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Abstract

A new form of the hidden discrete logarithm problem is pro-
posed as cryptographic primitive for the development of the post-
quantum signature schemes, which is characterized in performing
two masking operations over each of two elements from a hidden
finite cyclic group used to compute the public-key elements. The
latter is contained in the set of non-invertible elements of the fi-
nite non-commutative associative algebra with a two-sided unit.
One of the said masking operations represents the automorphism-
map operation and the other one is the left-sided (right-sided)
multiplication by a local right-sided (left-sided) unit acting on
the said hidden group. Two 4-dimensional algebras are consid-
ered as possible algebraic supports of the developed signature
schemes. The formulas describing the sets of local left-sided and
right-sided units are derived. Periodic functions set on the base
of the public parameters of the signature scheme contain periods
depending on the discrete logarithm value, but every of them
takes on the values relating to different finite groups contained in
the algebraic support. Therefore one can expect that the compu-
tational difficulty of breaking the introduced signature schemes
on a hypothetic quantum computer is superpolinomial.
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1 Introduction

Currently, the development of the post-quantum (PQ) public key (PK)
cryptographic algorithms and protocols is considered as one of chal-
lenges in the area of applied and theoretic cryptography [1], [2]. A
response to this challenge is the world competition for the develop-
ment of the PQ PK cryptoschemes, announced by NIST in 2016 [3],[4].
The problem of the development of the practical PQ PK cryptoschemes
is connected with the following items: i) quantum computers can sud-
denly appear in practice in near future; ii) at present the most widely
used PK cryptoschemes are based on computational difficulty of the
discrete logarithm problem (DLP) and the factorization problem (FP),
however, each of these problems can be solved on a hypothetic quantum
computer in polynomial time [5]-[7].

Computationally hard problems, other than DLP and FP, are used
as primitives of the PQ PK cryptoschemes [9],[10], one of which is the
hidden DLP (HDLP) [8]. The HDLP seems to be a promising primitive
for designing PQ signature schemes [11],[12], PQ public key-agreement
protocols [13],[14], and PQ commutative ciphers [15]. For the first time
the HDLP had been defined in finite algebra of quaternions using the
automorphism-map as the operation masking the hidden cyclic group
in which the basic exponentiation operation is performed [8]. How-
ever, that form of the HDLP can be reduced to the ordinary DLP in
a finite field [16]. Therefore, in the design of the HDLP-based signa-
ture scheme [17], using the finite quaternion algebra as its algebraic
support, a strengthened form of the HDLP was applied. In the signa-
ture scheme [17], the basic exponentiation operation N* (where x is a
private value) is performed in the hidden cyclic group generated by a
non-invertible element N of the algebra and the PK includes two ele-
ments Y = GoN®oG tand Z=QoNoQ™ !, where G and Q are two
secret invertible elements that define two different automorphism-map
operations each of which is mutually commutative with the exponenti-
ation operation.

In the present paper we show that, setting the hidden cyclic group
generated by a non-invertible element of the finite non-commutative
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associative algebra (FNAA) with a global two-sided unit, provides pos-
sibility to design the HDLP-based signature schemes in which, during
the process of generating the PK, the left-sided (rightleft-sided) mul-
tiplication by a local right-sided (left-sided) unit is used as additional
masking operation performed on the element N* (N) of the hidden
group. Two 4-dimensional FNAAs are considered as algebraic support
of the developed signature scheme. The formulas describing the sets of
local left-sided and right-sided units are derived.

2 The used algebraic support

Usually the multiplication operation in a m-dimensional FNAA (de-
noted as o) is defined by the following formula

m—1 m—1 m—1m—1
Ao B = (Z aiei> o ijej = Z Zaibj (eioej)7 (1)
i=0 j=0 Jj=0 =0

where A = Y7 " aje; and B = Z;-”:_Ol bje; are m-dimensional vectors;
e1, e, ... ey, are basis vectors. The product e; oe; for all possible pairs
of the integers ¢ and j is to be replaced by some single-component
vector Aey indicated in the cell at intersection of the ith row and the
jth column of so called basis vector multiplication table (BVMT). The
value \ # 1 is called structural coefficient.

2.1 A first 4-dimensional FINAA

One can easily show that the BVMT, shown as Table 1, defines over
the ground finite field GF(p) the 4-dimensional FNAA containing the
global two-sided unit

1 1 1 A
E_<)\—1’1—)\’1—)\’)\—1>' @)

The global means that the value E acts as unit element on every vector
of the algebra. If each of the vector equations Ao X = F and X o0 A =
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Table 1. The BVMT setting the 4-dimensional FNAA (X # 0; A # 1).

o ‘ (STh) (3] €9 €3

(STh) )\eo )\el (STh) (S5}
(s3] €o (s3] €o el
€9 )\62 )\eg €9 €3
€3 €9 €3 €9 €3

E has the same solution A~', then the vector A is called invertible
and the vector A~! is called inverse to the vector A. In the FNAA
with the multiplication operation defined by Table 1 the vector A =
(ag, a1, az,as) is invertible, if the following invertibility condition holds
true

a1a9 75 apas. (3)

Correspondingly, the non-invertibility condition is as follows
a1as = apas. (4)

Using the condition (4) one can easily compute the number of the non-
invertible vectors that is equal to n = p3 + p?> — p. Therefore, for the
order € of the multiplicative group of the considered algebra (number
of its invertible vectors) one can get Q = p* —n:

Q=pp-1)(p*-1). (5)

In the algebra there exists no other element, except the global unit F,
which acts as unit element on an invertible vector. On the contrary,
there exists a variety of local left-sided and local right-sided units act-
ing on some fixed non-invertible vector N and some subsets of non-
invertible vectors connected with the vector N.

To derive the formula describing the set of the local left-sided units,
one should consider the solutions of the vector equation X o N = N,
where N = (ng,n1,ne,ng) is a vector satisfying the non-invertibility
condition niny = ngng, which can be reduced to the following two
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independent systems of two linear equations:

(Ang + n2) xo + (no + n2) 1 = no; (©)
(An1 +n3) zo + (n1 + n3g) x1 = ny;
(Ang + n2) x2 + (ng + n2) x3 = na; 7)
(/\711 + ’I’L3) To + (n1 + ’I’L3) xr3 = ns.

The main determinant of each of the latter systems is equal to zero.
The auxiliary determinants of the system (6) are

Ag = ng (n1 + ng) —nq (no + ng) = (nong — 77,177,2) =0.
Al =n ()\no + ng) — ng (Ang +n3) = ning — nons = 0.
For the system (6) we have p solutions described by the formula

ng — ()\’I’Lo + 7”L2) o
ng + N9

xr1 =

where g = 0,1,...,p— 1, if ng + no # 0, or by the formula

ng — (no + n2) T
Ang + no

Trog =

where 1 = 0,1,...,p—1, if Ang+ns # 0. The auxiliary determinants
of the system (7) are also equal to zero:

Ay = ng (’I’Ll + ng) —ns (’I’LO + ng) =ning — ngnz = 0.

A3z =ng (/\n(] + ’I’LQ) — N2 ()\’I’Ll + 7”L3) =\ (nong — ’I’L1’I’L2) =0.

The system (7) has p solutions described by the formula x3 =

—(\ .
%, where zo = 0,1,...,p — 1, if ng + ny # 0, or by the

formula xo = %, where 3 =0,1,...,p — 1, if Ang +ng # 0.
Thus, for the non-invertible vector IV that satisfies the condition
no + ng # 0 there exist p? different left-sided units L = (lo,l1,l2,13)

described by the formula

I_ <d ng — (Ang +ng) d A ng—()\no—i-ng)h)
N ’ no + n2 B no + N9

(8)
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where d,h = 0,1,...,p — 1. Using the non-invertibility condition (5),
one can easily derive the following formula describing all local left-sided
units that are non-invertible vectors:

e (g (Ang 4+ n9) d n2 ; Mon2 — (Ang + n2) nad (9)
’ no + n2 "ng ng + nonsg ’

where d = 0,1,...,p — 1. Since the set (9) includes p different non-
invertible vectors, one can conclude that the set (8) contains p* — p
invertible and p non-invertible elements of the considered 4-dimensional
FNAA.

To derive the formula describing all local right-sided units relating
to the non-invertible vector IV, one is to consider the solutions of the
vector equation NV o X = N that can be reduced to the following two
systems of equations:

{ (Ang 4+ n1) xo + (no + n1) z2 = no; (10)

(Ang 4+ ng) xo + (ng + n3) ro = no;

(11)

(Ang 4+ n1) x1 + (ng + nq) 3 = ny;
(/\712 + ’I’L3) xr1 + (ng + ’I’L3) xr3 = n3.

Each of the systems (10) and (11) has the main determinant equal to
zero. The auxiliary determinants of each of the systems (10) and (11)
are equal to zero. Therefore, for the system (10) we have p solutions

no—()\no—l—nl )(Eo

described by the formula xo = no+11

, where xg = 0,1,...,p—1,

no—(no+n1)x
Ano+n1

if ng +mny # 0, or by the formula x¢g =
0,1,....,p—1,if Ang +ny # 0.

For the system (11) we have p solutions described by the formula
n1—(Ano+ni)a:

, where z1 =

T3 = oL , where zo = 0,1,...,p—1, if ng+n1 # 0, or by the
formula x; = %, where 3 =0,1,...,p — 1, if Ang +nq # 0.

Thus, p? different right-sided units R = (rg, 1,72, 73) relate to the
non-invertible vector N satisfying the condition ng + ny # 0, and the
set of the R-units is described by the formula

j <d,h, ng — ()\no—knl)d’nl — ()\no—i-nl)h)
no + nq no +nq

; (12)
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whered,h =0,1,...,p—1. One can easily derive the formula describing
all of p local right-sided units that are non-invertible vectors and show
that the set (12) includes p? — p invertible and p non-invertible 4-
dimensional vectors. The sets (8) and (12) contain p common vectors
among which only one vector Ey is non-invertible. These p units are
local two-sided units. The single local two-sided unit En relating to
the vector N represents the unit of the cyclic group generated by N.

2.2 A second 4-dimensional FNAA

To obtain a higher performance of the signature scheme one can
define the vector multiplication operation using a BVMT contain-
ing eight cells with the structural constant equal to zero. The ap-
propriate BVMT defining the 4-dimensional FNAA with global two-
sided unit £ = (u‘l,)\_l,0,0) is shown as Table 2. Every vector
A = (ag,a1,a9,as) is invertible, if the following invertibility condition
holds true

apail 75 asdas. (13)

Respectively, the vector N = (ng, n1,n2,n3) is a non-invertible vector,
if the following non-invertibility condition holds true
noniy = nans. (14)

The algebra contains p® + p? — p non-invertible vectors and

Q=pp-1)(p*-1)

invertible ones, exactly like in the case of FNAA defined by Table 1.
One can derive the following formulas describing the sets of the
local left-sided units, local right-sided units, and local two-sided units
relating to the non-invertible vector NV:
n1

Ly=(d h 21— o
N <d7 7/“13( /\h)v )\n2

)

=), )
where d,h =0,1,...,p—1;
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Table 2. The BVMT setting the 4-dimensional FNAA (A # 0; u # 0).

o ‘ €p (S3] €9 e3
ey | pep 0 0 nes
(s3] 0 )\e1 )\eg 0
ey | pes 0 0 nel
€3 0 )\83 )\e(] 0

no
0 (1-
Mg( pd) e

ny

Ry = <d, h, (1- /\h)> , (16)

where d,h =0,1,...,p—1;

Ay — png + pPnod  no no
Ey = — (1 - — (1 - 1
= (o AEER IS 20 (1, 2 - ) (17

where d =0,1,...,p— 1.

Each of the sets (15) and (16) includes p? — p invertible vectors and
p non-invertible ones. The set (17) includes p— 1 invertible vectors and
one non-invertible vector.

3 The hidden DLP and a masked form of it

The DLP is set in a cyclic group I of prime order ¢ as follows: Y’ = Z'%,
where Z' is a generator of the group I' and the value x < ¢ is unknown
integer. Computation of the value x, when the group elements Z’' and
Y’ are known, is called DLP. The HDLP is set so that at least one of
the values Z’ and Y’ is masked (hidden). When setting the HDLP, the
cyclic group I is set as a subset of elements of a FNAA. The exponenti-
ation operation Z’* contributes mainly to the hardness of both the DLP
and the HDLP, therefore it is called the base operation. The auxiliary
operations used to mask the values Z’ and Y’ are called the masking
operations. When developing the HDLP-based PK cryptoscheme, one
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should use the masking operations that are mutually commutative with
the base exponentiation operation. The automorphism-map [8], [17]
and homomorphism-map [14] operations are examples of masking op-
erations. A particular form of the HDLP is defined by the used masking
operations. Development of the PK cryptoschemes of different types
is connected with applying different versions of the HDLP. When de-
veloping the PK cryptoschemes, to have possibility to select elements
of order ¢ having large size (> 256 bits), usually there are used the
FNAAs defined over the field GF(p) with characteristic p = 2¢ + 1,
where ¢ is a prime.

For the first time HDLP was applied for development of the public
key-agreement scheme [8]. That form of HDLP includes masking only
one of two elements Z' and Y’ and can be defined as follows:

HDLP: Given a FNAA, an algebra element Z’ generating a cyclic
group of prime order ¢, an invertible element ) of order ¢, which sat-
isfies condition Z' 0 Q # Q o Z', and an element Y = tgu (Z'") =
Q"o Z" oQ™", where w < ¢ and x < ¢ are non-negative integers; 1w
is an automorphism-map operation; find the algebra element Q" and
integer x.

In the signature scheme [17] an enhanced form of the HDLP is used,
which is characterized in masking both the element Z’ and the element
Y’

Enhanced HDLP: Given a FNAA and non-invertible algebra el-
ements Z =g (Z) =GoZ" oG Y =g (Y*) =Qo Z" 0 Q71,
and invertible element T' = Q o G~!, where invertible elements @ and
G have order ¢; the conditions Z' 0 Q # Qo Z', Z' o G # G o Z', and
Go(@ # QoG holds true; 1 < x < ¢ is a non-negative integer; find the
value of x.

One can note that in the latter definition only the value z is to be
found, since the signature can be computed using the value x (discrete
logarithm in the hidden cyclic group generated by the element Z’) and
the public parameters Z and Y. When using a non-invertible algebra
element N as parameter Z’, one can hide each of the elements Z’/ =
N and Y/ = N? performing on it two different masking operations,
namely, the ¢ operation and an additional operation connected with
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multiplication by a local single-sided unit.

For example, the first masking operation can be implemented in
the form ¢r(N*) = N¥ o Ly to transform the vector N* and in the
form r(N) = RyoN to transform the vector N. The automorphism-
map operations g and ¥ can be used as the second masking op-
eration when transforming the vectors N% and N correspondingly:
Y = 9¢q (pr(N*)) = Qo N* o Ly o Q7" and Z = ¢a((pr(N))) =
G o Ry oNoG™! One can easily show that the following equalities
hold true for arbitrary non-negative integers k and z:

(o (V) = 01 (V)5 (pr(N)* = g (N*).

Thus, each of the said additional masking operations is mutually com-
mutative with 1) operation. Due to such property of the used mask-
ing operations the developed signature scheme (see next Section 4)
performs correctly. The introduced signature scheme is based on the
following form of the HDLP.

Masked HDLP: Given a FNAA, non-invertible algebra elements
Z = ¢g(pr(N)) = GoNoLyoG ' and Y = g (¢r(N*)) =
QoRyoN¥o@Q™ !, and invertible element 7' = Qo L]_V1 oG~ where N
is a non-invertible algebra element generating a cyclic group of order
q; Ly is local left-sided unit for N; Ry is local right-sided unit for N;
the invertible algebra elements Q and G have order ¢ and satisfy the
conditions NoQ # QoN, NoG # GoN,and GoQ # QoG; 1 <z < q
is non-negative integer; find the value of x.

In Subsection 4.4, it is described method for computing the signa-
ture using public parameters Z and Y and the value z, therefore, to
break the proposed signature scheme, it is sufficient to find only the
unknown value of discrete logarithm in the hidden cyclic group gener-
ated by the unknown element N. In Subsection 4.5, it is shown that
an algorithm for forging a signature can be used to compute the value
x, i.e. the proposed signature scheme is as secure as the masked HDLP
is computationally difficult.
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4 A new signature scheme

4.1 Private and public keys

Each of the FNAA described in Section 2 can be used as algebraic
support of the proposed signature scheme. The algebras are to be
defined over the field GF(p), where p = 2¢ + 1 and ¢ are two prime
numbers having large size (> 256 bits). One can easily generate a
random non-invertible vector N that has order equal to the prime q.
Such vector defines a finite cyclic group of the order ¢. The vector N
is one of the elements of private key. The next element of private key
is the non-negative integer x < ¢ which is used to compute the vector
N=.

Procedure of the PK generation is as follows:

1. Generate a random invertible vector ) of the order ¢ and a
random local left-sided unit Ly, that is an invertible vector, which
satisfy the following conditions: Qo N # No@ and RyoN # NoRy.

2. Compute the first element Y of the PK:

Y:Qo]\fmoLNoQ_1

3. Generate a random invertible vector G of the order ¢ and a
random local right-sided unit Ry, that is an invertible vector, which
satisfy the following conditions: GoN # NoG and RyoN # NoRy.

4. Compute the second element Z of the PK:

Z=GoRyoNoG %
5. Compute the third element T of the PK:
T:QOLJ_VloG_l.

This procedure outputs the PK in form of the triple of the vectors
(Y, Z,T).

All other elements used to generate the PK are secrete and part
of them represent the private key in the form of the integer x and
the triple of the vectors (Q,N , G_l) . Other secret elements are not
attributed to the private key, since they are not used in the signature
computation procedure.
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4.2 Signature generation and verification procedures

Generation of the signature (e, s) to the electronic document M is to
be performed as follows:

1. Select a random integer k < ¢ and, using the elements ) and
G~ of the private key, compute the vector

V=QoNoG.

2. Using a specified hash-function Fj, that satisfies the collision-
resistance requirement, compute the value e of the hash function from
the document M to which the vector V' is attached: e = Fj, (M, V).

3. Compute the value s = k — ze mod gq.

One should note that for signing a document M unique integer k
is to be used. If two different documents are signed using the same
value k, then one can compute the private value x from two signatures.
Therefore the value of & is to be generated at random.

Signature verification procedure is executed as follows:

1. Using the PK (Y, Z,T') compute the vector

Vi=Y®oToZ".
2. Compute the value ¢/ = Fj, (M, V).

3. If ¢ = e, then the signature is accepted as genuine. Otherwise
it is rejected.

4.3 Correctness of the signature scheme

Correctness proof of the signature scheme is as follows:
Vi=Yo(T)o Z® =
=(QoN"oLyoQ ") o(T)o(GoRyoNoG ) =
:QoNegcoLNoQ_loQo[/]_VloG_loGoRNo]\fSoG_1 =
:QO]\TW"'SOG_1 = Qo]\feac"'k_egcoG_1 :QoNkoG_1 =V =
= Fp(M, V') = F(M,v) = ¢ =e.
(18)
Thus, the signature (e, s) computed correctly will pass the verification
procedure as genuine signature.
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4.4 Alternative procedure for computing a signature

One can significantly reduce the size of the private key replacing the
described signature verification procedure by the following one:

1. Select two random integers k1 < ¢ and ko < ¢. Then, using the
PK (Y, Z,T), compute the vector

V=Y"MoTozk,

2. Compute the value e = Fj, (M, V).

3. Compute the value s = kg + (k1 — e) 2 mod q.

Using the last version of the signature generation procedure one
gets the private key in the form of one integer value x. However, after
such modification, computing the signature will require performing one
additional exponentiation operation.

The existence of an alternative signature generation procedure
shows that it is sufficient to know only one secret value to forge a
signature, namely, the value of . In Subsection 4.5 this fact is used to
perform formal security proof for the developed signature scheme.

4.5 On formal security proof

The method [19], proposed for providing formal security proof of the
Schnorr DLP-based signature scheme [18], is well applicable to the de-
veloped HDLP-based signature scheme. Like in the Schnorr signature
algorithm [18], in the developed signature scheme during the signature
generation process the base exponentiation operation N ks performed
before computation of the first signature element that is the hash value
e = F,(M,V), where V = QoN*oG~'. In the formal security proof [19]
one supposes that the hash function F}, is free of some properties that
the signature forger can take advantage of [20]. Such assumption is
reasonable in the case of using a collision-resistant hash-function.

In the method [19] it is considered a forger that can compute the
signature element equally well for different hash functions Fj, and Fy.
Suppose the forger runs two computer programs that use the same
input data and the same random integer k, but different hash functions.
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He will get two signatures (e, s) and (¢, s') with the fixed value V' and
values e = Fj,(M,V) and ¢ = F}(M,V). For some fixed integer k
and fixed hash-function value e (¢/) there exists unique value of the
second signature element s (s”). Therefore, for two signatures computed
by hypothetic forging computer program one can write the following
equalities: s = k — ex mod ¢ and s’ = k — ¢’z mod ¢ from which the
forger can easily compute the private value z = (s—s')(e’ —e)~! mod gq.

The question of how a computer program can calculate the value of
V when the values of @), N, and G are unknown requires explanation.
From the alternative procedure for calculating the signature, it can be
seen that the calculation by the formula V = Y*10T0Z"2 gives the same
result as the calculation by the formula V = QoNFo G~ at k = kiz +
ko mod ¢. Thus, fixing two values ki and ks results in fixing the value k.
Actually, due to the existence of an alternative signature regeneration
procedure, the reductionist security proof method [19] works well for
the developed signature scheme.

4.6 Computational complexity of the signature scheme

Computational complexity of the procedures for i) generating private
and public keys, ii) computing a signature, and iii) verifying a signature
can be estimated in multiplication operations in the field GF(p) and
in exponentiation operations in the used FNAA (see Table 3) taking
into account that i) one exponentiation in the FNAA used as algebraic
support equals on the average to 384 multiplications o, ii) computation
of the value U~! for some invertible vector U is performed as solving
the vector equation U o X = FE, and iii) the local units Ry and Ly
are computed with the use of formulas (8) and (12) for the case of the
first 4-dimensional algebra and (15) and (16) for the case of the second
4-dimensional algebra.

The obtained estimate results show that the proposed signature
scheme is sufficiently fast. For example, computational complexity of
the signature generation (signature verification for the case of 64-bit
public exponent) in the 2048-bit RSA cryptoscheme can be evaluated
as ~ 3216 ( ~ 3.2'") multiplications in GF(p) with 256-bit prime p.
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Table 3. A rough estimate of the implementation complexity.

Procedure # multiplications in GF(p) | # exponentia-
for for the first (second) FNAA | tions in FNAA
generating keys < 3.2 (< 3.219) <2
computing signature 3210 (3.29) 1
verifying signature 3.2t (3.210)
alternative
computing signature 3.2 (3.210) 2

5 Discussion and conclusion

The expected PQ security of the proposed signature scheme is con-
nected with the fact that a periodic function constructed on the basis
of public parameters of the scheme takes on the values from many dif-
ferent groups contained in the FNAA used as algebraic support. For
example, the function f(i,j) = Y% o T o Z/ contains a period with the
length depending on the value x, however, the values of f(7,j) are not
limited to the values of any one group. Indeed, this function can be
represented in the following form:

fi,§) =Qo Nt oGt = F(i,j) oV,

where F(i,7) = Q o Nt/ o Q7! is the function taking on the values
in frame of the cyclic group generated by the generator Q o N o Q!
and the vector V = Q o G~ ! is fixed. Due to multiplying different
elements belonging to a fixed cyclic group by a fixed vector that has
value out of this group, the function f(i,7) takes on values belonging to
different groups contained in the FNAA, whereas a quantum computer
effectively finds the period lengths of a function whose values lie within
a given finite group [6],[7].

Two different 4-dimensional FNAA with a global two-sided unit
have been considered as algebraic supports of the proposed signature
scheme. However, the 6-dimensional and 8-dimensional FNAAs repre-

342



Digital signature scheme set in a hidden cyclic group

sent significant interest for implementing other versions of the proposed
signature scheme. Probably, using the FNAAs with dimension m > 6
it is reasonable to invent some other signature schemes such that their
public parameters will not allow one to compose the periodic func-
tions containing a period having the length depending on the private
value . Such potential signature schemes are particularly interesting
as candidates for PQ PK cryptoschemes.
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