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A sharp upper bound on the independent

2-rainbow domination in graphs with minimum

degree at least two
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Abstract

An independent 2-rainbow dominating function (I2-RDF) on
a graph G is a function f from the vertex set V (G) to the set of
all subsets of the set {1, 2} such that {x ∈ V | f(x) 6= ∅} is an
independent set of G and for any vertex v ∈ V (G) with f(v) = ∅
we have

⋃
u∈N(v) f(u) = {1, 2}. The weight of an I2-RDF f is

the value ω(f) =
∑

v∈V
|f(v)|, and the independent 2-rainbow

domination number ir2(G) is the minimum weight of an I2-RDF
on G. In this paper, we prove that if G is a graph of order n ≥ 3
with minimum degree at least two such that the set of vertices of
degree at least 3 is independent, then ir2(G) ≤ 4n

5 .
Keywords: independent k-rainbow dominating function, in-

dependent k-rainbow domination number.
MSC 2010: 05C69.

1 Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set
E(G) (briefly V and E). For every vertex v ∈ V , the open neighborhood

N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood

of v is the set N [v] = N(v) ∪ {v}. Similarly, the open neighborhood of
a set S ⊆ V is the set N(S) = ∪v∈SN(v), and the closed neighborhood
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of S is the set N [S] = N(S) ∪ S. The degree of a vertex v ∈ V is
degG(v) = deg(v) = |N(v)| and the minimum degree of a graph G is
denoted by δ = δ(G).

For a positive integer k, a k-rainbow dominating function (k-RDF)
of a graph G is a function f from V (G) to the set of all subsets of the
set {1, 2, . . . , k} such that for every vertex v ∈ V (G) with f(v) = ∅
the condition

⋃
u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled. The weight of a

k-RDF f is the value ω(f) =
∑

v∈V |f(v)|. The k-rainbow domination

number of a graph G, denoted by γrk(G), is the minimum weight of
a k-RDF of G. Note that γr1(G) is the classical domination number
γ(G). The k-rainbow domination number was introduced by Brešar,
Henning, and Rall [4] and has been studied by several authors (see for
example [1], [5], [6], [8], [12], [13], [15], [16]).

If we additionally require that the set of vertices x ∈ V (G) with
f(x) 6= ∅ induces an independent set of G, then the situation is very
different. Let k ≥ 1 be an integer, and let G be a graph. A k-RDF
f of G is an independent k-rainbow dominating function (Ik-RDF)
if {x ∈ V (G) | f(x) 6= ∅} is an independent set of G. The mini-
mum weight w(f) of an Ik-RDF f of G is called the independent k-
rainbow domination number of G, and is denoted by irk(G). Clearly,
γrk(G) ≤ irk(G) holds for every graph G. Moreover, independent
k-rainbow domination can be seen as a generalization of independent
domination, since the number ir1(G) is precisely the independent dom-

ination number i(G) of G which has been widely studied (see a sur-
vey [10]). The independent rainbow domination number was studied
in, for example, [3], [7], [9], [14]. Recently, Shao et al. [14] have shown
that the independent k-rainbow domination problem is NP-complete.
Therefore, it is natural to look for good bounds on the independent
k-rainbow domination number of graphs, especially for the case k = 2
which is the most studied. Our main contribution in this paper is
the following upper bound on the independent 2-rainbow domination
number for a class of graphs with minimum degree at least two.

Theorem 1. Let G be a connected graph of order n with δ(G) ≥ 2
such that the set of vertices with degree at least three is an independent
set. Then ir2(G) ≤ 4

5n. This bound is sharp for the cycle C5.
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We recall that for trees, Amjadi et al. [2] showed that if T is a tree
of order n ≥ 3, then ir2 ≤ 3n

4 . This result has recently been extended
to connected bipartite graphs by Fujita et al. [9] who also gave other
results on irk(G) when k ≥ 3. Moreover, it has been noticed in [7], that
for any graph G, ir2(G) ≤ 2i(G). Therefore, the 4

5n upper bound on
the independent 2-rainbow domination number holds for any connected
graph G of order n with i(G) ≤ 2

5n.

2 Proof of Theorem 1

For the proof of Theorem 1, we need three preparatory results.

Proposition 1. For n ≥ 5, the path Pn has an I2-RDF f that assigns
∅ to the end-vertices of Pn and ω(f) ≤ 4n

5 .

Proof. Let Pn = v1v2 . . . vn and define f : V (Pn) → P({1, 2}) as
follows. If n ≡ 0 (mod 3), then f(v3i+2) = {1, 2} for 0 ≤ i ≤ n

3 − 1,
and f(x) = ∅ otherwise; if n ≡ 2 (mod 3), then f(vn−1) = {1, 2},
f(v3i+2) = {1, 2} for 0 ≤ i ≤ n−5

3 , and f(x) = ∅ otherwise, and if
n ≡ 1 (mod 3), then f(v2) = {1, 2}, f(v4) = {1}, f(v3i+6) = {1, 2} for
0 ≤ i ≤ n−4

3 , and f(x) = ∅ otherwise. Clearly, ω(f) ≤ 4n
5 and f is an

I2-RDF of Pn assigning ∅ to the end-vertices of Pn. �

For integers r ≥ 3 and s ≥ 1, let Cr,s be the connected graph
obtained from a cycle Cr = (u1u2 . . . ur) and a path Ps = v1v2 . . . vs by
adding the edge u1v1.

Proposition 2. For integers r ≥ 3 and s ≥ 1 with r+s ≥ 4, the graph
Cr,s has an I2-RDF f that assigns ∅ to vs and ω(f) ≤ 4(r+s)

5 .

Proof. Define f : V (Cr,s) → P({1, 2}) by:

f(u3i+1) = f(v3j+2) = {1, 2} for 0 ≤ i ≤ r−3
3 , 0 ≤ j ≤ s−3

3 , and
f(x) = ∅ otherwise, when r ≡ 0 (mod 3) and s ≡ 0 (mod 3),

f(u3i+1) = f(v3j+3) = {1, 2} for 0 ≤ i ≤ r−3
3 , 0 ≤ j ≤ s−4

3 , and
f(x) = ∅ otherwise, when r ≡ 0 (mod 3) and s ≡ 1 (mod 3),
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f(vs) = {1, 2}, f(u3i+2) = f(v3j+2) = {1, 2} for 0 ≤ i ≤ r−3
3 ,

0 ≤ j ≤ s−5
3 , and f(x) = ∅ otherwise, when r ≡ 0 (mod 3) and s ≡ 2

(mod 3),
f(u1) = {1}, f(u3i+3) = f(v3j+2) = {1, 2} for 0 ≤ i ≤ r−4

3 , 0 ≤ j ≤
s−3
3 , and f(x) = ∅ otherwise, when r ≡ 1 (mod 3) and s ≡ 0 (mod 3),
f(u1) = {1, 2}, f(u3i+3) = f(v3j+3) = {1, 2} for 0 ≤ i ≤ r−4

3 ,
0 ≤ j ≤ s−4

3 , and f(x) = ∅ otherwise, when r ≡ 1 (mod 3) and s ≡ 1
(mod 3),

f(u3i+3) = f(v3j+1) = {1, 2} for 0 ≤ i ≤ r−4
3 , 0 ≤ j ≤ s−2

3 , and
f(x) = ∅ otherwise, when r ≡ 1 (mod 3) and s ≡ 2 (mod 3),

f(u3i+1) = f(v3j+2) = {1, 2} for 0 ≤ i ≤ r−2
3 , 0 ≤ j ≤ s−3

3 , and
f(x) = ∅ otherwise, when r ≡ 2 (mod 3) and s ≡ 0 (mod 3),

f(u3i+1) = f(v3j+3) = {1, 2} for 0 ≤ i ≤ r−2
3 , 0 ≤ j ≤ s−4

3 , and
f(x) = ∅ otherwise, when r ≡ 2 (mod 3) and s ≡ 1 (mod 3),

f(ur) = {1}, f(u3i+3) = f(v3j+1) = {1, 2} for 0 ≤ i ≤ r−5
3 , 0 ≤ j ≤

s−2
3 , and f(x) = ∅ otherwise, when r ≡ 2 (mod 3) and s ≡ 2 (mod 3).

In either case, f is an I2-RDF of Cr,s of weight at most 4(r+s)
5 with

the desired property. �

Let F be the family of all simple graphs obtained from some con-
nected multigraph H without loops with δ(H) ≥ 3 by subdividing
every edge of H at least once and at most four times. By definition,
the smallest graph of F has order at least 5. Also, we note that if
G ∈ F , then the set {x ∈ V (G) | deg(x) ≥ 3} is an independent set of
G.

Proposition 3. If G ∈ F , then G has an I2-RDF f that assigns a
non-empty set to every vertex of degree at least 3 and ω(f) ≤ 4n(G)

5 .

Proof. Let G ∈ F be a graph of order n. We proceed by induction
on n. Clearly, the result is immediate for n = 5. Let n ≥ 6 and
assume that the result holds for all graphs in F of order less than n.
Let G ∈ F be a graph of order n. Set A = {x ∈ V (G) | deg(x) ≥ 3}
and B = V (G) − A. Since G ∈ F , A is independent. In the sequel,
we will call an induced path P of G an A-ear path if V (P ) ⊂ B and
P is connected to A by either its unique vertex (if |V (P )| = 1) or by
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each of its two end-vertices. For each i ∈ {1, 2, 3, 4}, let Qi be the set
of all A-ear paths P of G of order i and let Q =

⋃4
i=1 Qi. Clearly, B =⋃

P∈Q V (P ). Moreover, for each A-ear path P , let XP = {u ∈ A | u is
adjacent to a vertex of P}. Hence, A =

⋃
P∈QXP and since G ∈ F ,

we have |XP | = 2 for each P ∈ Q. Therefore, |A| ≥ 2.

Assume first that |A| = 2 and let A = {u, v}. Note that n =
|A|+m1+2m2+3m3+4m4 andm1+m2+m3+m4 ≥ 3, wheremi = |Qi|
for i ∈ {1, 2, 3, 4}. Let Q4 = {vi1v

i
2v

i
3v

i
4 | 1 ≤ i ≤ m4} if Q4 6= ∅,

Q3 = {mj
1m

j
2m

j
3 | 1 ≤ j ≤ m3} if Q3 6= ∅, Q2 = {wk

1w
k
2 | 1 ≤ k ≤ m2}

if Q2 6= ∅ and Q1 = {zl1 | 1 ≤ l ≤ m1} if Q1 6= ∅. Suppose that
uvi1, um

j
1, uw

k
1 , uz

l
1, v

i
4v,m

j
3v,w

k
2v, z

l
1v ∈ E(G) for each i, j, k, l. Define

g : V (G) → P({1, 2}) by g(u) = g(v) = {1, 2}, g(vi2) = {1, 2} for
1 ≤ i ≤ m4 and g(mj

2) = {2} for 1 ≤ j ≤ m3, and g(x) = ∅ otherwise.
Obviously, g is an I2-RDF of G that assigns a non-empty set to every
vertex in A. In addition, we have

ir2(G) ≤ 4 + 2m4 +m3 ≤
4(2 + 4m4 + 3m3 + 2m2 +m1)

5
=

4n

5
.

Next, we assume that |A| ≥ 3. Suppose first, there are two vertices
u, v ∈ A such that deg(u), deg(v) ≥ 4 and there is an A-ear path
P = v1 . . . vk with k ≥ 3 connecting u and v. Let G′ = G − V (P ).
Since G′ ∈ F , by the induction hypothesis G′ has an I2-RDF f such
that |f(u)|, |f(v)| ≥ 1 and ω(f) ≤ 4(n−k)

5 . Assume, without loss of
generality, that 1 ∈ f(u). Then f can be extended to an I2-RDF g
of G as follows: assign {1, 2} to v3i+2 for 0 ≤ i ≤ k

3 − 1 and ∅ to
other vertices, when k ≡ 0 (mod 3); assign {2} to v2, {1, 2} to v3i+1

for 1 ≤ i ≤ k−2
3 and ∅ to other vertices, when k ≡ 2 (mod 3); assign

{1, 2} to u, v3i for 1 ≤ i ≤ k−1
3 and ∅ to other vertices, when k ≡ 1

(mod 3). Clearly, g is an I2-RDF of G of weight at most 4n(G)
5 with the

desired property. Hence, we can assume that there is no two vertices of
degree at least four connected by A-ear path P of order at least three.
Consider the following cases.

Case 1. Q4 6= ∅.
Let P1 = x11x

1
2x

1
3x

1
4 ∈ Q4 and let ux11, x

1
4v1 ∈ E(G), where u, v1 ∈ A.
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By assumption, u or v1 has degree three, say deg(u) = 3. Consider also
the following situations.

(I) u is adjacent to two A-ear paths in Q4.
Let P2 = x21x

2
2x

2
3x

2
4 ∈ Q4 − {P1} such that ux21, v2x

2
4 ∈ E(G). Let G′

be the graph obtained from G by removing vertices {x11, x
1
2, x

1
3, x

2
1, x

2
2}

and adding edges ux14, ux
2
3. Clearly, G′ ∈ F , and by the induction

hypothesis, there exists an I2-RDF f of G′ of weight at most 4(n−5)
5

assigning a non-empty set to every vertex of degree at least 3. It follows
that f(x23) = ∅ and f(x24) = ∅, and, thus, f(u) = f(v2) = {1, 2} (to
2-rainbow dominate x23, x

2
4). Define g : V (G) → P({1, 2}) by g(x13) =

g(x23) = {1, 2}, g(x11) = g(x12) = g(x21) = g(x22) = ∅, and g(x) = f(x)
otherwise. Clearly, g is an I2-RDF of G that assigns a non-empty set
to all vertices of A and has weight ω(g) = ω(f) + 4 ≤ 4(n−5)

5 + 4 = 4n
5 .

According to the previous situation, we may assume that P1 is the
unique A-ear path in Q4 adjacent to u.

(II) u is adjacent to an A-ear path in Q2.
Let P2 = x21x

2
2 be an A-ear path in Q2 such that ux21, v2x

2
2 ∈ E(G). Let

G′ be the graph obtained from G by removing vertices x11, x
1
2, x

1
3 and

adding the edge ux14. Clearly, G
′ ∈ F , and by the induction hypothesis,

there exists an I2-RDF f of G′ of weight at most 4(n−3)
5 assigning a

non-empty set to every vertex of degree at least 3. Likewise to situation
(I), one can see that f(u) = f(v2) = {1, 2}. Now define g : V (G) →
P({1, 2}) by g(x13) = {1, 2}, g(x11) = g(x12) = ∅, and g(x) = f(x)
otherwise. Clearly, g is an I2-RDF of G that assigns a non-empty set
to every vertex of A and has weight ω(g) = ω(f)+3 ≤ 4(n−3)

5 +2 < 4n
5 .

(III) u is adjacent to an A-ear path in Q3.
Let P2 = x21x

2
2x

2
3 be an A-ear path in Q3 such that ux21, v2x

2
3 ∈ E(G).

Let G′ be the graph obtained from G by removing x11, x
1
2, x

1
3, x

2
1 and

adding edges ux14, ux
2
2. Since G

′ ∈ F , by the induction hypothesis there

is an I2-RDF f of G′ of weight at most 4(n−4)
5 that assigns non-empty

sets to every vertex of degree at least 3. As above, f(u) = f(v2) =
{1, 2}. Define g : V (G) → P({1, 2}) by g(x21) = {1}, g(x13) = {1, 2},
g(x11) = g(x12) = g(x21) = ∅, and g(x) = f(x) otherwise. Clearly, g is an
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I2-RDF of G of weight ω(g) = ω(f) + 3 ≤ 4(n−4)
5 + 3 < 4n

5 having the
desired property.

(IV) u is adjacent to two A-ear paths in Q1.
Let P2 = x21 and P3 = x31 be A-ear paths in Q1 such that
ux21, ux

3
1, v2x

2
1, v3x

3
1 ∈ E(G), where v2, v3 ∈ A.

• v1 6∈ {v2, v3}.
Let G′ be the graph obtained from G by removing x11, x

1
2, x

1
3, x

1
4, u

and adding the edges v1x
2
1 and v1x

3
1. Since G′ ∈ F , by the in-

duction hypothesis there is an I2-RDF f of G′ of weight at most
4(n−5)

5 assigning non-empty sets to every vertex of degree at least
3. Since |f(v2)|, |f(v3)| ≥ 1, we must have f(x21) = f(x31) = ∅.
Now the function g : V (G) → P({1, 2}) defined by g(u) =
g(x13) = {1, 2}, g(x11) = g(x12) = g(x14) = ∅, and g(x) = f(x)
otherwise, is an I2-IRDF of G with the desired property and
weight ω(g) = ω(f) + 4 ≤ 4(n−5)

5 + 4 ≤ 4n
5 .

• v1 ∈ {v2, v3}.
Without loss of generality, assume that v1 = v2. Suppose first
that v1 6= v3 and let G′ be the graph obtained fromG by removing
x11, x

1
2, x

3
1, u and adding the edges v3x

2
1, v3x

1
3. Clearly, G

′ ∈ F and,
thus, by the induction hypothesis, there is an I2-RDF f of G′ of
weight at most ω(f) ≤ 4(n−4)

5 that assigns a non-empty set to
every vertex of degree at least 3. As above, one can easily see that
f(v1) = f(v3) = {1, 2} and, thus, f(x13) = f(x14) = f(x21) = ∅.
Now define the function g : V (G) → P({1, 2}) by g(x12) = {1, 2},
g(x11) = g(x31) = ∅, g(u) = {1}, and g(x) = f(x) otherwise.
Clearly, g is an I2-RDF of G with the desired property and weight
ω(g) = ω(f) + 3 ≤ 4(n−4)

5 + 3 < 4n
5 .

Now assume that v1 = v2 = v3. Since |A| ≥ 3 and G is connected,
we have deg(v1) ≥ 4. Let w ∈ A − {u, v1} and let G′ be the
graph obtained from G by removing x11, x

1
2, u, x

3
1 and adding the

edges wx13, wx21. Since G′ ∈ F , by the induction hypothesis,

there is an I2-RDF f of G′ of weight at most ω(f) ≤ 4(n−4)
5 such

that f assigns a non-empty set to every vertex of degree at least

379



R. Khoeilar, et al.

3. As above, we must have f(v1) = {1, 2}. Now the function
g : V (G) → P({1, 2}) defined by f(x12) = {1, 2}, g(u) = {1},
g(x11) = g(x31) = ∅, and g(x) = f(x) otherwise, is an I2-RDF of
G such that g assigns a non-empty set to every vertex in A and
ω(g) = ω(f) + 3 ≤ 4(n−4)

5 + 3 < 4n
5 .

Seeing Case 1, we can assume from now on that Q4 = ∅.

Case 2. Q3 6= ∅.
Let P = x11x

1
2x

1
3 ∈ Q3 and let ux11, x

1
3v1 ∈ E(G), where u, v1 ∈ A. By

assumption, we may assume, without loss generality, that deg(u) = 3.
Consider the following situations.

(V) u is adjacent to three A-ear-paths in Q3.
Let P2 = x21x

2
2x

2
3 and P3 = x31x

3
2x

3
3 be two A-ear-paths in Q3−{P} such

that ux31, ux
2
1, v2x

2
3, v3x

3
3 ∈ E(G). Let G′ be the graph obtained from

G by removing x11, x
1
2, x

2
1, x

2
2, x

3
1, x

3
2 and by adding edges ux13, ux

2
3, ux

3
3.

Then G′ ∈ F , and by the induction hypothesis, there is an I2-RDF f
of G′ of weight at most 4(n−6)

5 that assigns non-empty sets to vertices
of degree at least 3. Without loss of generality, assume that 1 ∈ f(u).
Define g : V (G) → P({1, 2}) by g(u) = {1, 2}, g(xi1) = ∅ for i ∈
{1, 2, 3}, g(xi2) = {1} if f(vi) = {1, 2}, g(xi2) = {1, 2}−f(vi) if |f(vi)| =
1 for i ∈ {1, 2, 3}, and g(x) = f(x) otherwise. Clearly, g is an I2-RDF of

G with the desired property and weight ω(g) = ω(f)+4 ≤ 4(n−6)
5 +4 <

4n
5 .

(VI) u is adjacent to an A-ear path in Q2.
Let P2 = x21x

2
2 ∈ Q2 such that ux21, v2x

2
1 ∈ E(G). Let G′ be the

graph obtained from G by removing x11, x
1
2 and adding the edge ux13.

Then G′ ∈ F and by the induction hypothesis, there is an I2-RDF f
of G′ of weight at most 4(n−2)

5 such that f(x) 6= ∅ for every x ∈ A.
Since f(x21) = f(x22) = ∅, we deduce that f(u) = {1, 2}. Define now
the function g : V (G) → P({1, 2}) by g(x11) = ∅, g(x12) = {1} if
f(v1) = {1, 2} or g(x12) = {1, 2} − f(v1) if |f(v1)| = 1, and g(x) = f(x)
otherwise. Clearly, g is an I2-RDF of G of weight ω(g) = ω(f) + 1 ≤
4(n−2)

5 + 1 < 2n
3 and such that g(x) 6= ∅ for every x ∈ A.

380



A sharp upper bound on the independent 2-rainbow domination...

(VII) u is adjacent to two A-ear paths in Q3 and to an A-ear path
in Q1.
Let P2 = x21x

2
2x

2
3 ∈ Q3 and P3 = x31 ∈ Q1 such that ux31, ux

2
1, v2x

2
3,

v3x
3
1 ∈ E(G). Let G′ be the graph obtained from G by removing

x11, x
1
2, x

2
1, x

2
2 and adding edges ux13, ux

2
3. Clearly, G′ ∈ F and by the

induction hypothesis, there is an I2-RDF f of G′ of weight at most
4(n−4)

5 such that f(x) 6= ∅ for every x ∈ A. Define the function g :
V (G) → P({1, 2}) by g(u) = {1, 2}, g(xi1) = ∅ for i ∈ {1, 2}, g(xi2) =
{1} if f(vi) = {1, 2}, g(xi2) = {1, 2} − f(vi) if |f(vi)| = 1, and g(x) =
f(x) otherwise. Note that |g(u)| − |f(u)| ≤ 1. Clearly, g is an I2-RDF

of G of weight ω(g) = ω(f) + 3 ≤ 4(n−4)
5 + 3 < 4n

5 such that g(x) 6= ∅
for every x ∈ A.

(VIII) u is adjacent to an A-ear-path in Q3 and to two A-ear paths
in Q1.
Let P2 = x21 and P3 = x31 be A-ear paths in Q1 such that ux21, ux

3
1 ∈

E(G). Suppose v2x
2
1, v3x

3
1 ∈ E(G), where v2, v3 ∈ A.

• v1 6∈ {v2, v3}.
Let G′ be the graph obtained from G by removing x11, x

1
2, x

1
3, u

and adding the edges v1x
2
1 and v2x

3
1. Clearly, G′ ∈ F and by

the induction hypothesis, there is an I2-RDF f of G′ of weight
at most ω(f) ≤ 4(n−4)

5 such that f(x) 6= ∅ for every x ∈ A−{u}.
Without loss of generality, we assume that 1 ∈ f(v1) and define
the function g on V (G) by g(u) = {1, 2}, g(x11) = g(x13) = ∅,
g(x12) = {2}, and g(x) = f(x) otherwise. Clearly, g is an I2-RDF

of G of weight ω(g) = ω(f) + 3 ≤ 4(n−4)
5 + 3 < 2n

3 . In addition,
g(x) 6= ∅ for every x ∈ A.

• v1 ∈ {v2, v3} and v1 = v2 = v3.
Since |A| ≥ 3, we have deg(v1) ≥ 4. First, let there exist a path
v3zv4 in G, where v4 ∈ A and z 6∈ {x31, x

2
1}. Since deg(v4) ≥ 3,

we deduce that A − {u, v3, v4} 6= ∅. Let w ∈ A − {u, v3, v4}.
Assume that deg(v1) ≥ 5, and let G′ be the graph resulting from
the deletion of vertices u, x11, x

2
1, x

3
1 and the addition of the edge

wx12. Then G′ ∈ F and by the induction hypothesis, there is an
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I2-RDF f of G′ of weight at most 4(n−4)
5 such that f(x) 6= ∅ for

every x ∈ A−{u}. We also have f(v3) = f(w) = {1, 2}. But then
the function g defined on V (G) by f(u) = {1, 2}, f(x12) = {1},
f(x21) = f(x31) = ∅, and g(x) = f(x) otherwise is an I2-RDF of

G of weight ω(f) + 3 ≤ 4(n−4)
5 + 3 < 2n

3 and such that g(x) 6= ∅
for every x ∈ A. Now assume that deg(v1) = 4, and let G′ be
the graph obtained from G by removing u, x11, x

1
2, x

1
3, x

2
1, x

3
1 and

by adding the edge wv3. Note that v3 has degree two in G′ and,
thus, belongs to an A′-ear path joining v4 and w. Since G′ ∈ F ,
by the induction hypothesis, there is an I2-RDF f of G′ of weight
at most 4(n−6)

5 such that f(x) 6= ∅ for every x ∈ A − {u, v3}.
Clearly, f(v4) = f(w) = {1, 2} and f(z) = f(v3) = ∅. Now f
can be extended to an 2-IRDF of G with the desired property by
assigning {1} to u, {2} to v3, {1, 2} to x12 and ∅ to x11, x

1
3, x

2
1, x

3
1

and, thus, ω(g) = ω(f) + 4 < 4n
5 .

Now let there exist a path v3zyv4 in G, where v4 ∈ A and
z 6∈ {x13}. As above, we have A − {u, v3, v4} 6= ∅, and so pick
a vertex w ∈ A − {u, v3, v4}. If deg(v1) ≥ 5, then the result fol-
lows, as above, by considering the same graph G′ obtained from
the removal of vertices u, x11, x

2
1, x

3
1 and the addition of the edge

wx12. Hence, we assume that deg(v1) = 4. Then delete vertices
u, x11, x

1
2, x

1
3, v3, x

2
1, x

3
1 and add the edge zw, and let G′ be the re-

sulting graph. Clearly, G′ ∈ F and by the induction hypothesis,
there is an I2-RDF f of G′ of weight at most 4(n−7)

5 such that
f(x) 6= ∅ for every x ∈ A− {u, v3}. Since f(v4) = f(w) = {1, 2}
and f(z) = f(y) = ∅, function f can be extended to an I2-RDF of
G by assigning {1, 2} to u, v3, {1} to x12 and ∅ to other vertices. It
follows that ω(g) = ω(f) + 5 < 4n

5 and g(x) 6= ∅ for every x ∈ A.

• v1 ∈ {v2, v3} and |{v1, v2, v3}| = 2.
Suppose, without loss of generality, that v1 = v2 and v1 6= v3.
Let G′ be the graph obtained from G by removing x11, x

1
3, u and

by adding the edges v3x
2
1, v3x

1
2. Then G′ ∈ F and by the induc-

tion hypothesis, there is an I2-RDF f of G′ of weight at most
4(n−3)

5 such that g(x) 6= ∅ for every x ∈ A − {u}. As above, we
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must have f(v1) = f(v3) = {1, 2} and so f(x12) = f(x13) = ∅. In
this case, the function g defined by g(u) = {1}, = g(x12) = {2},
g(x11) = g(x31) = ∅, and g(x) = f(x) otherwise, is an I2-RDF of G

of weight ω(g) = ω(f)+2 ≤ 4(n−3)
5 +2 < 4n

5 . Moreover, g(x) 6= ∅
for every x ∈ A− {u}.

Considering Case 2, we may assume that Q3 = ∅.

Case 3. Q2 6= ∅.
Let P1 = x11x

1
2 ∈ Q2 with ux11, x

1
2v1 ∈ E(G). Without loss of generality,

we assume that deg(u) ≤ deg(v1). Consider the following situations.

(IX) deg(u) ≥ 4 and u is adjacent to at least two A-ear paths in
Q2.
By assumption we have deg(v1) ≥ 4. Let P2 = x21x

2
2 be a second A-

ear path in Q2 such that ux21 ∈ E(G) and let v2x
2
2 ∈ E(G) for some

v2 ∈ A. Remove vertices x11, x
1
2 and let G′ be the resulting graph.

Then G′ ∈ F and by the induction hypothesis, there is an I2-RD-
function f of G′ of weight at most 4(n−2)

5 such that f(x) 6= ∅ for every
x ∈ A. Clearly, f(u) = {1, 2} and |f(v1)| ≥ 1. Define the function g by
g(x11) = g(x12) = ∅, g(v1) = {1, 2}, and g(x) = f(x) otherwise. Then

g is an 2-IRDF of G of weight ω(f) + 1 ≤ 4(n−2)
5 + 1 < 4n

5 having the
property that g(x) 6= ∅ for every x ∈ A.

(X) deg(u) = 3 and u is adjacent to at least two A-ear paths in Q2.
Let P2 = x21x

2
2 ∈ Q2 be an A-ear path in G such that ux21 ∈ E(G) and

v2x
2
2 ∈ E(G), where v2 ∈ A.

• v1 = v2.
Let G′ be the graph obtained from G by removing x11 and adding
the edge ux12. Then G′ ∈ F and by the induction hypothesis,

there is an I2-RD-function f of G′ of weight 4(n−1)
5 with the

desired property, in particular f(u) = f(v1) = {1, 2}. In this
case, f can be extended to an I2-IRDF of G by assigning ∅ to x11
such that f satisfies the conditions.
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• v1 6= v2.
Since deg(u) = 3, let uPv3 be a path in G such that P ∈ (Q1 ∪
Q2) − {P1, P2}. Let z ∈ V (P ) be the vertex adjacent to u. We
may assume that v1 6∈ {v2, v3}. Let G′ be the resulting graph
after removing vertices x11, x

1
2, u and adding edges v1x

2
1 and v1z.

Then G′ ∈ F and by the induction hypothesis, there exists an
I2-RDF f of G′ satisfying our conditions. Since f(v1) = {1, 2},
we can define the function g on V (G) by g(u) = {1, 2}, g(x11) =
g(x21) = ∅, and g(x) = f(x) otherwise. Then g is an I2-RDF of

G of weight ω(f) + 2 ≤ 4(n−3)
5 + 2 < 4n

5 such that g(x) 6= ∅ for
every x ∈ A.

(XI) The other neighbors of u belong to ear-paths in Q1.
Considering the above cases and subcases, we may assume that Q =
Q1 ∪ Q2 and that each vertex in A is adjacent to at most one A-ear
path in Q2. In that case, since G ∈ F , it is obtained from connected
multigraph H without loops with δ(H) ≥ 3 by subdividing any edge at
most twice so that the set of edges ofH subdivided twice is independent
(in H). Hence, let u1v1, . . . , ukvk be the edges of H subdivided twice
and let A′′ be the set of all vertices in H for which all edges that are
incident are subdivided once. Therefore, we have |V (H)| = 2k + |A′′|
and |E(H)| = 1

2

∑
v∈V (H) deg(v) ≥ 3

2 |V (H)| = 3k + 3
2 |A

′′| (because
δ(H) ≥ 3, k edges of H are subdivided twice and the remaining edges
are subdivided once). Hence, the order of G is

n = |V (H)| + |E(H)|+ k ≥ 6k +
5

2
|A′′|.

It is easy to see that the function g defined on V (G) by g(x) = {1, 2}
for x ∈ V (H), and g(x) = ∅ otherwise, is an I2-RDF of G that assigns
non-empty sets to vertices of A and ω(g) = 2|V (H)| = 4k + 2|A′′| <
4(6k+ 5

2
|A′′|)

5 ≤ 4n
5 . This completes the proof. �

Now, we can proceed to the proof of Theorem 1.

Proof of Theorem 1. We use an induction on the order n. If n ≤ 5,
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then, clearly, G is connected having at most two vertices of degree at
least three. More precisely, G ∈ {C3, C4, C5} or G is either obtained
from two cycles C3 sharing the same vertex or G is the complete bipar-
tite graph K2,3. In this case, it can be easily checked that ir2(Cn) ≤

4
5n,

establishing the base case. Let n ≥ 6, and assume that the result holds
for all graphs G′ of order less than n with minimum degree at least two
such that the set of vertices with degree at least three is independent.
Let G be a graph of order n such that δ(G) ≥ 2 and the set of vertices
with degree at least three is independent. We can assume that G is
connected for otherwise the result follows by applying the induction
hypothesis on each component of G.

If ∆(G) = 2, then G = Cn. Since for the cycle Cn, i(Cn) = ⌈n/3⌉,
we obtain that ir2(Cn) ≤ 2 ⌈n/3⌉ and, clearly, 2 ⌈n/3⌉ ≤ 4

5n for all
n ≥ 8. Since ir2(C7) = 5 < 4

5n, we deduce that ir2(Cn) ≤
4
5n. Hence,

assume that ∆(G) ≥ 3, and let A = {v ∈ V (G) | deg(v) ≥ 3} and
B = V (G)−A. Consider the A-ear paths and keep the same notations
as defined in the proof of Proposition 3. Note that A =

⋃
P∈QXP ,

V (G) = A ∪
⋃

P∈Q V (P ) and 1 ≤ |XP | ≤ 2 for each P ∈ Q. Assume
first that there exists an A-ear path P such that δ(G−V (P )) = 1. Since
G is simple, this means that |V (P )| ≥ 2 and some vertex of G of degree
three is adjacent to the end-vertices of P . Thus, |XP | = 1. In that
case, let XP = {a} and NG(a)−V (P ) = {b}. Clearly, b ∈ B (since A is
independent) and, thus, there is a unique A-ear path P ′ in which b is an
end-vertex of P ′. Let c be the other end-vertex of P ′ (possibly b = c).
Let G′ be the graph resulting from the deletion of vertex a and all
vertices of P and P ′. Then δ(G′) ≥ 2 and by the induction hypothesis,

ir2(G
′) ≤ 4|V (G′)|

5 . On the other hand, sinceG′′ = G[V (P )∪V (P ′)∪{a}]
is isomorphic to C|V (P )|+1,|V (P ′)|, by Proposition 2, G′′ has an I2-RDF g

such that ω(g) ≤ 4n(G′′)
5 and g(c) = ∅. Now, for any ir2(G

′)−function,
the function h defined on V (G) by h(x) = f(x) for all x ∈ V (G′) and
h(x) = g(x) for all x ∈ V (G′′) is an I2-RDF of G. Therefore,
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ir2(G) ≤ ir2(G
′) + ir2(G

′′)

≤
4|V (G′)|

5
+

4|V (P ) ∪ V (P ′) ∪ {a}|

5
=

4n

5
.

In the next, we can assume that δ(G − V (P )) ≥ 2 for each A-
ear path P ∈ Q. It follows that |XP | = 2 for each A-ear path P ∈ Q.
Assume thatQ−(Q1∪Q2∪Q3∪Q4) 6= ∅, and let P ∈ Q−(Q1∪Q2∪Q3∪

Q4). By Proposition 1, P has an I2-RDF g such that ω(g) ≤ 4|V (P )|
5

and g assigns ∅ to the end-vertices of the path P . Now, let G′ be
the graph obtained from G′ by removing all vertices of P . By the

induction hypothesis, we have ir2(G
′) ≤ 4|V (G′)|

5 . Clearly, for every
ir2(G

′)-function f , the function h defined on V (G) by h(x) = f(x)
for all x ∈ V (G′) and h(x) = g(x) for all x ∈ V (P ), is an I2-RDF
of G and, thus, ir2(G) ≤ ir2(G

′) + ir2(P ) ≤ 4
5n. Assume now that

Q = Q1 ∪ Q2 ∪ Q3 ∪ Q4. Then G ∈ F and the result follows from
Proposition 3. �
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