assume from now on that Q4 = 0
Case 2. Q3 # 0.
Let P = x%x%xé € Q3 and let um%,x},}vl € F(Q), where u,v; € A. By
assumption, we may assume, without loss generality, that deg(u) = 3.
Consider the following situations.

(V) u is adjacent to three A-ear-paths in Q3.
Let P, = 222322 and P3 = 232323 be two A-ear-paths in Q3 —{P} such
that ux$, uz?, vor3, v323 € E(G). Let G’ be the graph obtained from
G by removing az%, x%, x%, x%, x:{’, m% and by adding edges umé, ux%, umg
Then G’ € F, and by the induction hypothesis, there is an 12-RDF f
of G’ of weight at most ( % that assigns non-empty sets to vertices
of degree at least 3. Wlthout loss of generality, assume that 1 € f(u).
Define g : V(G) — P({1,2}) by g(u) = {1,2}, g(z%) = 0 for i €
{1,238}, gah) = {1} if f(ur) = 11,2}, glah) = {1, 2} F(vs) i | f(03)] =
1fori € {1,2,3}, and g(z) = f(x) otherwise. Clearly, ¢ is an I2-RDF of

G with the desired property and weight w(g) = w(f)+4 < 4(" 6 14 <
in
(VI) u is adjacent to an A-ear path in Qs.

Let Py, = 2223 € Q9 such that uz? vez? € E(G). Let G’ be the
graph obtained from G by removing z},z3 and adding the edge uzi.
Then G’ € F and by the induction hypothesis, there is an I12-RDF f
of G’ of weight at most ( 2 such that f(z) # 0 for every x € A.
Since f(z?) = f(23) = 0, We deduce that f(u) = {1,2}. Define now
the function g : V(G) — P({1,2}) by g(zl) = 0, g(z}) = {1} if
flur) = {1,2} or g(a3) = {1,2} — f(v1) if |f(v1)| = 1, and g(z) = f(2)
otherwise. Clearly, ¢ is an 12-RDF of G of weight w(g) = w(f) +1 <
4( D 41< 28 and such that g(z) # 0 for every x € A.
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(VII) u is adjacent to two A-ear paths in Q3 and to an A-ear path
in Ql-
Let P, = 232323 € Q3 and P3 = 23 € Q; such that uax}, uz?, voa3,
v3r3 € E(G). Let G’ be the graph obtained from G by removing
ri, 23,22 3 and adding edges uxé, um% Clearly, G’ € F and by the
induction hypothesis, there is an 12-RDF f of G’ of weight at most
@ such that f(z) # 0 for every x € A. Define the function g :
V(G) = PU{1,2}) by glw) = {1,2}, glat) = 0 for i € {1,2}, gla}) =
{1} if f(vi) = {1, 2}, g(ah) = {1,2} — f(vy) if [ f(v3)] = 1, and g(x) =
f(x) otherwise. Note that |g(u)| — [f(u)| < 1. Clearly, g is an I2-RDF
of G of weight w(g) = w(f)+3 < @ + 3 < 2 such that g(z) # 0
for every x € A.

(VIII) u is adjacent to an A-ear-path in Q3 and to two A-ear paths
in Ql.
Let P, = 2?2 and P3 = 2 be A-ear paths in Q; such that uz? uz} €
E(G). Suppose v22?, v373 € E(G), where vy, v3 € A.

o vy & {vy,v3}.
Let G’ be the graph obtained from G by removing z1, 23, 25, u
and adding the edges vi2? and wvez$. Clearly, G’ € F and by
the induction hypothesis, there is an 12-RDF f of G’ of weight
at most w(f) < @ such that f(z) # 0 for every x € A — {u}.
Without loss of generality, we assume that 1 € f(v;) and define
the function g on V(G) by g(u) = {1,2}, g(x1) = g(z}) = 0,
g(xd) = {2}, and g(z) = f(z) otherwise. Clearly, g is an 12-RDF
of G of weight w(g) = w(f) +3 < And) 4 3 < 28 In addition,

5
g(x) # 0 for every x € A.

e vy € {vy,v3} and vy = vg = vs.
Since |A| > 3, we have deg(v) > 4. First, let there exist a path
v3zvy in G, where vy € A and z ¢ {z3,22}. Since deg(vy) > 3,
we deduce that A — {u,v3,v4} # 0. Let w € A — {u,v3,v4}.
Assume that deg(vy) > 5, and let G’ be the graph resulting from
the deletion of vertices u,ri, 2%, 23 and the addition of the edge
wzd. Then G’ € F and by the induction hypothesis, there is an
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I2-RDF f of G’ of weight at most M such that f(x) # 0 for
every x € A—{u}. We also have f(’Ug) f(w) ={1,2}. But then
the function g defined on V(G) by f(u) = {1,2}, f(zd) = {1},
f(@?) = f(23) = 0, and g(x) = f(x) otherwise is an [2-RDF of
G of weight w(f)+3 < 4(" 43« 28 and such that g(z) # 0
for every z € A. Now assume that deg(vi) = 4, and let G’ be
the graph obtained from G by removing u,x%,x%,xé,x%,xi’ and
by adding the edge wwv3. Note that v3 has degree two in G’ and,
thus, belongs to an A’-ear path joining v4 and w. Since G’ € F,
by the induction hypothesis, there is an I2-RDF f of G’ of weight
at most @ such that f(x) # 0 for every x € A — {u,vs}.
Clearly, f(vq) = f(w) = {1,2} and f(z) = f(v3) = 0. Now f
can be extended to an 2-IRDF of G with the desired property by
assigning {1} to u, {2} to vs, {1,2} to 23 and 0 to z}, i, 22, 23
and, thus, w(g) =w(f) +4 < 4?”

Now let there exist a path vzzyvs in G, where v4 € A and
z ¢ {x3}. As above, we have A — {u,v3,v4} # (), and so pick
a vertex w € A — {u,vs,vs}. If deg(v1) > 5, then the result fol-
lows, as above, by considering the same graph G’ obtained from
the removal of vertices u,z1, 22,23 and the addition of the edge
wz}. Hence, we assume that deg(v;) = 4. Then delete vertices
u,x%,x%,x%,vg,x%,xi’ and add the edge zw, and let G’ be the re-
sulting graph. Clearly, G’ € F and by the induction hypothesis,
there is an I12-RDF f of G’ of weight at most 4D such that
f(z) # 0 for every x € A — {u,v3}. Since f(v4) = f(w) = {1,2}
and f(z) = f(y) = 0, function f can be extended to an 12-RDF of
G by assigning {1,2} to u,vs3, {1} to 3 and () to other vertices. It
follows that w(g) = w(f) +5 < % and g(z) # 0 for every z € A.

v1 € {ve,v3} and [{v1, va,v3}| = 2.

Suppose, without loss of generality, that v; = vy and v; # wvs.
Let G’ be the graph obtained from G by removing =, z1, u and
by adding the edges v3x?, v3zd. Then G’ € F and by the induc-
tion hypothesis, there is an I2-RDF f of G’ of weight at most
@ such that g(z) # () for every z € A — {u}. As above, we
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must have f(v1) = f(v3) = {1,2} and so f(z}) = f(23) = 0. In
this case, the function g defined by g(u) = {1}, = g(z) = {2},
g(xl) = g(z3) = 0, and g(z) = f(x) otherwise, is an 12-RDF of G
of weight w(g) = w(f)+2 < ( D49 < 4% Moreover, g(z) # 0
for every x € A — {u}.

Considering Case 2, we may assume that Q3 = ()
Case 3. Q2 75 0.
Let P| = iz} € Qo with uzi, xlv; € E(G). Without loss of generality,
we assume that deg(u) < deg(vy). Consider the following situations.

(IX) deg(u) > 4 and w is adjacent to at least two A-ear paths in
Q2.
By assumption we have deg(v1) > 4. Let P, = :E%l‘% be a second A-
ear path in Qg such that uz? € E(G) and let vez3 € E(G) for some
vy € A. Remove vertices x1,z} and let G’ be the resulting graph.
Then G’ € F and by the induction hypothe51s there is an 12-RD-
function f of G’ of weight at most 4n=2) = 2) such that f(x) # 0 for every
x € A. Clearly, f(u) = {1,2} and |f(v1)| > 1. Define the function g by
g(xl) = g(zd) =0, g(v1) = {1,2}, and g(z) = f(z) otherwise. Then
g is an 2-IRDF of G of weight w(f) +1 < 4(" D41 < 45" having the
property that g(x) # () for every x € A.

(X) deg(u) = 3 and u is adjacent to at least two A-ear paths in Qs.
Let P, = 2273 € Q2 be an A-ear path in G such that uz? € E(G) and
973 € E(G), where vy € A.

® U1 = V9.
Let G’ be the graph obtained from G' by removing z} and adding
the edge uxd. Then G’ € F and by the induction hypothesis,
there is an I2-RD-function f of G’ of weight M with the
desired property, in particular f(u) = f(v1) = {1 2}. In this
case, f can be extended to an 12-IRDF of G by assigning () to 1
such that f satisfies the conditions.
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e U # Vg

Since deg(u) = 3, let uPvs be a path in G such that P € (Q1 U
Q2) — {P1, P»}. Let z € V(P) be the vertex adjacent to u. We
may assume that v; & {vg,v3}. Let G’ be the resulting graph
after removing vertices z1, x1, u and adding edges v123 and v; 2.
Then G’ € F and by the induction hypothesis, there exists an
I2-RDF f of G’ satisfying our conditions. Since f(vi) = {1,2},
we can define the function g on V(G) by g(u) = {1,2}, g(x1) =
g(x?) = 0, and g(z) = f(x) otherwise. Then g is an 12-RDF of
G of weight w(f) +2 < @ +2 < 22 such that g(z) # () for
every r € A.

(XT) The other neighbors of u belong to ear-paths in Q1.
Considering the above cases and subcases, we may assume that Q =
Q1 U @2 and that each vertex in A is adjacent to at most one A-ear
path in Q5. In that case, since G € F, it is obtained from connected
multigraph H without loops with §(H) > 3 by subdividing any edge at
most twice so that the set of edges of H subdivided twice is independent
(in H). Hence, let ujvy,...,u,vr be the edges of H subdivided twice
and let A” be the set of all vertices in H for which all edges that are
incident are subdivided once. Therefore, we have |V (H)| = 2k + |A”|
and |F(H)| = %ZUEV(H) deg(v) > 3|V (H)| = 3k + 3|A”| (because
0(H) > 3, k edges of H are subdivided twice and the remaining edges
are subdivided once). Hence, the order of G is

5)
n=|V(H)| +|EH)|+ k> 6k + §|A”|.
It is easy to see that the function g defined on V(G) by g(x) = {1,2}

for x € V(H), and g(x) = () otherwise, is an 12-RDF of G that assigns

non-empty sets to vertices of A and w(g) = 2|V(H)| = 4k + 2|A”| <

é 1
w < 42 This completes the proof. =

Now, we can proceed to the proof of Theorem 1.
Proof of Theorem 1. We use an induction on the order n. If n < 5,
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then, clearly, G is connected having at most two vertices of degree at
least three. More precisely, G € {C3,Cy,C5} or G is either obtained
from two cycles C5 sharing the same vertex or G is the complete bipar-
tite graph K 3. In this case, it can be easily checked that i,2(C),) < %n,
establishing the base case. Let n > 6, and assume that the result holds
for all graphs G’ of order less than n with minimum degree at least two
such that the set of vertices with degree at least three is independent.
Let G be a graph of order n such that 6(G) > 2 and the set of vertices
with degree at least three is independent. We can assume that G is
connected for otherwise the result follows by applying the induction
hypothesis on each component of G.

If A(G) = 2, then G = C,,. Since for the cycle C,, i(C},) = [n/3],
we obtain that i,2(C,) < 2[n/3] and, clearly, 2[n/3] < 2n for all
n > 8. Since i,2(C7) =5 < %n, we deduce that i,9(C)) < %n. Hence,
assume that A(G) > 3, and let A = {v € V(GQ) | deg(v) > 3} and
B =V (G)— A. Consider the A-ear paths and keep the same notations
as defined in the proof of Proposition 3. Note that A = |J Peo XP;
V(G) = AUUpco V(P) and 1 < |Xp| < 2 for each P € Q. Assume
first that there exists an A-ear path P such that 6(G—V(P)) = 1. Since
G is simple, this means that |V (P)| > 2 and some vertex of G of degree
three is adjacent to the end-vertices of P. Thus, |Xp| = 1. In that
case, let Xp = {a} and Ng(a) —V(P) = {b}. Clearly, b € B (since A is
independent) and, thus, there is a unique A-ear path P’ in which b is an
end-vertex of P’. Let ¢ be the other end-vertex of P’ (possibly b = c¢).
Let G’ be the graph resulting from the deletion of vertex a and all
vertices of P and P’. Then §(G’) > 2 and by the induction hypothesis,
iro(G') < %Gl)‘. On the other hand, since G = G[V (P)UV (P")U{a}]
is isomorphic to Cjy (py|+1,jv(pry|; by Proposition 2, G” has an 12-RDF g¢
such that w(g) < &SGH) and g(c) = 0. Now, for any 4,2(G")—function,
the function h defined on V(G) by h(z) = f(x) for all z € V(G') and
h(z) = g(z) for all z € V(G") is an 12-RDF of G. Therefore,
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ir2(GQ) < ipo(G') + iro(G")
4V(&")| n AV(P)UV(P)Ufa}| _ 4n
5 5 5

In the next, we can assume that §(G — V(P)) > 2 for each A-
ear path P € Q. It follows that |Xp| = 2 for each A-ear path P € Q.
Assume that Q—(Q1UQ2UQ3UQ4) # ), and let P € Q—(Q1UQ2UQ3U
Q4). By Proposition 1, P has an I12-RDF g such that w(g) < M
and ¢ assigns () to the end-vertices of the path P. Now, let G’ be
the graph obtained from G’ by removing all vertices of P. By the
induction hypothesis, we have i,9(G’) < %G/)'. Clearly, for every
ir2(G')-function f, the function h defined on V(G) by h(z) = f(z)
for all z € V(G') and h(x) = g(z) for all z € V(P), is an 12-RDF
of G and, thus, i,2(G) < i2(G') + i;2(P) < 2n. Assume now that
Q=0Q1UQRaUQ3UQ4. Then G € F and the result follows from

Proposition 3. ]
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