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Abstract

A multiobjective problem of integer linear programming with
parametric optimality is addressed. The parameterization is in-
troduced by dividing a set of objectives into a family of disjoint
subsets, within each Pareto optimality is used to establish dom-
inance between alternatives. The introduction of this principle
allows us to connect such classical optimality sets as extreme and
Pareto. The admissible perturbation in such problem is formed
by a set of additive matrices, with arbitrary Hölder’s norms spec-
ified in the solution and criterion spaces. The lower and upper
bounds for the radius of strong stability are obtained with some
important corollaries concerning previously known results.

Keywords: Multiobjective problem, integer programming,
Pareto set, a set of extreme solutions, stability radius, Hölder’s
norms.

1 Introduction

Under certain restrictions on the type of space and the properties of the
norm, it may turn out that an efficient solution of a specific optimiza-
tion problem is preserved as a solution for all problems within some
nonzero neighborhood in a metric space. Such conservation can be in-
terpreted as the stability of the solution, and the non-existence of such
a nonzero neighborhood can be considered as its instability. Quanti-
tative characteristic of such a neighborhood can be called the stability
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radius. The widespread use of discrete optimization models has at-
tracted the attention of many experts to the study of various aspects
of stability, as well as the problems of parametric and post-optimal
analysis of both scalar (single-criterion) and vector (multicriteria) dis-
crete optimization problems (see, for example, the monograph [1], the
review [2] as well as the bibliography therein).

The main purpose of works based on the qualitative approach is to
obtain conditions guaranteeing the problem possesses some beforehand
given property of stability to small changes of the initial data. In the
framework of the qualitative direction, the authors focus on identifying
various types of stability of the problem [3, 4, 5, 6, 7, 8, 9], establishing
a relationship between different types of stability [10], as well as on
searching and describing the stability region of the optimal solution
[11]. In some recent papers [12, 13], the proximity of some approaches
is analyzed at the level of both problem statements and interpreting
the common results.

The quantitative direction, described in sufficient detail in [12] (see
also, [2] and [13]), is associated with obtaining estimates of permissible
changes in the initial data of the problem, preserving a certain prede-
termined property of optimal solutions. For multiobjective problems
this direction is developed in series of papers of V. Emelichev et. al
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Attempts to elaborate
algorithms for calculating (and approximating) such estimates have
been made in [26, 27, 28]. The need for such researches is caused by
two basic reasons. First, for checking correctness of a concrete opti-
mization model it is important to know borders of change of the input
parameters, for which the solution of an optimization problem is not
misrepresented. Secondly, there is an opportunity to build algorithms
for solving discrete optimization problems, which are based on proce-
dures of finding a stability radius. For example, such procedures can
be useful for constructing algorithms solving a sequence of problems of
similar type with initial data varying insignificantly.

The concept of stability radius was introduced and investigated for
the first time by V. Leontev [29, 30] for the linear scalar trajectory
problem, i.e. for the problem on a system of subsets of a finite set with
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the linear objective function. Obviously, the most discrete optimization
problems may be formulated as a particular case of integer linear pro-
gramming. Therefore, the concept of stability radius naturally arises
therein. Stability radius of integer linear programming problem is de-
fined as the limiting level of independent perturbations of the vector
criterion parameters for which new efficient solutions do not appear.
Relaxing the demand of nonappearance of new efficient solutions we
come to the concept of the strong stability introduced earlier for some
scalar and vector discrete optimization problem [2, 3, 16]. This type
of stability is understood as existence of a small neighborhood of prob-
lem parameters such that for any perturbation there exists an efficient
solution preserving its Pareto optimality, although appearance of new
efficient optima is not prohibited.

The paper is organized as follows. In Section 2, we formulate para-
metric optimality and introduce basic concepts. Section 3 contains
some auxiliary statements about norms and several lemmas used later
for the proof of the main result. In Section 4, we formulate and prove
the main result regarding the lower and upper bounds for the strong
stability radius. Section 5 lists most important corollaries.

2 Main definitions and problem formulation

Consider a multicriteria integer linear programming problem (ILP) in
the following formulation. Let C= [cij] ∈ Rm×n be a matrix whose
rows are denoted by Ci= (ci1, ci2, ..., cin) ∈ Rn, i ∈ Nm={1, 2, ...,m},
m ≥ 1. Let x= (x1, x2, ..., xn)

T ∈ X ⊂ Zn, n ≥ 2, and the number
of elements of the set X is finite and greater than one. On the set of
(admissible) solutions X, we define a vector linear criterion

Cx= (C1x,C2x, . . . ,Cmx)
T → min

x∈X
. (1)

In the space Rk of arbitrary dimension k ∈ N, we introduce a
binary relation that generates the Pareto optimality principle [31]:

y ≻ y′ ⇔ y ≥ y′ & y 6= y′,
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where y= (y1, y2, ..., yk)
T ∈ Rk, y′= (y′1, y

′
2, ..., y

′
k)

T ∈ Rk.

The symbol ≻, as usual, denotes the negation of the relation ≻.
Let ∅ 6= I ⊆ Nm, |I| =v, and let CI denote the submatrix of the

matrix C ∈ Rm×n consisting of rows of this matrix with the numbers
of the subset I, i.e.

CI= (Ci1 , Ci2 , ..., Civ )
T , I={i1, i2, ..., iv},

1 ≤ i1<i2< ... <iv ≤ m, CI ∈ Rv×n.

Let s ∈ Nm, and let Nm=∪k∈Ns
Ik be a partition of the set Nm into s

nonempty sets, i.e. Ik 6= ∅, k ∈ Ns, and i 6= j ⇒ Ii∩Ij=∅. For this par-
tition, we introduce a set of (I1, I2, ..., Is)-efficient solutions according
to the formula:

Gm(C, I1, I2, ..., Is) ={x ∈ X : ∃k ∈ Ns ∀x′ ∈ X (CIkx ≻ CIkx
′)}.
(2)

Sometimes for brevity we denote this set by Gm(C).
Obviously, any Nm-efficient solution x ∈ Gm(C,Nm) (s= 1) is

Pareto optimal, i.e. efficient solution to problem (1). Therefore, the
set Gm(C,Nm) is the Pareto set [31]:

Pm(C) ={x ∈ X : ∀x′ ∈ X (Cx ≻ Cx′)}.

We also use the following set:

X(x,C) ={x′ ∈ X : Cx ≻ Cx′},

which is a set of solutions x′ ∈ X such that x′ dominates x in Pareto
sense in problem (1). Therefore,

Pm(C) ={x ∈ X : X(x,C) =∅}.

In the other extreme case, when s=m, Gm(C, {1},{2}, ...,{m}) is a set
of extreme solutions (see e.g. [32]). This set is denoted by Em(C).
Thereby, we have:

Em(C) ={x ∈ X : ∃k ∈ Nm ∀x′ ∈ X (Ckx ≻ Ckx
′)}=
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{x ∈ X : ∃k ∈ Nm ∀x′ ∈ X (Ckx ≤ Ckx
′)}.

It is easy to see that the set of extreme solutions is composed of
the best solutions for each of the m criteria. So, in this context, the
parameterization of the optimality principle refers to the introduction
of such a characteristic of the binary preference relation that allows us
to connect the well-known choice functions, parameterizing them from
the Pareto to the extreme.

Denoted by Zm(C, I1, I2, . . . , Is), the multicriteria ILP problem
consists in finding the set Gm(C, I1, I2, . . . , Is). Sometimes, for the
sake of brevity, we use the notation Zm(C) for this problem.

It is easy to see that the set P 1(C) =E1(C) is the set of optimal
solutions to the scalar (single-criterion) problem Z1(C,N1), where C ∈
Rn.

For any nonempty subset I ⊆ Nm we introduce the notation

P (CI) ={x ∈ X : ∀x′ ∈ X (CIx ≻ CIx
′)},

X(x,CI) ={x′ ∈ X : CIx ≻ CIx
′)},

i.e.
P (CI) ={x ∈ X : X(x,CI) =∅}.

Then, by virtue of (2), we obtain

Gm(C, I1, I2, . . . , Is) = {x ∈ X : ∃k ∈ Ns (x ∈ P (CIk))} . (3)

Therefore, we have

Gm(C, I1, I2, . . . , Is) = ∪
k∈Ns

P (CIk), Nm= ∪
k∈Ns

Ik.

It is obvious that all the sets given here are nonempty for any matrix
C ∈ Rm×n.

In the space of solutions Rn, we define an arbitrary Hölder’s norm
lp, p ∈ [1,∞], i.e. by the norm of a vector a= (a1, a2, ..., an)

T ∈ Rn we
mean the number

‖a‖p=

{
(

∑

j∈Nn
|aj |

p
)1/p

if 1 ≤ p<∞,

max{|aj| : j ∈ Nn} if p=∞.
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In the space of criteria Rm, we define an arbitrary Hölder’s norm lq,

q ∈ [1,∞], and lp 6= lq. By the norm of the matrix C ∈ Rm×n with the
rows Ci, i ∈ Nm, we mean the norm of a vector whose components
are the norms of the rows of the matrix. By that, we have

‖C‖pq=‖(‖C1‖p,‖C2‖p, . . . ,‖Cm‖p)‖q.

Obviously,
‖Ci‖p ≤ ‖CI‖pq ≤ ‖C‖pq, i ∈ I ⊆ Nm. (4)

So, it is easy to see that for any a= (a1, a2, . . . , an)
T ∈ Rn with

|aj | =α, j ∈ Nn,

the following equality holds

‖a‖p=αn
1/p (5)

for any p ∈ [1,∞].
In the solution space Rn along with the norm lp, p ∈ [1,∞], we will

use the conjugate norm lp∗, where the numbers p and p∗ are connected,
as usual, by the equality

1

p
+

1

p∗
= 1,

assuming p∗= 1 if p=∞, and p∗=∞ if p= 1. Therefore, we further sup-
pose that the range of variation of the numbers p and p∗ is the closed
interval [1,∞], and the numbers themselves are connected by the above
conditions.

Further we use the well-known Hölder’s inequality

|aT b| ≤ ‖a‖p‖b‖p∗ (6)

that is true for any two vectors a= (a1, a2, . . . , an)
T ∈ Rn and

b= (b1, b2, . . . , bn)
T ∈ Rn and for any p ∈ [1,∞].

Perturbation of the elements of the matrix C is imposed by adding
matrices C ′ from Rm×n to it. Thus, the perturbed problem Zm(C+C ′)
has the form

(C + C ′)x→ min
x∈X

,

254



On one type of stability for multiobjective ILP problem

and the set of its (I1, I2, ..., Is)-efficient solutions isGm(C+C ′, I1, I2, . . . ,

Is).
For an arbitrary number ε> 0, we define the set of perturbing matrices

Ωpq (ε)=
{

C ′ ∈ Rm×n : ‖C ′‖pq<ε
}

with rows C ′
i, i ∈ Nm.

Following [16, 34], the strong stability radius of the ILP problem
Zm(C, I1, I2, . . . , Is), m ∈ N, (called T1-stability radius in the termi-
nology of [1, 2, 8, 9]) is the number

ρ=ρms (p, q)=

{

supΞ if Ξ 6= ∅,
0 if Ξ=∅,

where

Ξ=
{

ε> 0 : ∀C ′ ∈ Ωpq(ε)
(

Gm(C)∩Gm(C + C ′) 6=∅
)

}

.

Thus, the strong stability radius of the problem Zm(C) determines
the limit level of perturbations of the elements of the matrix C that
preserve optimality of at least one (not necessarily the same) solution of
the set Gm(C) of the original problem. For any C ′ ∈ Ωpq (ε) and ε> 0,
it is obvious that Gm(C)∩Gm(C + C ′)6=∅ if Gm(C) = X. Therefore,
the problem Zm(C) with Ḡm(C) = Gm(C)\X = ∅ is called non-trivial.

The problem Zm(C) is called degenerated if the following formula
holds

∀x 6∈ Gm(C) ∀a ∈ Rn ∃x0 ∈ Gm(C) (aT (x− x0) ≥ 0).

If the negation of the formula above is true, i.e.

∃x0 6∈ Gm(C) ∃a ∈ Rn ∀x ∈ Gm(C) (aT (x0 − x) < 0), (7)

then the problem Zm(C) is called non-degenerated.
It is easy to see that non-trivial problem is also non-degenerated if

and only if there exists a solution x0 6∈ Gm(C) such that a system con-
taining |Gm(C)| strict inequalities with n variables has a solution. In
particular, as we show later (see the proof of Theorem 1), the Boolean
problem Zm

B (C) has solutions.
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3 Lemmas

Before formulating the main result regarding the strong stability ra-
dius bounds in the next section, we need to prove five supplementary
statements presented in this section as lemmas.

Lemma 1. A solution x 6∈ Gm (C, I1, I2, . . . , Is) if and only if for any
index k ∈ Ns the solution x 6∈ P (CIk).

Hereinafter, a+ is a projection of a vector a= (a1, a2, . . . , ak) ∈ Rk

on a positive orthant, i.e. a+= [a]+= (a+1 , a
+
2 , . . . , a

+
k ), where super-

script + implies positive cut of vector a. That is, we have

a+i = [ai]
+= max{0,ai}, i ∈ Nk.

Lemma 2. Given p, q ∈ [1,∞], x0 ∈ Gm (C, I1, I2, . . . , Is), k ∈ Ns

and ϕ > 0 such that for any x 6∈ Gm (C), the inequality
∥

∥

∥

[

CIk(x− x0)
]+

∥

∥

∥

q
≥ϕ‖x− x0‖p∗ > 0 (8)

holds. Then the following formula is true:

∀ x 6∈ Gm (C) ∀C ′ ∈ Ωpq (ϕ)
(

x 6∈ X(x0, CIk + C ′
Ik
)
)

. (9)

Proof. Assume there exists a solution x̃ 6∈ Gm (C) and a perturbing
matrix C̃ ∈ Ωpq(ϕ) such that

x̃ ∈ X(x0, CIk + C̃ ′
Ik
).

Then for any index i ∈ Ik, the following inequality is true:
(

Ci + C̃i

)

x0 ≥
(

Ci + C̃i

)

x̃.

Hence, we have

C̃i

(

x0 − x̃
)

≥ Ci

(

x0 − x̃
)

, i ∈ Ik.

From the above we derive
∣

∣

∣
C̃i

(

x̃− x0
)

∣

∣

∣
≥

[

Ci

(

x̃− x0
)]+

, i ∈ Ik.
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Taking into consideration Hölder’s inequality (6), we obtain

‖C̃i‖p‖x̃− x0‖p∗ ≥
[

Ci

(

x̃− x0
)]+

, i ∈ Ik.

Due to inequalities (4), we get a contradiction with (8):

ϕ‖x̃− x0‖p∗ > ‖C̃‖pq‖x̃− x0‖p∗ ≥ ‖C̃Ik‖pq‖x̃− x0‖p∗ ≥

≥
∥

∥

∥

[

CIk

(

x̃− x0
)]+

∥

∥

∥

q
,

so formula (9) is valid. �

Lemma 3. For any non-degenerated ILP problem Zm(C), there exists
a non-zero matrix C∗ ∈ Rm×n such that

Gm(C)∩Gm(C∗)=∅.

Proof. According to the definition of non-degenerated problem
Zm(C), the equation (7) holds, i.e. for all x ∈ Gm(C) the inequality

aT (x0 − x) < 0 (10)

is true for any x0 6∈ Gm(C). Obviously, a 6= 0 = (0, 0, . . . , 0)T ∈ Rm.
Let rows C∗

i , i ∈ Nm of the matrix C∗ ∈ Rm×n be defined as:

C∗
i = aT , i ∈ Nm .

Then taking into account (10), we get

C∗
i

(

x0 − x
)

< 0, i ∈ Nm.

Thus for any index k ∈ N s, the solution x 6∈ P (C∗
Ik
) if x ∈ Gm(C).

Therefore, due to Lemma 1, we have x 6∈ Gm(C∗). The last implies

Gm (C)∩Gm (C∗)=∅. �

Lemma 4. Let x0 ∈ Gm (C, I1, I2, . . . , Is). For any non-trivial ILP
problem Zm(C) and perturbing matrix C ′ = (C ′

I1
, C ′

I2
, . . . , C ′

Is
)T ∈

Rm×n such that for some index k ∈ Ns, the equality

X(x0, CIk + C ′
Ik
) ∩ Ḡm (C)=∅ (11)

holds. Then we have

Gm (C)∩Gm
(

C + C ′
)

6=∅ (12)
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Proof. If x0 ∈ Gm (C + C ′), the statement of lemma is obvious.
Assume x0 6∈ Gm (C + C ′). Then according to Lemma 1, for any index
k ∈ Ns we have x0 6∈ P (CIk + C ′

Ik
). Due to the property of external

stability of the Pareto set P (CIk + C ′
Ik
) (see e.g., [33]), there exists a

solution x∗ ∈ P (CIk + C ′
Ik
) such that x∗ ∈ X(x0, CIk + C ′

Ik
), and due

to (3) x∗ ∈ Gm (C + C ′). Using (11), we get x∗ ∈ Gm (C). Hence, (12)
holds. �

Lemma 5. If ρs(p, q) <∞, then the following formula holds:

∃a ∈ Rn ∀x ∈ Gm(C) ∃x0(x) 6∈ Gm(C) (aT (x0(x)− x) < 0), (13)

�

Proof. Assume that (13) does not hold. Then we have

∀a ∈ Rn ∃x0 ∈ Gm (C, I1, I2, . . . , Is)

∀x 6∈ Gm (C, I1, I2, . . . , Is) (aT (x− x0) ≥ 0).

Let C ′ = (C ′
I1
, C ′

I2
, . . . , C ′

Is
)T ∈ Rm×n be any perturbing matrix. Then

for any chosen index k ∈ Ns there exists x
0 ∈ Gm(C) such that for any

x 6∈ Gm(C) the inequality

(

Ci + C ′
i

)

(x− x0) ≥ 0, i ∈ Ik

holds.
Therefore, x 6∈ X(x0, CIk + C ′

Ik
). Further, applying Lemma 4, we

get that (12) is valid for any matrix C ′ ∈ Rm×n, i.e. ρs(p, q) = ∞.
This contradiction ends the proof. �

4 Main result

For the multicriteria non-trivial ILP problem Zm(C, I1, I2, . . . , Is), m ∈
N, for any p, q ∈ [1,∞] and s ∈ Nm we define:

ϕm
s (p, q)= max

x′∈Gm(C)
max
k∈Ns

min
x 6∈Gm(C)

‖[CIk(x− x′)]+‖q
‖x− x′‖p∗

,
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ψm
s (p, q)=n

1

pm
1

q min
x 6∈Gm(C)

max
x′∈Gm(C)

max
k∈Ns

max
i∈Ik

Ci(x− x′)

‖x− x′‖1
.

We are now ready to formulate the main result.

Theorem 1. For any m ∈ N , p, q ∈ [1,∞] and s ∈ Nm, the
strong stability radius of the multicriteria non-trivial ILP problem
Zm(C, I1, I2, . . . , Is) has the following lower and upper bounds:

0 < ϕm

s
(p, q) ≤ ρm

s
(p, q)

{

≤ ‖C‖pq, if the problem is non-degenerated;
= ∞, otherwise.

If the problem is Boolean, i.e. Zm(C) = Zm
B (C), then

0 < ϕm
s (p, q) ≤ ρms (p, q) ≤ min{ψm

s (p, q) , ‖C‖pq}.

Proof. Due to (3), the formula is true:

∀ x′ ∈ Gm (C) ∃ k ∈ Ns

(

x′ ∈ P (CIk)
)

.

Therefore, due to Lemma 1, for any index k ∈ Ns, we get x 6∈
P (CIk) if x 6∈ Gm (C). From there we conclude that the lower bound
is positive, i.e. ϕm

s (p, q) > 0.
Now we prove that ρms (p, q) ≥ ϕm

s (p, q). We choose an arbitrary
perturbing matrix C ′ ∈ Rm×n such that it belongs to Ωpq (ϕ

m
s (p, q)).

In order to prove the lower bound for strong stability radius, it suffices
to demonstrate that there exists a solution x∗ ∈ Gm (C)∩Gm (C +C ′).
According to the definition of the number ϕm

s (p, q), there exist a so-
lution x0 ∈ Gm (C) and an index k ∈ Ns such that for any solution
x 6∈ Gm (C) we have:

‖[CIk(x− x0)]+‖q ≥ ϕm
s (p, q) ‖x− x0‖p∗ > 0.

From the above, by Lemma 2, we get that the following formula is
true:

∀ x 6∈ Gm (C) ∀C ′ ∈ Ωpq (ϕ
m
s (p, q))

∀ x 6∈ Gm (C) ∀C ′ ∈ Ωpq (ϕ
m
s (p, q))

(

x 6∈ X(x0, CIk + C ′
Ik
)
)

. (14)

Further, we define a way of selecting a necessary solution

x∗ ∈ Gm (C)∩Gm
(

C + C ′
)

,
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where C ′ ∈ Ωpq (ϕ
m
s (p, q)). If x0 ∈ Gm (C + C ′), then we select

x∗ = x0. Otherwise, due to Lemma 1 we have x0 6∈ P (CIk+C
′
Ik
). Thus

due to the property of outer stability for the Pareto set P (CIk + C ′
Ik
)

(see e.g. [33]), we can chose a solution x∗ ∈ P (CIk + C ′
Ik
) such that

x∗ ∈ X(x0, CIk + C ′
Ik
). Taking into account the proven formula (14),

x∗ ∈ Gm(C). Since, due to (3), we have x∗ ∈ Gm(C+C ′), that involves
ρms (p, q) ≥ ϕm

s (p, q).

Further, we prove that inequality ρms (p, q) ≤ ‖C‖pq is valid for any
non-degenerated problem Zm(C). Let ε > ‖C‖pq. According to Lemma

3, for any such problem, there exists a non-zero matrix C∗ ∈ Rm×n

such that

Gm (C)∩Gm (C∗)=∅. (15)

We consider a perturbing matrix C0 ∈ Rm×n defined as:

C0 = ξC∗ − C,

where 0 < ξ<
ε−‖C‖pq
‖C∗‖pq

. Then we easily derive

∥

∥C0
∥

∥

pq
= ‖ξC∗ − C‖pq ≤ ξ ‖C∗‖pq + ‖C‖pq < ε.

Therefore due to (15) we obtain

∀ε > ‖C‖pq ∃C0 ∈ Ωpq (ε)
(

Gm (C)∩Gm
(

C + C0
)

=∅
)

.

Thus, ρms (p, q) < ε for any ε > ‖C‖pq. Hence, ρ
m
s (p, q)≤ ‖C‖pq.

Further, we show that for degenerate problem Zm(C), the strong
stability radius is equal to infinity. Assume the opposite, i.e. assume
that degenerated problems have a finite strong stability radius. Then,
according to Lemma 5, formula (13) is valid. Thus letting

x∗ = argmin{aT (x0(x)) : x ∈ Gm(C)},

we get that the following inequality

aT (x0(x∗)− x) < 0
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is true for any x ∈ Gm(C). Thus, formula (7) is true, i.e. the problem
Zm(C) is non-degenerated. The obtained contradiction proves that
ρms (p, q) = ∞.

Further, we consider non-trivial Boolean problem Zm
B (C, I1, I2, . . . ,

Is), C ∈ Rm×n, m ∈ N, s ∈ Nm, X ⊆ En = {0, 1}n, n ≥ 2. Clearly,
the lower bounds proven above for ILP problem stay valid in Boolean
case.

First, we prove that ρms (p, q) ≤ ψm
s (p, q).

According to the definition of number ψm
s (p, q), there exists a so-

lution x0 = (x01, x
0
2, . . . , x

0
n) 6∈ Gm (C) such that for any solution

x ∈ Gm(C) and any index k ∈ Ns the following inequalities hold:

ψm
s (p, q) ‖x0 − x‖1 ≥ n

1

pm
1

qCi

(

x0 − x
)

, i ∈ Ik. (16)

Let ε > ψm
s (p, q). We choose a perturbing matrix C0 = [c0ij ] ∈

Rm×n with rows C0
i , i ∈ Nm and elements defined as follows:

c0ij =

{

−δ if i ∈ Nm and x0j = 1,

δ if i ∈ Nm and x0j = 0,

where
ψm
s (p, q) < δn

1

pm
1

q < ε. (17)

Therefore, due to (5) we have

∥

∥C0
i

∥

∥

p
= δn

1

p , i ∈ Nm,

∥

∥C0
∥

∥

pq
= δn

1

pm
1

q ,

C0 ∈ Ωpq (ε) .

Moreover, the following inequalities are obvious:

Ci

(

x0−x
)

= −δ‖x0 − x‖1 < 0, i ∈ Ik.

Using (16) and (17), we conclude that the following inequalities
hold for any solution x ∈ Gm(C):

(

Ci + C0
i

) (

x0 − x
)

≤

(

ψm
s (p, q)

n
1

pm
1

q

− δ

)

‖x0 − x‖1 < 0, i ∈ Ik.
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Thus for any index k ∈ Ns we have x ∈ Gm(C) and x 6∈

P
(

CIk + C0
Ik

)

, and hence, due to Lemma 1, x 6∈ Gm
(

C + C0
)

. Sum-

marizing, for any ε > ψm
s (p, q) there exists the perturbing matrix

C0 ∈ Ωpq (ε) such that Gm (C)∩Gm
(

C + C0
)

=∅, i.e. ρms (p, q) < ε.
Thus, we have just proven that ρms (p, q)≤ ψm

s (p, q) .

Finally, we prove that ρms (p, q) ≤ ‖C‖pq is valid for any Boolean
problem Zm

B (C, I1, I2, . . . , Is). In order to do this, it suffices to show
that any non-trivial Boolean problem is also non-degenerated. Let
α>0 and x0 = (x01, x

0
2, . . . , x

0
n) 6∈ Gm (C). We choose a vector a =

(a1, a2, . . . , an)
T with elements defined as follows:

aj =

{

−α if x0j = 1,

α if x0j = 0.

Then for any x ∈ Gm(C) (x 6= x0), we have

aT (x0 − x) < 0.

Thus, (7) is true, and hence Zm
B (C) is non-degenerated. Therefore,

collecting all the proven above, we get ρms (p, q) ≤ ‖C‖pq. This ends
the proof of the main result. �

5 Corollaries

From Theorem 1 we get the following well-known result:

Corollary 1. [16] For any m ∈ N and any p = q = ∞, the strong sta-
bility radius of the multicriteria non-trivial ILP problem Zm (C,Nm),
C ∈ Rm×n of finding the Pareto set Pm (C) has the following bounds:

0 < ϕm
1 (∞,∞) ≤ ρm1 (∞,∞) .

Moreover,

0 < ϕm
1 (∞,∞) ≤ ρm1 (∞,∞) ≤ ψm

1 (∞,∞),
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if the problem Zm(C,Nm) is Boolean, where

ϕm
1 (∞,∞) = max

x′∈Pm(C)
min

x 6∈Pm(C)
max
i∈Nm

Ci(x− x′)

‖x− x′‖1
,

ψm
1 (∞,∞) = min

x 6∈Pm(C)
max

x′∈Pm(C)
max
i∈Nm

Ci(x− x′)

‖x− x′‖1
.

The stability radius of an efficient solution x0 ∈ Pm(C) of the ILP
problem Zm(C,Nm), m ∈ N, is called the number

ρms (x0, p, q)=

{

sup Θpq if Θpq 6= ∅,
0 if Θpq=∅,

where

Θpq =
{

ε > 0 : ∀C ′ ∈ Ωpq(ε)
(

x0 ∈ Pm(C + C ′)
)

}

.

In [35] it was shown that for any m ∈ N and p, q ∈ [1,∞], the
stability radius of an efficient solution x0 ∈ Pm(C) of the multicriteria
non-trivial ILP problem Zm (C,Nm) is expressed by the formula:

ρm(x0, p, q) = min
x∈X\{x0}

‖[C(x− x0)]+‖q
‖x− x0‖p∗

.

It is evident that ρm1 (p, q) = ρm(x0, p, q) if Pm(C) = {x0}. There-
fore, from Theorem 1 we conclude the following result.

Corollary 2. If Pm (C) = {x0}, then the strong stability radius of
the multicriteria ILP problem Zm (C,Nm), C ∈ Rm×n, of finding the
Pareto set Pm (C) is expressed by the formula for any m ∈ N and
p, q ∈ [1,∞]:

ρm1 (p, q) = ϕm
1 (p, q) = min

x∈X\{x0}

‖[C(x− x0)]+‖q
‖x− x0‖p∗

.
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In scalar case (single criterion), we have P 1(C) = G1(C,N1),
C ∈ Rn, i.e. the Pareto set constricts to a set of optimal solutions
in Z1(C,N1). It is easy to see that the problem Z1(C,N1) with condi-
tion P 1(C) 6= X is non-degenerated. Therefore, Theorem 1 transforms
into the following result for m = 1.

Corollary 3. Let x0 be an optimal solution for scalar ILP problem
Z1 (C,N1), C ∈ Rn. Then for any p, q ∈ [1,∞], the strong stability
radius has the following bounds:

0 < min
x 6∈P 1(C)

CT (x− x0)

‖x− x0‖p∗
≤ ρ11(p.q) ≤‖ C ‖pq .

From Theorem 1, we get the following known results.

Corollary 4. [21] For any m ∈ N , p, q ∈ [1,∞], the strong stabil-
ity radius of the multicriteria non-trivial Boolean problem Zm

B (C,Nm)
consisting in finding the Pareto set Pm(C) has the following lower and
upper bounds:

0 < max
x′∈Pm(C)

min
x 6∈Pm(C)

‖[C(x− x′)]+‖q
‖x− x′‖p∗

≤ ρm1 (p, q) ≤

n
1

pm
1

q min
x 6∈Pm(C)

max
x′∈Pm(C)

max
i∈Nm

Ci(x− x′)

‖x− x′‖1
.

Corollary 5. [36] For any m ∈ N , p, q ∈ [1,∞], the strong stability
radius of the multicriteria non-trivial Boolean problem Zm

B , (C, {1}, {2},
. . . {n}), C ∈ Rn×m consisting in finding the extreme set Em(C) has
the following lower and upper bounds:

0 < max
x′∈Em(C)

max
i∈Nm

min
x 6∈Em(C)

Ci(x− x′)

‖x− x′‖p∗
≤ ρmm(p, q) ≤

n
1

pm
1

q min
x 6∈Em(C)

max
x′∈Em(C)

max
i∈Nm

Ci(x− x′)

‖x− x′‖1
.
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rameter spaces,” Taurida Journal of Computer Science Theory

266



On one type of stability for multiobjective ILP problem

and Mathematics, vol. 30, no. 1, pp. 49–64, 2016.
[22] V. Emelichev, Y. Nikulin, and V. Korotkov, “Stability analysis of

efficient portfolios in a discrete variant of multicriteria investment
problem with Savage’s risk criteria,” Computer Science Journal of
Moldova, vol. 25, no.3(75), pp. 303–328, 2017.

[23] V. Emelichev and E. Gurevsky, “On quasi-stability of the vector
Boolean problem of minimizing absolute deviations of linear func-
tions from zero,” Computer Science Journal of Moldova, vol. 14,
no.2(41), 2006.

[24] V. Emelichev and E. Gurevsky, “On stability of a Pareto-optimal
solution under perturbations of the parameters for a multicriteria
combinatorial partition problem,” Computer Science Journal of
Moldova, vol. 16, no.2(47), 2008.

[25] V. Emelichev, E. Gurevsky, and A. Platonov, “Measure of sta-
bility for a finite cooperative game with a generalized concept of
equilibrium,” Buletinul Academiei de Stiinte a Republicii Moldova.
Matematica, vol. 52, pp. 17–26, 2006.

[26] N. Chakravarti and A. Wagelmans, “Calculation of stability radius
for combinatorial optimization problems,” Operations Research
Letters, vol. 23, no. 1, pp. 1–7, 1998.

[27] S. Van Hoesel and A. Wagelmans, “On the complexity of postop-
timality analysis of 0-1 programs,” Discrete Applied Mathematics,
vol. 91, no. 1-3, pp. 251–263, 1999.

[28] J. Roland, Y. De Smet, and J. Rui Figuera, “On the calculation
of stability radius for multi-objective combinatorial optimization
problems by inverse optimization,” 4OR-Q J Oper Res., vol. 10,
no. 4, pp. 379–389, 2012.

[29] V. Leontev and E. Gordeev, “Qualitative analysis of trajectory
problems,” Kibernetika, no. 5, pp. 82–90, 1986.

[30] V. Leontiev, “Stability in linear discrete problems,” Problems of
Cybernetics, vol. 35, pp. 169–184, 1979.

[31] V. Pareto, Manuel D’economie Politique, Paris: V. Giard & E.
Briere, 1909.

[32] K. Miettinen, Nonlinear Multiobjective Optimization, Boston:
Kluwer, 1999.

267



Vladimir A. Emelichev, Yury V. Nikulin

[33] V. Podinovskii and V. Noghin, Pareto-Optimal Solutions of Mul-
ticriteria Problems, Moscow: Fizmatlit., 2007.

[34] V. Emelichev and Y. Nikulin, “Strong stability measures for mul-
ticriteria quadratic integer programming problem of finding ex-
tremum solutions,” Computer Science Journal of Moldova, vol.
26, no.2(77), pp. 115–125, 2018.

[35] V. Emelichev and K. Kuzmin, “A general approach to studing the
stability of a Pareto optimal solution of a vector integer linear
programming problem,” Discrete Math. Appl., vol. 17, no. 4, pp.
340–354, 2007.

[36] S. Bukhtoyarov and V. Emelichev, “Aspects of stability for mul-
ticriteria integer linear programming problem,” Discrete Analysis
and Operations Research, vol. 26, no. 1. pp. 5–19, 2019.

Vladimir Emelichev, Yury Nikulin Received August 21, 2020

Vladimir Emelichev
Belarusian State University
Nezavisimosti 4, 220030 Minsk, Belarus
E–mail: vemelichev@gmail.com

Yury Nikulin (corresponding author)
University of Turku
Vesilinnantie 5, 20014 Turku, Finland
E–mail: yury.nikulin@utu.fi

268


