A sharp upper bound on the independent 2-rainbow domination in graphs with minimum degree at least two

Rana Khoeilar, Mahla Keibari, Mustapha Chellali, Seyed Mahmoud Sheikholeslami*

Abstract

An independent 2-rainbow dominating function (I2-RDF) on a graph G is a function f from the vertex set V(G) to the set of all subsets of the set $\{1,2\}$ such that $\{x \in V \mid f(x) \neq \emptyset\}$ is an independent set of G and for any vertex $v \in V(G)$ with $f(v) = \emptyset$ we have $\bigcup_{u \in N(v)} f(u) = \{1,2\}$. The weight of an I2-RDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$, and the independent 2-rainbow domination number $i_{r2}(G)$ is the minimum weight of an I2-RDF on G. In this paper, we prove that if G is a graph of order $n \geq 3$ with minimum degree at least two such that the set of vertices of degree at least G is independent, then G is a graph of order G is degree at least G is independent, then G is a graph of vertices of degree at least G is independent, then G is a graph of vertices of degree at least G is independent, then G is a graph of vertices of degree at least G is independent, then G is a graph of vertices of degree at least G is independent, then G is a graph of vertices of degree at least G is independent, then G is a graph of vertices of degree at least G is independent, then G is a graph of vertices of degree at least G is independent.

Keywords: independent k-rainbow dominating function, independent k-rainbow domination number.

MSC 2010: 05C69.

1 Introduction

In this paper, G is a simple graph with vertex set V(G) and edge set E(G) (briefly V and E). For every vertex $v \in V$, the open neighborhood N(v) is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. Similarly, the open neighborhood of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood

^{*} Seyed Mahmoud Sheikholeslami: s.m.sheikholeslami@azaruniv.ac.ir@2020 by CSJM; R. Khoeilar, M. Kheibari, M. Chellali, S.M. Sheikholeslami

of S is the set $N[S] = N(S) \cup S$. The degree of a vertex $v \in V$ is $\deg_G(v) = \deg(v) = |N(v)|$ and the minimum degree of a graph G is denoted by $\delta = \delta(G)$.

For a positive integer k, a k-rainbow dominating function (k-RDF) of a graph G is a function f from V(G) to the set of all subsets of the set $\{1,2,\ldots,k\}$ such that for every vertex $v \in V(G)$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N(v)} f(u) = \{1,2,\ldots,k\}$ is fulfilled. The weight of a k-RDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The k-rainbow domination number of a graph G, denoted by $\gamma_{rk}(G)$, is the minimum weight of a k-RDF of G. Note that $\gamma_{r1}(G)$ is the classical domination number $\gamma(G)$. The k-rainbow domination number was introduced by Brešar, Henning, and Rall [4] and has been studied by several authors (see for example [1], [5], [6], [8], [12], [13], [15], [16]).

If we additionally require that the set of vertices $x \in V(G)$ with $f(x) \neq \emptyset$ induces an independent set of G, then the situation is very different. Let $k \geq 1$ be an integer, and let G be a graph. A k-RDF f of G is an independent k-rainbow dominating function (Ik-RDF) if $\{x \in V(G) \mid f(x) \neq \emptyset\}$ is an independent set of G. The minimum weight w(f) of an Ik-RDF f of G is called the independent krainbow domination number of G, and is denoted by $i_{rk}(G)$. Clearly, $\gamma_{rk}(G) \leq i_{rk}(G)$ holds for every graph G. Moreover, independent k-rainbow domination can be seen as a generalization of independent domination, since the number $i_{r1}(G)$ is precisely the independent domination number i(G) of G which has been widely studied (see a survey [10]). The independent rainbow domination number was studied in, for example, [3], [7], [9], [14]. Recently, Shao et al. [14] have shown that the independent k-rainbow domination problem is NP-complete. Therefore, it is natural to look for good bounds on the independent k-rainbow domination number of graphs, especially for the case k=2which is the most studied. Our main contribution in this paper is the following upper bound on the independent 2-rainbow domination number for a class of graphs with minimum degree at least two.

Theorem 1. Let G be a connected graph of order n with $\delta(G) \geq 2$ such that the set of vertices with degree at least three is an independent set. Then $i_{r2}(G) \leq \frac{4}{5}n$. This bound is sharp for the cycle C_5 .

We recall that for trees, Amjadi et al. [2] showed that if T is a tree of order $n \geq 3$, then $i_{r2} \leq \frac{3n}{4}$. This result has recently been extended to connected bipartite graphs by Fujita et al. [9] who also gave other results on $i_{rk}(G)$ when $k \geq 3$. Moreover, it has been noticed in [7], that for any graph G, $i_{r2}(G) \leq 2i(G)$. Therefore, the $\frac{4}{5}n$ upper bound on the independent 2-rainbow domination number holds for any connected graph G of order n with $i(G) \leq \frac{2}{5}n$.

2 Proof of Theorem 1

For the proof of Theorem 1, we need three preparatory results.

Proposition 1. For $n \geq 5$, the path P_n has an I2-RDF f that assigns \emptyset to the end-vertices of P_n and $\omega(f) \leq \frac{4n}{5}$.

Proof. Let $P_n = v_1 v_2 \dots v_n$ and define $f: V(P_n) \to \mathcal{P}(\{1,2\})$ as follows. If $n \equiv 0 \pmod{3}$, then $f(v_{3i+2}) = \{1,2\}$ for $0 \le i \le \frac{n}{3} - 1$, and $f(x) = \emptyset$ otherwise; if $n \equiv 2 \pmod{3}$, then $f(v_{n-1}) = \{1,2\}$, $f(v_{3i+2}) = \{1,2\}$ for $0 \le i \le \frac{n-5}{3}$, and $f(x) = \emptyset$ otherwise, and if $n \equiv 1 \pmod{3}$, then $f(v_2) = \{1,2\}$, $f(v_4) = \{1\}$, $f(v_{3i+6}) = \{1,2\}$ for $0 \le i \le \frac{n-4}{3}$, and $f(x) = \emptyset$ otherwise. Clearly, $\omega(f) \le \frac{4n}{5}$ and f is an I2-RDF of P_n assigning \emptyset to the end-vertices of P_n .

For integers $r \geq 3$ and $s \geq 1$, let $C_{r,s}$ be the connected graph obtained from a cycle $C_r = (u_1 u_2 \dots u_r)$ and a path $P_s = v_1 v_2 \dots v_s$ by adding the edge $u_1 v_1$.

Proposition 2. For integers $r \geq 3$ and $s \geq 1$ with $r+s \geq 4$, the graph $C_{r,s}$ has an I2-RDF f that assigns \emptyset to v_s and $\omega(f) \leq \frac{4(r+s)}{5}$.

Proof. Define $f: V(C_{r,s}) \to \mathcal{P}(\{1,2\})$ by: $f(u_{3i+1}) = f(v_{3j+2}) = \{1,2\}$ for $0 \le i \le \frac{r-3}{3}$, $0 \le j \le \frac{s-3}{3}$, and $f(x) = \emptyset$ otherwise, when $r \equiv 0 \pmod{3}$ and $s \equiv 0 \pmod{3}$, $f(u_{3i+1}) = f(v_{3j+3}) = \{1,2\}$ for $0 \le i \le \frac{r-3}{3}$, $0 \le j \le \frac{s-4}{3}$, and $f(x) = \emptyset$ otherwise, when $r \equiv 0 \pmod{3}$ and $s \equiv 1 \pmod{3}$,

 $f(v_s) = \{1, 2\}, \ f(u_{3i+2}) = f(v_{3j+2}) = \{1, 2\} \text{ for } 0 \le i \le \frac{r-3}{3}, \ 0 \le j \le \frac{s-5}{3}, \text{ and } f(x) = \emptyset \text{ otherwise, when } r \equiv 0 \pmod{3} \text{ and } s \equiv 2$

 $f(u_1) = \{1\}, \ f(u_{3i+3}) = f(v_{3j+2}) = \{1,2\} \text{ for } 0 \le i \le \frac{r-4}{3}, \ 0 \le j \le \frac{s-3}{3}, \ \text{and} \ f(x) = \emptyset \text{ otherwise, when } r \equiv 1 \pmod{3} \text{ and } s \equiv 0 \pmod{3},$ $f(u_1) = \{1, 2\}, \ f(u_{3i+3}) = f(v_{3j+3}) = \{1, 2\} \text{ for } 0 \le i \le \frac{r-4}{3}, 0 \le j \le \frac{s-4}{3}, \text{ and } f(x) = \emptyset \text{ otherwise, when } r \equiv 1 \pmod{3} \text{ and } s \equiv 1$ $\pmod{3}$,

 $f(u_{3i+3}) = f(v_{3j+1}) = \{1, 2\}$ for $0 \le i \le \frac{r-4}{3}$, $0 \le j \le \frac{s-2}{3}$, and $f(x) = \emptyset$ otherwise, when $r \equiv 1 \pmod{3}$ and $s \equiv 2 \pmod{3}$,

 $f(u_{3i+1}) = f(v_{3j+2}) = \{1, 2\}$ for $0 \le i \le \frac{r-2}{3}$, $0 \le j \le \frac{s-3}{3}$, and

 $f(u_{3i+1}) - f(v_{3j+2}) - \{1, 2\}$ for $0 \le i \le 3$, $0 \le j \le 3$, and $f(x) = \emptyset$ otherwise, when $r \equiv 2 \pmod{3}$ and $s \equiv 0 \pmod{3}$, $f(u_{3i+1}) = f(v_{3j+3}) = \{1, 2\}$ for $0 \le i \le \frac{r-2}{3}$, $0 \le j \le \frac{s-4}{3}$, and $f(x) = \emptyset$ otherwise, when $r \equiv 2 \pmod{3}$ and $s \equiv 1 \pmod{3}$, $f(u_r) = \{1\}$, $f(u_{3i+3}) = f(v_{3j+1}) = \{1, 2\}$ for $0 \le i \le \frac{r-5}{3}$, $0 \le j \le \frac{s-2}{3}$, and $f(x) = \emptyset$ otherwise, when $r \equiv 2 \pmod{3}$ and $s \equiv 2 \pmod{3}$.

In either case, f is an I2-RDF of $C_{r,s}$ of weight at most $\frac{4(r+s)}{5}$ with the desired property.

Let \mathcal{F} be the family of all simple graphs obtained from some connected multigraph H without loops with $\delta(H) \geq 3$ by subdividing every edge of H at least once and at most four times. By definition, the smallest graph of \mathcal{F} has order at least 5. Also, we note that if $G \in \mathcal{F}$, then the set $\{x \in V(G) \mid \deg(x) \geq 3\}$ is an independent set of G.

Proposition 3. If $G \in \mathcal{F}$, then G has an D-RDF f that assigns a non-empty set to every vertex of degree at least 3 and $\omega(f) \leq \frac{4n(G)}{5}$.

Proof. Let $G \in \mathcal{F}$ be a graph of order n. We proceed by induction on n. Clearly, the result is immediate for n = 5. Let n > 6 and assume that the result holds for all graphs in \mathcal{F} of order less than n. Let $G \in \mathcal{F}$ be a graph of order n. Set $A = \{x \in V(G) \mid \deg(x) \geq 3\}$ and B = V(G) - A. Since $G \in \mathcal{F}$, A is independent. In the sequel, we will call an induced path P of G an A-ear path if $V(P) \subset B$ and P is connected to A by either its unique vertex (if |V(P)| = 1) or by

each of its two end-vertices. For each $i \in \{1, 2, 3, 4\}$, let Q_i be the set of all A-ear paths P of G of order i and let $\mathcal{Q} = \bigcup_{i=1}^4 Q_i$. Clearly, $B = \bigcup_{P \in \mathcal{Q}} V(P)$. Moreover, for each A-ear path P, let $X_P = \{u \in A \mid u \text{ is adjacent to a vertex of } P\}$. Hence, $A = \bigcup_{P \in \mathcal{Q}} X_P$ and since $G \in \mathcal{F}$, we have $|X_P| = 2$ for each $P \in \mathcal{Q}$. Therefore, $|A| \geq 2$.

Assume first that |A| = 2 and let $A = \{u, v\}$. Note that $n = |A| + m_1 + 2m_2 + 3m_3 + 4m_4$ and $m_1 + m_2 + m_3 + m_4 \ge 3$, where $m_i = |Q_i|$ for $i \in \{1, 2, 3, 4\}$. Let $Q_4 = \{v_1^i v_2^i v_3^i v_4^i \mid 1 \le i \le m_4\}$ if $Q_4 \ne \emptyset$, $Q_3 = \{m_1^j m_2^j m_3^j \mid 1 \le j \le m_3\}$ if $Q_3 \ne \emptyset$, $Q_2 = \{w_1^k w_2^k \mid 1 \le k \le m_2\}$ if $Q_2 \ne \emptyset$ and $Q_1 = \{z_1^l \mid 1 \le l \le m_1\}$ if $Q_1 \ne \emptyset$. Suppose that $uv_1^i, um_1^j, uw_1^k, uz_1^l, v_4^i v, m_3^j v, w_2^k v, z_1^l v \in E(G)$ for each i, j, k, l. Define $g: V(G) \to \mathcal{P}(\{1, 2\})$ by $g(u) = g(v) = \{1, 2\}, \ g(v_2^i) = \{1, 2\}$ for $1 \le i \le m_4$ and $g(m_2^j) = \{2\}$ for $1 \le j \le m_3$, and $g(x) = \emptyset$ otherwise. Obviously, g is an I2-RDF of G that assigns a non-empty set to every vertex in A. In addition, we have

$$i_{r2}(G) \le 4 + 2m_4 + m_3 \le \frac{4(2 + 4m_4 + 3m_3 + 2m_2 + m_1)}{5} = \frac{4n}{5}.$$

Next, we assume that $|A| \geq 3$. Suppose first, there are two vertices $u, v \in A$ such that $\deg(u)$, $\deg(v) \geq 4$ and there is an A-ear path $P = v_1 \dots v_k$ with $k \geq 3$ connecting u and v. Let G' = G - V(P). Since $G' \in \mathcal{F}$, by the induction hypothesis G' has an I2-RDF f such that $|f(u)|, |f(v)| \geq 1$ and $\omega(f) \leq \frac{4(n-k)}{5}$. Assume, without loss of generality, that $1 \in f(u)$. Then f can be extended to an I2-RDF g of G as follows: assign $\{1,2\}$ to v_{3i+2} for $0 \leq i \leq \frac{k}{3} - 1$ and \emptyset to other vertices, when $k \equiv 0 \pmod{3}$; assign $\{2\}$ to v_2 , $\{1,2\}$ to v_{3i+1} for $1 \leq i \leq \frac{k-2}{3}$ and \emptyset to other vertices, when $k \equiv 2 \pmod{3}$; assign $\{1,2\}$ to u, v_{3i} for $1 \leq i \leq \frac{k-1}{3}$ and \emptyset to other vertices, when $k \equiv 1 \pmod{3}$. Clearly, g is an I2-RDF of G of weight at most $\frac{4n(G)}{5}$ with the desired property. Hence, we can assume that there is no two vertices of degree at least four connected by A-ear path P of order at least three. Consider the following cases.

Case 1.
$$Q_4 \neq \emptyset$$
.
Let $P_1 = x_1^1 x_2^1 x_3^1 x_4^1 \in Q_4$ and let $ux_1^1, x_4^1 v_1 \in E(G)$, where $u, v_1 \in A$.

By assumption, u or v_1 has degree three, say deg(u) = 3. Consider also the following situations.

(I) u is adjacent to two A-ear paths in Q_4 . Let $P_2 = x_1^2 x_2^2 x_3^2 x_4^2 \in Q_4 - \{P_1\}$ such that ux_1^2 , $v_2 x_4^2 \in E(G)$. Let G' be the graph obtained from G by removing vertices $\{x_1^1, x_2^1, x_3^1, x_1^2, x_2^2\}$ and adding edges ux_4^1, ux_3^2 . Clearly, $G' \in \mathcal{F}$, and by the induction hypothesis, there exists an I2-RDF f of G' of weight at most $\frac{4(n-5)}{5}$ assigning a non-empty set to every vertex of degree at least 3. It follows that $f(x_3^2) = \emptyset$ and $f(x_4^2) = \emptyset$, and, thus, $f(u) = f(v_2) = \{1, 2\}$ (to 2-rainbow dominate x_3^2, x_4^2). Define $g: V(G) \to \mathcal{P}(\{1, 2\})$ by $g(x_3^1) = g(x_3^2) = \{1, 2\}, \ g(x_1^1) = g(x_2^1) = g(x_1^2) = g(x_2^2) = \emptyset$, and g(x) = f(x) otherwise. Clearly, g is an I2-RDF of G that assigns a non-empty set to all vertices of A and has weight $\omega(g) = \omega(f) + 4 \leq \frac{4(n-5)}{5} + 4 = \frac{4n}{5}$.

According to the previous situation, we may assume that P_1 is the unique A-ear path in Q_4 adjacent to u.

(II) u is adjacent to an A-ear path in Q_2 . Let $P_2 = x_1^2 x_2^2$ be an A-ear path in Q_2 such that $ux_1^2, v_2x_2^2 \in E(G)$. Let G' be the graph obtained from G by removing vertices x_1^1, x_2^1, x_3^1 and adding the edge ux_4^1 . Clearly, $G' \in \mathcal{F}$, and by the induction hypothesis, there exists an I2-RDF f of G' of weight at most $\frac{4(n-3)}{5}$ assigning a non-empty set to every vertex of degree at least 3. Likewise to situation (I), one can see that $f(u) = f(v_2) = \{1, 2\}$. Now define $g: V(G) \to \mathcal{P}(\{1, 2\})$ by $g(x_3^1) = \{1, 2\}, \ g(x_1^1) = g(x_2^1) = \emptyset$, and g(x) = f(x) otherwise. Clearly, g is an I2-RDF of G that assigns a non-empty set to every vertex of A and has weight $\omega(g) = \omega(f) + 3 \leq \frac{4(n-3)}{5} + 2 < \frac{4n}{5}$.

(III) u is adjacent to an A-ear path in Q_3 . Let $P_2 = x_1^2 x_2^2 x_3^2$ be an A-ear path in Q_3 such that ux_1^2 , $v_2x_3^2 \in E(G)$. Let G' be the graph obtained from G by removing $x_1^1, x_2^1, x_3^1, x_1^2$ and adding edges ux_4^1, ux_2^2 . Since $G' \in \mathcal{F}$, by the induction hypothesis there is an I2-RDF f of G' of weight at most $\frac{4(n-4)}{5}$ that assigns non-empty sets to every vertex of degree at least 3. As above, $f(u) = f(v_2) = \{1, 2\}$. Define $g: V(G) \to \mathcal{P}(\{1, 2\})$ by $g(x_1^2) = \{1\}$, $g(x_3^1) = \{1, 2\}$, $g(x_1^1) = g(x_2^1) = g(x_1^2) = \emptyset$, and g(x) = f(x) otherwise. Clearly, g is an I2-RDF of G of weight $\omega(g) = \omega(f) + 3 \le \frac{4(n-4)}{5} + 3 < \frac{4n}{5}$ having the desired property.

(IV) u is adjacent to two A-ear paths in Q_1 . Let $P_2 = x_1^2$ and $P_3 = x_1^3$ be A-ear paths in Q_1 such that $ux_1^2, ux_1^3, v_2x_1^2, v_3x_1^3 \in E(G)$, where $v_2, v_3 \in A$.

- $v_1 \notin \{v_2, v_3\}$. Let G' be the graph obtained from G by removing $x_1^1, x_2^1, x_3^1, x_4^1, u$ and adding the edges $v_1x_1^2$ and $v_1x_1^3$. Since $G' \in \mathcal{F}$, by the induction hypothesis there is an I2-RDF f of G' of weight at most $\frac{4(n-5)}{5}$ assigning non-empty sets to every vertex of degree at least 3. Since $|f(v_2)|, |f(v_3)| \geq 1$, we must have $f(x_1^2) = f(x_1^3) = \emptyset$. Now the function $g: V(G) \to \mathcal{P}(\{1,2\})$ defined by $g(u) = g(x_3^1) = \{1,2\}, \ g(x_1^1) = g(x_2^1) = g(x_4^1) = \emptyset$, and g(x) = f(x) otherwise, is an I2-IRDF of G with the desired property and weight $\omega(g) = \omega(f) + 4 \leq \frac{4(n-5)}{5} + 4 \leq \frac{4n}{5}$.
- $v_1 \in \{v_2, v_3\}$. Without loss of generality, assume that $v_1 = v_2$. Suppose first that $v_1 \neq v_3$ and let G' be the graph obtained from G by removing x_1^1, x_2^1, x_1^3, u and adding the edges $v_3 x_1^2, v_3 x_3^1$. Clearly, $G' \in \mathcal{F}$ and, thus, by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\omega(f) \leq \frac{4(n-4)}{5}$ that assigns a non-empty set to every vertex of degree at least 3. As above, one can easily see that $f(v_1) = f(v_3) = \{1, 2\}$ and, thus, $f(x_3^1) = f(x_4^1) = f(x_1^2) = \emptyset$. Now define the function $g: V(G) \to \mathcal{P}(\{1, 2\})$ by $g(x_2^1) = \{1, 2\}, g(x_1^1) = g(x_1^3) = \emptyset, g(u) = \{1\}, \text{ and } g(x) = f(x) \text{ otherwise.}$ Clearly, g is an I2-RDF of G with the desired property and weight $\omega(g) = \omega(f) + 3 \leq \frac{4(n-4)}{5} + 3 < \frac{4n}{5}$.

Now assume that $v_1 = v_2 = v_3$. Since $|A| \ge 3$ and G is connected, we have $\deg(v_1) \ge 4$. Let $w \in A - \{u, v_1\}$ and let G' be the graph obtained from G by removing x_1^1, x_2^1, u, x_1^3 and adding the edges wx_3^1 , wx_1^2 . Since $G' \in \mathcal{F}$, by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\omega(f) \le \frac{4(n-4)}{5}$ such that f assigns a non-empty set to every vertex of degree at least

3. As above, we must have $f(v_1) = \{1,2\}$. Now the function $g: V(G) \to \mathcal{P}(\{1,2\})$ defined by $f(x_2^1) = \{1,2\}$, $g(u) = \{1\}$, $g(x_1^1) = g(x_1^3) = \emptyset$, and g(x) = f(x) otherwise, is an I2-RDF of G such that g assigns a non-empty set to every vertex in A and $\omega(g) = \omega(f) + 3 \leq \frac{4(n-4)}{5} + 3 < \frac{4n}{5}$.

Seeing Case 1, we can assume from now on that $Q_4 = \emptyset$. Case 2. $Q_3 \neq \emptyset$.

Let $P = x_1^1 x_2^1 x_3^1 \in Q_3$ and let $ux_1^1, x_3^1 v_1 \in E(G)$, where $u, v_1 \in A$. By assumption, we may assume, without loss generality, that $\deg(u) = 3$. Consider the following situations.

(V) u is adjacent to three A-ear-paths in Q_3 . Let $P_2 = x_1^2 x_2^2 x_3^2$ and $P_3 = x_1^3 x_2^3 x_3^3$ be two A-ear-paths in $Q_3 - \{P\}$ such that $ux_1^3, ux_1^2, v_2x_3^2, v_3x_3^3 \in E(G)$. Let G' be the graph obtained from G by removing $x_1^1, x_2^1, x_1^2, x_2^2, x_1^3, x_2^3$ and by adding edges ux_3^1, ux_3^2, ux_3^3 . Then $G' \in \mathcal{F}$, and by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\frac{4(n-6)}{5}$ that assigns non-empty sets to vertices of degree at least 3. Without loss of generality, assume that $1 \in f(u)$. Define $g: V(G) \to \mathcal{P}(\{1,2\})$ by $g(u) = \{1,2\}, g(x_1^i) = \emptyset$ for $i \in \{1,2,3\}, g(x_2^i) = \{1\}$ if $f(v_i) = \{1,2\}, g(x_2^i) = \{1,2\} - f(v_i)$ if $|f(v_i)| = 1$ for $i \in \{1,2,3\}$, and g(x) = f(x) otherwise. Clearly, g is an I2-RDF of G with the desired property and weight $\omega(g) = \omega(f) + 4 \leq \frac{4(n-6)}{5} + 4 < \frac{4n}{5}$.

(VI) u is adjacent to an A-ear path in Q_2 . Let $P_2 = x_1^2 x_2^2 \in Q_2$ such that $ux_1^2, v_2 x_1^2 \in E(G)$. Let G' be the graph obtained from G by removing x_1^1, x_2^1 and adding the edge ux_3^1 . Then $G' \in \mathcal{F}$ and by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\frac{4(n-2)}{5}$ such that $f(x) \neq \emptyset$ for every $x \in A$. Since $f(x_1^2) = f(x_2^2) = \emptyset$, we deduce that $f(u) = \{1, 2\}$. Define now the function $g: V(G) \to \mathcal{P}(\{1, 2\})$ by $g(x_1^1) = \emptyset$, $g(x_2^1) = \{1\}$ if $f(v_1) = \{1, 2\}$ or $g(x_2^1) = \{1, 2\} - f(v_1)$ if $|f(v_1)| = 1$, and g(x) = f(x) otherwise. Clearly, g is an I2-RDF of G of weight $\omega(g) = \omega(f) + 1 \leq \frac{4(n-2)}{5} + 1 < \frac{2n}{3}$ and such that $g(x) \neq \emptyset$ for every $x \in A$. (VII) u is adjacent to two A-ear paths in Q_3 and to an A-ear path in Q_1 .

Let $P_2 = x_1^2 x_2^2 x_3^2 \in Q_3$ and $P_3 = x_1^3 \in Q_1$ such that $ux_1^3, ux_1^2, v_2 x_3^2, v_3 x_1^3 \in E(G)$. Let G' be the graph obtained from G by removing $x_1^1, x_2^1, x_1^2, x_2^2$ and adding edges ux_3^1, ux_3^2 . Clearly, $G' \in \mathcal{F}$ and by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\frac{4(n-4)}{5}$ such that $f(x) \neq \emptyset$ for every $x \in A$. Define the function $g: V(G) \rightarrow \mathcal{P}(\{1,2\})$ by $g(u) = \{1,2\}, g(x_1^i) = \emptyset$ for $i \in \{1,2\}, g(x_2^i) = \{1\}$ if $f(v_i) = \{1,2\}, g(x_2^i) = \{1,2\} - f(v_i)$ if $|f(v_i)| = 1$, and g(x) = f(x) otherwise. Note that $|g(u)| - |f(u)| \leq 1$. Clearly, g is an I2-RDF of G of weight $\omega(g) = \omega(f) + 3 \leq \frac{4(n-4)}{5} + 3 < \frac{4n}{5}$ such that $g(x) \neq \emptyset$ for every $x \in A$.

(VIII) u is adjacent to an A-ear-path in Q_3 and to two A-ear paths in Q_1 .

Let $P_2 = x_1^2$ and $P_3 = x_1^3$ be A-ear paths in Q_1 such that $ux_1^2, ux_1^3 \in E(G)$. Suppose $v_2x_1^2, v_3x_1^3 \in E(G)$, where $v_2, v_3 \in A$.

- $v_1 \not\in \{v_2, v_3\}$. Let G' be the graph obtained from G by removing x_1^1, x_2^1, x_3^1, u and adding the edges $v_1x_1^2$ and $v_2x_1^3$. Clearly, $G' \in \mathcal{F}$ and by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\omega(f) \leq \frac{4(n-4)}{5}$ such that $f(x) \neq \emptyset$ for every $x \in A - \{u\}$. Without loss of generality, we assume that $1 \in f(v_1)$ and define the function g on V(G) by $g(u) = \{1, 2\}, g(x_1^1) = g(x_3^1) = \emptyset, g(x_2^1) = \{2\}, \text{ and } g(x) = f(x) \text{ otherwise. Clearly, } g \text{ is an I2-RDF of } G \text{ of weight } \omega(g) = \omega(f) + 3 \leq \frac{4(n-4)}{5} + 3 < \frac{2n}{3}.$ In addition, $g(x) \neq \emptyset$ for every $x \in A$.
- $v_1 \in \{v_2, v_3\}$ and $v_1 = v_2 = v_3$. Since $|A| \ge 3$, we have $\deg(v_1) \ge 4$. First, let there exist a path $v_3 z v_4$ in G, where $v_4 \in A$ and $z \notin \{x_1^3, x_1^2\}$. Since $\deg(v_4) \ge 3$, we deduce that $A - \{u, v_3, v_4\} \ne \emptyset$. Let $w \in A - \{u, v_3, v_4\}$. Assume that $\deg(v_1) \ge 5$, and let G' be the graph resulting from the deletion of vertices u, x_1^1, x_1^2, x_1^3 and the addition of the edge wx_2^1 . Then $G' \in \mathcal{F}$ and by the induction hypothesis, there is an

I2-RDF f of G' of weight at most $\frac{4(n-4)}{5}$ such that $f(x) \neq \emptyset$ for every $x \in A - \{u\}$. We also have $f(v_3) = f(w) = \{1,2\}$. But then the function g defined on V(G) by $f(u) = \{1,2\}$, $f(x_2^1) = \{1\}$, $f(x_1^2) = f(x_1^3) = \emptyset$, and g(x) = f(x) otherwise is an I2-RDF of G of weight $\omega(f) + 3 \leq \frac{4(n-4)}{5} + 3 < \frac{2n}{3}$ and such that $g(x) \neq \emptyset$ for every $x \in A$. Now assume that $\deg(v_1) = 4$, and let G' be the graph obtained from G by removing $u, x_1^1, x_2^1, x_3^1, x_1^2, x_1^3$ and by adding the edge wv_3 . Note that v_3 has degree two in G' and, thus, belongs to an A'-ear path joining v_4 and w. Since $G' \in \mathcal{F}$, by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\frac{4(n-6)}{5}$ such that $f(x) \neq \emptyset$ for every $x \in A - \{u,v_3\}$. Clearly, $f(v_4) = f(w) = \{1,2\}$ and $f(z) = f(v_3) = \emptyset$. Now f can be extended to an 2-IRDF of G with the desired property by assigning $\{1\}$ to u, $\{2\}$ to v_3 , $\{1,2\}$ to x_2^1 and \emptyset to $x_1^1, x_3^1, x_1^2, x_1^3$ and, thus, $\omega(g) = \omega(f) + 4 < \frac{4n}{5}$.

Now let there exist a path v_3zyv_4 in G, where $v_4 \in A$ and $z \notin \{x_3^1\}$. As above, we have $A - \{u, v_3, v_4\} \neq \emptyset$, and so pick a vertex $w \in A - \{u, v_3, v_4\}$. If $\deg(v_1) \geq 5$, then the result follows, as above, by considering the same graph G' obtained from the removal of vertices u, x_1^1, x_1^2, x_1^3 and the addition of the edge wx_2^1 . Hence, we assume that $\deg(v_1) = 4$. Then delete vertices $u, x_1^1, x_2^1, x_3^1, v_3, x_1^2, x_1^3$ and add the edge zw, and let G' be the resulting graph. Clearly, $G' \in \mathcal{F}$ and by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\frac{4(n-7)}{5}$ such that $f(x) \neq \emptyset$ for every $x \in A - \{u, v_3\}$. Since $f(v_4) = f(w) = \{1, 2\}$ and $f(z) = f(y) = \emptyset$, function f can be extended to an I2-RDF of G by assigning $\{1, 2\}$ to $u, v_3, \{1\}$ to x_2^1 and \emptyset to other vertices. It follows that $\omega(g) = \omega(f) + 5 < \frac{4n}{5}$ and $g(x) \neq \emptyset$ for every $x \in A$.

• $v_1 \in \{v_2, v_3\}$ and $|\{v_1, v_2, v_3\}| = 2$. Suppose, without loss of generality, that $v_1 = v_2$ and $v_1 \neq v_3$. Let G' be the graph obtained from G by removing x_1^1, x_3^1, u and by adding the edges $v_3 x_1^2, v_3 x_2^1$. Then $G' \in \mathcal{F}$ and by the induction hypothesis, there is an I2-RDF f of G' of weight at most $\frac{4(n-3)}{5}$ such that $g(x) \neq \emptyset$ for every $x \in A - \{u\}$. As above, we must have $f(v_1) = f(v_3) = \{1, 2\}$ and so $f(x_2^1) = f(x_3^1) = \emptyset$. In this case, the function g defined by $g(u) = \{1\}, = g(x_2^1) = \{2\}, g(x_1^1) = g(x_1^3) = \emptyset$, and g(x) = f(x) otherwise, is an I2-RDF of G of weight $\omega(g) = \omega(f) + 2 \le \frac{4(n-3)}{5} + 2 < \frac{4n}{5}$. Moreover, $g(x) \ne \emptyset$ for every $x \in A - \{u\}$.

Considering Case 2, we may assume that $Q_3 = \emptyset$.

Case 3. $Q_2 \neq \emptyset$.

Let $P_1 = x_1^1 x_2^1 \in Q_2$ with $ux_1^1, x_2^1 v_1 \in E(G)$. Without loss of generality, we assume that $\deg(u) \leq \deg(v_1)$. Consider the following situations.

(IX) $deg(u) \ge 4$ and u is adjacent to at least two A-ear paths in Q_2 .

By assumption we have $\deg(v_1) \geq 4$. Let $P_2 = x_1^2 x_2^2$ be a second A-ear path in Q_2 such that $ux_1^2 \in E(G)$ and let $v_2x_2^2 \in E(G)$ for some $v_2 \in A$. Remove vertices x_1^1, x_2^1 and let G' be the resulting graph. Then $G' \in \mathcal{F}$ and by the induction hypothesis, there is an I2-RD-function f of G' of weight at most $\frac{4(n-2)}{5}$ such that $f(x) \neq \emptyset$ for every $x \in A$. Clearly, $f(u) = \{1, 2\}$ and $|f(v_1)| \geq 1$. Define the function g by $g(x_1^1) = g(x_2^1) = \emptyset$, $g(v_1) = \{1, 2\}$, and g(x) = f(x) otherwise. Then g is an 2-IRDF of G of weight $\omega(f) + 1 \leq \frac{4(n-2)}{5} + 1 < \frac{4n}{5}$ having the property that $g(x) \neq \emptyset$ for every $x \in A$.

(X) deg(u) = 3 and u is adjacent to at least two A-ear paths in Q_2 . Let $P_2 = x_1^2 x_2^2 \in Q_2$ be an A-ear path in G such that $ux_1^2 \in E(G)$ and $v_2x_2^2 \in E(G)$, where $v_2 \in A$.

• $v_1 = v_2$. Let G' be the graph obtained from G by removing x_1^1 and adding the edge ux_2^1 . Then $G' \in \mathcal{F}$ and by the induction hypothesis, there is an I2-RD-function f of G' of weight $\frac{4(n-1)}{5}$ with the desired property, in particular $f(u) = f(v_1) = \{1, 2\}$. In this case, f can be extended to an I2-IRDF of G by assigning \emptyset to x_1^1

such that f satisfies the conditions.

- $v_1 \neq v_2$. Since $\deg(u) = 3$, let uPv_3 be a path in G such that $P \in (Q_1 \cup Q_2) - \{P_1, P_2\}$. Let $z \in V(P)$ be the vertex adjacent to u. We may assume that $v_1 \notin \{v_2, v_3\}$. Let G' be the resulting graph after removing vertices x_1^1, x_2^1, u and adding edges $v_1x_1^2$ and v_1z . Then $G' \in \mathcal{F}$ and by the induction hypothesis, there exists an I2-RDF f of G' satisfying our conditions. Since $f(v_1) = \{1, 2\}$, we can define the function g on V(G) by $g(u) = \{1, 2\}, g(x_1^1) = g(x_1^2) = \emptyset$, and g(x) = f(x) otherwise. Then g is an I2-RDF of G of weight $\omega(f) + 2 \leq \frac{4(n-3)}{5} + 2 < \frac{4n}{5}$ such that $g(x) \neq \emptyset$ for every $x \in A$.
- (XI) The other neighbors of u belong to ear-paths in Q_1 . Considering the above cases and subcases, we may assume that $Q=Q_1\cup Q_2$ and that each vertex in A is adjacent to at most one A-ear path in Q_2 . In that case, since $G\in\mathcal{F}$, it is obtained from connected multigraph H without loops with $\delta(H)\geq 3$ by subdividing any edge at most twice so that the set of edges of H subdivided twice is independent (in H). Hence, let u_1v_1,\ldots,u_kv_k be the edges of H subdivided twice and let A'' be the set of all vertices in H for which all edges that are incident are subdivided once. Therefore, we have |V(H)|=2k+|A''| and $|E(H)|=\frac{1}{2}\sum_{v\in V(H)}\deg(v)\geq \frac{3}{2}|V(H)|=3k+\frac{3}{2}|A''|$ (because $\delta(H)\geq 3$, k edges of H are subdivided twice and the remaining edges are subdivided once). Hence, the order of G is

$$n = |V(H)| + |E(H)| + k \ge 6k + \frac{5}{2}|A''|.$$

It is easy to see that the function g defined on V(G) by $g(x) = \{1,2\}$ for $x \in V(H)$, and $g(x) = \emptyset$ otherwise, is an I2-RDF of G that assigns non-empty sets to vertices of A and $\omega(g) = 2|V(H)| = 4k + 2|A''| < \frac{4(6k + \frac{5}{2}|A''|)}{5} \le \frac{4n}{5}$. This completes the proof.

Now, we can proceed to the proof of Theorem 1.

Proof of Theorem 1. We use an induction on the order n. If $n \leq 5$,

then, clearly, G is connected having at most two vertices of degree at least three. More precisely, $G \in \{C_3, C_4, C_5\}$ or G is either obtained from two cycles C_3 sharing the same vertex or G is the complete bipartite graph $K_{2,3}$. In this case, it can be easily checked that $i_{r2}(C_n) \leq \frac{4}{5}n$, establishing the base case. Let $n \geq 6$, and assume that the result holds for all graphs G' of order less than n with minimum degree at least two such that the set of vertices with degree at least three is independent. Let G be a graph of order n such that $\delta(G) \geq 2$ and the set of vertices with degree at least three is independent. We can assume that G is connected for otherwise the result follows by applying the induction hypothesis on each component of G.

If $\Delta(G) = 2$, then $G = C_n$. Since for the cycle C_n , $i(C_n) = \lceil n/3 \rceil$, we obtain that $i_{r2}(C_n) \leq 2 \lceil n/3 \rceil$ and, clearly, $2 \lceil n/3 \rceil \leq \frac{4}{5}n$ for all $n \geq 8$. Since $i_{r2}(C_7) = 5 < \frac{4}{5}n$, we deduce that $i_{r2}(C_n) \leq \frac{4}{5}n$. Hence, assume that $\Delta(G) \geq 3$, and let $A = \{v \in V(G) \mid \deg(v) \geq 3\}$ and B = V(G) - A. Consider the A-ear paths and keep the same notations as defined in the proof of Proposition 3. Note that $A = \bigcup_{P \in \mathcal{O}} X_P$, $V(G) = A \cup \bigcup_{P \in \mathcal{O}} V(P)$ and $1 \leq |X_P| \leq 2$ for each $P \in Q$. Assume first that there exists an A-ear path P such that $\delta(G-V(P))=1$. Since G is simple, this means that $|V(P)| \geq 2$ and some vertex of G of degree three is adjacent to the end-vertices of P. Thus, $|X_P| = 1$. In that case, let $X_P = \{a\}$ and $N_G(a) - V(P) = \{b\}$. Clearly, $b \in B$ (since A is independent) and, thus, there is a unique A-ear path P' in which b is an end-vertex of P'. Let c be the other end-vertex of P' (possibly b=c). Let G' be the graph resulting from the deletion of vertex a and all vertices of P and P'. Then $\delta(G') \geq 2$ and by the induction hypothesis, $i_{r2}(G') \leq \frac{4|V(G')|}{5}$. On the other hand, since $G'' = G[V(P) \cup V(P') \cup \{a\}]$ is isomorphic to $C_{|V(P)|+1,|V(P')|}$, by Proposition 2, G'' has an I2-RDF gsuch that $\omega(g) \leq \frac{4n(G'')}{5}$ and $g(c) = \emptyset$. Now, for any $i_{r2}(G')$ -function, the function h defined on V(G) by h(x) = f(x) for all $x \in V(G')$ and h(x) = g(x) for all $x \in V(G'')$ is an I2-RDF of G. Therefore,

$$i_{r2}(G) \le i_{r2}(G') + i_{r2}(G'')$$

$$\le \frac{4|V(G')|}{5} + \frac{4|V(P) \cup V(P') \cup \{a\}|}{5} = \frac{4n}{5}.$$

In the next, we can assume that $\delta(G-V(P)) \geq 2$ for each A-ear path $P \in \mathcal{Q}$. It follows that $|X_P| = 2$ for each A-ear path $P \in \mathcal{Q}$. Assume that $\mathcal{Q}-(Q_1\cup Q_2\cup Q_3\cup Q_4)\neq\emptyset$, and let $P\in\mathcal{Q}-(Q_1\cup Q_2\cup Q_3\cup Q_4)$. By Proposition 1, P has an I2-RDF g such that $\omega(g)\leq \frac{4|V(P)|}{5}$ and g assigns \emptyset to the end-vertices of the path P. Now, let G' be the graph obtained from G' by removing all vertices of P. By the induction hypothesis, we have $i_{r_2}(G')\leq \frac{4|V(G')|}{5}$. Clearly, for every $i_{r_2}(G')$ -function f, the function h defined on V(G) by h(x)=f(x) for all $x\in V(G')$ and h(x)=g(x) for all $x\in V(P)$, is an I2-RDF of G and, thus, $i_{r_2}(G)\leq i_{r_2}(G')+i_{r_2}(P)\leq \frac{4}{5}n$. Assume now that $Q=Q_1\cup Q_2\cup Q_3\cup Q_4$. Then $G\in\mathcal{F}$ and the result follows from Proposition 3.

References

- [1] H. Abdollahzadeh Ahangar, J. Amjadi, N. Jafari Rad, and V.D. Samodivkin, "Total k-Rainbow domination numbers in graphs," Commun. Comb. Optim., vol. 3, pp. 37–50, 2018.
- [2] J. Amjadi, N. Dehgardi, N. Mohammadi, S.M. Sheikholeslami, and L. Volkmann, "Independent 2-rainbow domination in trees," Asian-Eur. J. Math., vol. 8, ID: 1550035, 2015.
- [3] J. Amjadi, M. Falahat, N.J. Rad, and S.M. Sheikholeslami, "Strong equality between the 2-rainbow domination and independent 2-rainbow domination numbers in trees," *Bull. Malays. Math. Sci. Soc.*, vol. 39, pp. 205–218, 2016.
- [4] B. Brešar, M. A. Henning, and D. F. Rall, "Rainbow domination in graphs," *Taiwanese J. Math.*, vol. 12, pp. 213–225, 2008.

- [5] B. Brešar and T. K. Šumenjak, "On the 2-rainbow domination in graphs," *Discrete Appl. Math.*, vol. 155, pp. 2394–2400, 2007.
- [6] G. J. Chang, J. Wu, and X. Zhu, "Rainbow domination on trees," Discrete Appl. Math., vol. 158, pp. 8–12, 2010.
- [7] M. Chellali and N.J. Rad, "Independent 2-rainbow domination in graphs," J. Combin. Math. Combin. Comput., vol. 94, pp. 133– 148, 2015.
- [8] T. Chunling, L. Xiaohui, Y. Yuansheng, and L. Meiqin, "2-rainbow domination of generalized Petersen graphs P(n, 2)," Discrete Appl. Math., vol. 157, pp. 1932–1937, 2009.
- [9] S. Fujita, M. Furuya, and C. Magnant, "General upper bounds on independent k-rainbow domination," *Discrete Appl. Math.*, vol. 258, pp. 105–113, 2019.
- [10] W. Goddard and M.A. Henning, "Independent domination in graphs, A survey and recent results," *Discrete Math.*, vol. 313, pp. 839—854, 2013.
- [11] N. Jafari Rad, "Critical concept for 2-rainbow domination in graphs," Australas. J. Combin., vol. 51, pp. 49–60, 2011.
- [12] Q. Kang, V. Samodivkin, Z. Shao, S.M. Sheikholeslamiæ, and M. Soroudi, "Outer-independent k-rainbow domination," *Journal of Taibah University for Science*, vol. 13, pp. 883–891, 2019.
- [13] D. Meierling, S. M. Sheikholeslami, and L. Volkmann, "Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph," *Appl. Math. Lett.*, vol. 24, pp. 1758–1761, 2011.
- [14] Z. Shao, Z. Li, A. Peperko, J. Wan, and J. Žerovnik, "Independent rainbow domination of graphs," *Bull. Malays. Math. Sci. Soc.*, 2018.
- [15] S. M. Sheikholeslami and L. Volkmann, "The k-rainbow domatic number of a graph," *Discuss. Math. Graph Theory*, vol. 32, pp. 129–140, 2012.

[16] Y. Wu and N. Jafari Rad, "Bounds on the 2-rainbow domination number of graphs," Graphs Combin., vol. 29, pp. 1125–1133, 2013.

Rana Khoeilar, Mahla Kheibari, Received March 09, 2020 Mustapha Chellali, Seyed Mahmoud Sheikholeslami Accepted October 04, 2020

Rana Khoeilar Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran $E-mail: \ \verb|khoeilar@azaruniv.ac.ir|$

Mahla Kheibari Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran E-mail: m.kheibari@azaruniv.ac.ir

Mustapha Chellali LAMDA-RO Laboratory, Department of Mathematics University of Blida B.P. 270, Blida, Algeria E-mail: m_chellali@yahoo.com

Seyed Mahmoud Sheikholeslami Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran

E-mail: s.m.sheikholeslami@azaruniv.ac.ir