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Abstract

In this paper, we study a k-uniform directed hypergraph in
general form and introduce its adjacency tensor, Laplacian tensor
and signless Laplacian tensor. For the k-uniform directed hyper-
graph H and 0 ≤ α < 1 the convex linear combination of D and
A has been defined as Aα = αD+ (1− α)A, where D and A are
the degree tensor and the adjacency tensor of H, respectively.
We propose some spectral properties of Aα. We also introduce
power directed hypergraph and cored directed hypergraph and
investigate their α-spectral properties.
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1 Introduction

Directed hypergraphs are deeply used as a successful data structure
in modeling the problems arising in computer science [3] and oper-
ations research, and in recent years have found applications in data
mining, clustering, association rules [13], image processing [1] and op-
tical network communications [8]. On the other hand, spectral theory
of hypergraphs gives useful and important information about them. In
2005 eigenvalues and eigenvectors of real tensor are defined [9], [14].
Qi [14] introduced the spectral theory of supersymmetric real tensor.
In [15] the spectral theory of undirected hypergraphs was presented via
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eigenvalues and eigenvectors of the adjacency tensor, Laplacian tensor
and signless Laplacian tensor. Recently a number of papers appeared
in different aspects of spectral theory of hypergraphs.

On the other hand, Nikiforov in [11] proposed the spectral theory of
the convex combination of the adjacency matrix and the degree matrix
of a graph (see also [4],[12]) and then Lin et.al. [10] expanded it for the
hypergraph. Let H be a hypergraph, A(H) and D(H) be the adjacency
tensor and the degree tensor of H, respectively. For 0 ≤ α < 1, the
convex linear combination, Aα, of D and A is defined by

Aα(H) = αD(H) + (1− α)A(H) ∀ 0 ≤ α < 1.

The spectral radius of Aα(H) is called α-spectral radius of H. Lin
et.al. [10] gave an upper bound for the α-spectral radius in an n-vertex
connected irregular k-uniform hypergraph H using number of vertices,
maximum degree and diameter. Then Gue et.al. [5] studied α-spectral
radius of uniform hypergraphs and also proposed some transformations
that increase α-spectral radius and determine the unique hypergraphs
with maximum α-spectral radius in some classes of uniform hyper-
graphs.

In spite of a lot of researches in spectral theory and α-spectral the-
ory of undirected hypergraphs, there is almost a blank for (α-)spectral
directed hypergraph theory. A special case of the k-uniform directed
hypergraph, with one tail node and k − 1 head nodes, and some its
spectral properties were studied in [17]. In this paper, we present
the α-spectral properties of the generalized directed hypergraphs and
extend some classical results of undirected hypergraphs. We also intro-
duce power directed hypergraphs and cored directed hypergraphs and
propose some their α-spectral properties.

In Section 2, we discuss the needed fundamental results of tensors
and introduce k-uniform directed hypergraphs in general form with
their adjacency tensors, Laplacian tensors and signless Laplacian ten-
sors. In Section 3, the H-eigenvalues of Aα of k-uniform directed hy-
pergraph are studied. We also introduce power directed hypergraphs
and cored directed hypergraphs in Section 4. Finally, we conclude in
Section 5.
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2 Preliminaries

We first present some basic definitions of tensors. Then we introduce
the general k-uniform directed hypergraph with its adjacency tensor,
Laplacian tensor and signless Laplacian tensor.

2.1 Tensors and some related subjects

A real tensor T = (ti1···ik) of order k and dimension n, for integers
k≥3 and n≥2, is a multi-dimensional array with entries ti1···ik ∈ R, for
ij ∈ [n] := {1, 2, · · · , n} and j ∈ [k] (see [14]).

Definition 1. [16]: Let T be a k order n dimension tensor and P
and Q be n × n matrices. The tensor S = PT Qk−1 is a k order n
dimension tensor with the entries

si1···ik =

n
∑

j1,··· ,jk=1

tj1···jkpi1j1qj2i2 · · · qjkik .

Let x = (x1, · · · , xn)
T ∈ C

n, we write xk as a k order n dimension
tensor with (i1, · · · , ik)-th entry xi1xi2 · · · xik . Then T xk−1 is an n
dimensional vector whose i-th component is

(T xk−1)i =
n
∑

i2,··· ,ik=1

tii2···ikxi2 · · · xik .

The identity tensor of order k and dimension n, I = (ii1···ik), is
defined as ii1···ik = 1 iff i1 = · · · = ik ∈ [n], and zero otherwise.

Definition 2. [14]: Let T be a nonzero k order n dimension ten-
sor. Then λ ∈ C is called an eigenvalue of T if the polynomial
system (λI − T )x[k−1] = 0 has a nonzero solution x ∈ C

n, where
x[k−1] = (xk−1

1 , · · · , xk−1
n )T . In this case x is called an eigenvector of

T corresponding to λ and (λ, x) is called an eigenpair of T .

If (λ, x) ∈ R × R
n/{0}, then λ is called an H-eigenvalue and x is

called an H-eigenvector of T [14].
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The set of all eigenvalues of T , denoted by Spec(T ), is called the
spectrum of T . The H-spectrum of T , denoted by Hspec(T ), is defined
as follows:

Hspec(T ) = {λ ∈ R|λ is an H-eigenvalue of T }.

2.2 K-uniform directed hypergraph

In this subsection we present some needed concepts and definitions of
directed hypergraphs and then we introduce adjacency tensor of a k-
uniform directed hypergraph in general form. The following definition
of the k-uniform directed hypergraph was presented in [1].

Definition 3. A k-uniform directed hypergraph H is a pair = (V, E),
where V = [n] is a set of elements called vertices and E = {~e1, · · · , ~em}
is the set of arcs. Each ~ei, (i = 1, · · · ,m), is considered as an ordered
pair (e+i , e

−
i ), where e+i , e

−
i are two nonempty subsets of V such that

e+i ∩e−i = φ , |e+i ∪e−i | =k. e+i is called the tail of ~ei and e−i is its head.

Note that we assume that in the k-uniform directed hypergraph
for any k vertices there exists at most one arc containing them.
The out-degree of a vertex j ∈ V is defined as d+j = |E+

j |, where

E+
j = {~e ∈ E|j ∈ e+} and the in-degree of a vertex j ∈ V is defined as

d−j = |E−
j |, where E−

j = {~e ∈ E|j ∈ e−}. The degree of j is defined as

dj = d+j + d−j . The hypergraph H is r-out-regular (or r-in-regular or

r-regular, respectively) if for each j ∈ V, d+j = r (or d−j = r or dj = r,
respectively).

Let i, j ∈ V and i 6= j. Two vertices i and j are called weak-
connected, if there is a sequence of arcs ~e1, · · · , ~el such that i ∈ e+1 ∪e−1 ,
j ∈ e+l ∪ e−l and (e+s ∪ e−s ) ∩ (e+s+1 ∪ e−s+1) 6= φ for all s ∈ [l − 1]. Two
vertices i and j are called strong-connected, denoted by i → j, if there is
a sequence of arcs ~e1, · · · , ~el such that i ∈ e+1 , j ∈ e−l and e−s ∩e+s+1 6= φ
for all s ∈ [l − 1]. A directed hypergraph H is called weak-connected,
if every pair of different vertices of H is weakly-connected and H is
called strong-connected, if i → j and j → i for all i, j ∈ V and i 6= j.
A directed hypergraph is complete if E contains all possible arcs with
different number of vertices in their tails.
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Now we introduce adjacency tensor of a k-uniform directed hyper-
graph. In [17], authors discussed the case that each arc has only one
tail and introduce the adjacency tensor, Laplacian tensor and sign-
less Laplacian tensor. In this paper we consider general form of a
k-uniform directed hypergraph and present the following definition of
its adjacency tensor:

Definition 4. The adjacency tensor of a k-uniform directed hypergraph
H is the k order n dimension tensor A = (ai1···ik) whose entries are as
follows:

ai1,...,ik =







1
(l~e−1)!(k−l~e)!

if ∃ ~e = (e+, e−) ∈ E s.t e+ = {i1, · · · , il~e},

e− = {il~e+1, · · · , ik}
0 otherwise.

Similar to [17] the degree tensor D defined as the k order n dimen-
sion diagonal tensor whose diagonal element di···i is d

+
i , the out-degree

of vertex i, for all i ∈ [n]. Also the Laplacian tensor of H is L = D−A
and Q = D +A is the signless Laplacian tensor of H.

As it has been said before, Lin in [3] defined the convex linear
combinations of Aα of D and A as Aα = αD + (1 − α)A, where 0 ≤
α < 1.

Now the following definition of an odd bipartite directed hypergraph
is presented (just as in undirected hypergraph [6]).

Definition 5. Let H = (V, E) be a k-uniform directed hypergraph. H
is called an odd bipartite if k is even and there exists a partition of V
so that V = V1 ∪ V2, V1 6= φ and

∀ ~e = (e+, e−) ∈ E |(e+ ∪ e−) ∩ V1| is an odd number.

3 H-Eigenvalues of Aα

Throughout this article, let H = (V,E) be a k-uniform hypergraph
with n vertices, tensors A,D, L = D −A and Q = D +A are the ad-
jacency tensor, the degree tensor, Laplacian tensor and signless Lapla-
cian tensor of H, respectively. For 0 ≤ α ≤ 1, let Aα be defined as
Aα = αD + (1− α)A.
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The notation of weakly irreducible nonnegative tensors was intro-
duced in [2].

Definition 6. Let T = (ti1···ik) be a k order n dimension nonnegative
tensor and G(T ) = (V,E(T )) be a directed graph, where V = [n] and
a directed edge (i, j) ∈ E(T ) if there exists {i2, · · · , ik} ∈ [n] such that
j ∈ {i2, · · · , ik} and tii2...ik > 0. Now T is called weakly irreducible if
G(T ) is strongly connected.

Let H be a k-uniform undirected hypergraph, then the adjacency
of H, A is weakly irreducible iff H is connected [2]. For k-uniform
directed hypergraph H if each arc has only one tail, then Aα is weakly
irreducible iff H is strongly connected, i.e. the strongly connectivity of
H is equivalent to strongly connectivity of G(Aα). But we have just
the sufficient condition in general:

Lemma 1. Let H = (V, E) be a k-uniform directed hypergraph with
adjacency tensor A and degree tensor D. Then, Aα = αD + (1 − α)A
is weakly irreducible if H is strongly connected.

Proof. Suppose that H is strongly connected. By Definition 6, we
should show that G(Aα) is strongly connected. Let i, j ∈ V and i 6= j.
Since H is strongly connected, there exists a sequence of vertices and
arcs in H such that:

i = j1 ~e1 j2 ~e2 j3 · · · ~eq−1 jq ~eq jq+1 = j,

where j2, · · · , jq ∈ V , ~e1, · · · , ~eq ∈ E and jt ∈ e+t , jt+1 ∈ e−t for all
t = 1, · · · , q. On the other hand, ae+t e−t

> 0 for t = 1, · · · , q, since

~et = (e+t , e
−
t ) ∈ E , then a

(α)

e+t e−t
> 0. Hence et = (jt, jt+1) is a directed

edge in G(Aα), for all t = 1, · · · , q. Therefore there exists a sequence
of vertices and directed edges in G(Aα):

i = j1 e1 j2 e2 j3 · · · eq−1 jq eq jq+1 = j,

i.e. i → j in G(Aα). Similarly it can be proved that j → i in G(Aα).
Thus G(Aα) is strongly connected and then Aα is weakly irreducible.
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Now we study the H-eigenvalues of Aα. We have the following
lemma:

Lemma 2. Let H be a k-uniform directed hypergraph. Suppose that
X ∈ R

n, then we have:

(Aαx
[k−1])i = αd+i + (1− α)

∑

~e∈E+
i

∏

s∈(e+∪e−)\{i}

xs.

Proof.

(Aαx
[k−1])i =

n
∑

i2,··· ,ik=1

a
(α)
ii2···ik

xi2 · · ·xik

=α

n
∑

i2,··· ,ik=1

dii2···ikxi2 · · ·xik + (1− α)

n
∑

i2,··· ,ik=1

aii2···ikxi2 · · ·xik

=αd+i x
k−1
i + (1− α)

∑

~e=(e+,e−)∈E

i∈e+, |e+|=l~e

(l~e − 1)!(k − l~e)!

(l~e − 1)!(k − l~e)!

∏

s∈(e+∪e−)\{i}

xs

=αd+i x
k−1
i + (1− α)

∑

~e∈E
+

i

∏

s∈(e+∪e−)\{i}

xs.

Now we have the following theorems.

Theorem 1. Let H be a k-uniform directed hypergraph with n vertices.
Then each (αd+j ,1j) is an H-eigenpair of Aα for j = 1, · · · , n.

Proof. Let i ∈ [n]. By Lemma 2, if i = j, then we have:

(Aα1
[k−1]
j )i = αd+j 1 + (1− α)

∑

~e∈E+
i

0 = αd+j

and for i 6= j, we have:

(Aα1
[k−1]
j )i = αd+j 0 + (1− α)

∑

~e∈E+
i

0 = 0.

By Definition 2, the result follows.
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Theorem 2. Let H be a k-uniform directed hypergraph and Aα =
αD + (1− α)A, where 1

2 ≤ α < 1. If λ is an H-eigenvalue of Aα, then
we have:

(2α − 1)δ+ ≤ λ ≤ ∆+,

where δ+ and ∆+ are the minimum and maximum out-degree in H,
respectively.

Proof. Suppose that x is an H-eigenvector of Aα associated with λ and
|xi| = max{|x1|, · · · , |xn|}. By Lemma 2, we have:

λxk−1
i = αd+i x

k−1
i + (1− α)

∑

~e∈E+
i

∏

s∈(e+∪e−)\{i}

xs

=⇒ (λ− αd+i )x
k−1
i = (1− α)

∑

~e∈E+
i

∏

s∈(e+∪e−)\{i}

xs

=⇒ |λ− αd+i ||xi|
k−1 = (1− α)

∑

~e∈E+
i

∏

s∈(e+∪e−)\{i}

|xs| ≤ (1− α)
∑

~e∈E+
i

|xi|

=⇒ |λ− αd+i | ≤ (1− α)d+i
=⇒ (2α − 1)d+i ≤ λ ≤ d+i
=⇒ (2α − 1)δ+ ≤ λ ≤ ∆+.

Lemma 3. Let H = (V, E) be an n-vertex k-uniform complete directed
hypergraph and i ∈ V be an arbitrary vertex. Then di =

(

n−1
k−1

)

.

Proof. SinceH is complete, then E contains all possible arcs. Therefore
vertex i has common arcs with any k − 1 vertices that is

(

n−1
k−1

)

.Then

di = d+i + d−i =
(

n−1
k−1

)

.

Theorem 3. Let H = (V, E) be an n-vertex k-uniform complete di-
rected hypergraph. If d+i =

(

n−1
k−1

)

for each i ∈ V, then the largest

H-eigenvalue of tensor Aα, λ(Aα), is
(

n−1
k−1

)

.
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Proof. We show that λ =
(

n−1
k−1

)

with x = 1 is an H-eigenpair of Aα.
By Lemma 2, we have:

(Aαx
[k−1])i = αd+i x

k−1
i + (1− α)

∑

~e∈E+
i

∏

s∈(e+∪e−)\{i}

xs

=α

(

n− 1

k − 1

)

+ (1− α)
∑

~e∈E+
i

1=α

(

n− 1

k − 1

)

+ (1− α)

(

n− 1

k − 1

)

=

(

n− 1

k − 1

)

= λxk−1
i .

On the other hand, by Lemma 3, ∆+ =
(

n−1
k−1

)

, then the result follows
from Theorem 2.

The next theorem characterizes the extreme weak-connected di-
rected hypergraphs with respect to the upper bound of the largest Aα

H-eigenvalue.

Theorem 4. Let H = (V, E) be a weak-connected k-uniform directed
hypergraph. Then λ(Aα) = ∆+ if and only if H is out-regular.

Proof. Suppose that H is out-regular. It is easy to see that λ = ∆+

with the H-eigenvector x = 1 is an H-eigenvalue of Aα, then λ(Aα) =
∆+. On the other hand, assume that λ(Aα) = ∆+ and x ∈ R

n is
its corresponding H-eigenvector. Let |xi| = max {|xj |

∣

∣j ∈ [n]}. By
Definition 2, we have:

∆+xk−1
i = αd+i x

k−1
i + (1− α)

∑

~e∈E+
i

∏

s∈(e+∪e−)\{i}

xs

⇒ ∆+|xk−1
i | ≤ αd+i |x

k−1
i |+ (1− α)

∑

~e∈E+
i

∏

s∈(e+∪e−)\{i}

|xs|

⇒∆+=αd+i + (1− α)
∑

~e∈E+
i

∏

s∈(e+∪e−)\{i}

|xs|

|xi|
≤ αd+i + (1− α)

∑

~e∈E+
i

1 = d+i

⇒ ∆+ = d+i .
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and we must have |xi| = |xj | for all j ∈ e+ ∪ e−, where ~e = (e+, e−) ∈
E+

i . Applying the same augment for all such j, we have that ∆+ = d+j
and |xi| = |xj | = |xl| for all l ∈ e+ ∪ e−, where ~e = (e+, e−) ∈ E+

j .

Since H is weak-connected, we see that d+j = ∆+ for all j ∈ V, then H
is out-regular.

Suppose that x is an H-eigenvector of theAα of a k-uniform directed
hypergraph corresponding to H-eigenvalue λ. The following theorem
gives a sufficient condition for equality of some components of x.

Theorem 5. Let H = (V, E) be a k-uniform directed hypergraph and
i, j ∈ V such that E+

i = E+
j . Then d+i = d+j = d. Now suppose that

(λ, x) is an H-eigenpair of Aα, such that λ 6= αd. Then |xi| = |xj | and
if k is odd, then xi = xj.

Proof. Clearly, d+i = d+j = d by the definition of E+
i . Now suppose

that (λ, x) is an H-eigenpair of Aα, such that λ 6= αd. By Definition 2,
we have:

λxk−1
i = αdxk−1

i + (1− α)xj
∑

~e∈E+
i

∏

s∈(e+∪e−)\{i,j}

xs

and

λxk−1
j = αdxk−1

j + (1− α)xi
∑

~e∈E+
j

∏

s∈(e+∪e−)\{i,j}

xs.

Hence,

(λ− αd)xki = (λ− αd)xkj
λ6=αd
=⇒ xki = xkj .

The conclusions follow from the last equality.

4 Cored directed hypergraphs and Power di-

rected hypergraphs

In this section we introduce two classes of k-uniform directed hyper-
graphs: 1. Cored directed hypergraphs and 2. Power directed hy-
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pergraphs. Hu, Qi and Shao in [7] introduced these two classes in
undirected hypergraphs and investigated their spectral properties. We
extend their definitions and analyze the α-spectral properties of power
directed hypergraphs and cored directed hypergraphs.

4.1 Cored directed hypergraphs

We begin with the definition of Cored directed hypergraphs.

Definition 7. Let H = (V, E) be a directed hypergraph. H is a cored
directed hypergraph if there exists in each arc ~e = (e+, e−) a vertex i ∈
e+ such that d+i = 1 and d−i = 0. Such vertex is called core vertex and
a vertex with out-degree greater than one is called intersection vertex.

By Theorem 5, we have the following lemma:

Lemma 4. Let H = (V, E) be a cored k-uniform directed hypergraph
and (λ,x) be an H-eigenpair of Aα and λ 6= α. If i and j are two core
vertices in arc ~e, then xi = xj when k is odd and |xi| = |xj | when k is
even.

In the following we study a special cored directed hypergraph.

Definition 8. Let S = (V, E) be a cored k-uniform directed hypergraph.
We call it a directed squid if V = {1, 11, 21, · · · , k1, · · · , 1(k−1), 2(k−1), · · · ,
k(k−1)} and the arc set E = {~ei | i = 0, · · · , k − 1} in which

~e0 = ({1}, {11 , 12 · · · , 1(k−1)}),

~ei = ({1i}, {2i, 3i, · · · , ki}), i = 1, · · · , k − 1.

By the Definition 8, it’s straightforward that d+1 = d+11 = d+12 =

· · · , d+1(k−1)
= 1, and d+i = 0 otherwise.

The following theorem determines Hspec(Aα) of the directed squid
S.

Theorem 6. Let S = (V, E) be a k-uniform directed squid, then
Hspec(Aα) = {0, α}.
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Proof. It is easy to see that (0,x) is an H-eigenpair of Aα, where

xt =















1 t = 1,
0 t = 1i (for i = 1, · · · , k − 1),
1 t = 2i (for i = 1, · · · , k − 1),
0 t = ji (for i = 1, · · · , k − 1 , j = 3, · · · , k).

Now let x be an H-eigenvector of Aα corresponding to H-eigenvalue
λ 6= 0. By Lemma 2, we have:

(λ− α)xk−1
1 = (1− α)

k−1
∏

i=1

x1i , (1)

(λ− α)xk−1
1i

= (1− α)

k
∏

j=2

xji , i = 1, 2, · · · , k − 1, (2)

λxk−1
ji

= 0, i = 1, 2, · · · , k − 1, j = 2, · · · , k. (3)

By (3), xji = 0 for all i, j. By taking it in (2), we have (λ−α)xk−1
1i

=
0. Now three cases are considered:
(i) : x1i 6= 0 for i = 1, 2, · · · , k−1, then λ = α and by (1),

∏k−1
i=1 x1i = 0

that is a contradiction.
(ii) : x1i = 0 for i = 1, 2, · · · , k − 1, then by 1, (λ− α)xk−1

1 = 0. Thus
λ = α and x1 6= 0.
(iii) : x1i = 0 and x1j 6= 0 for some i, j = 1, 2, · · · , k − 1. Then λ = α
and x1 ∈ R.
Therefore, λ = α is the only nonzero H-eigenvalue of Aα.

4.2 Power directed hypergraphs

Definition 9. Let G = (V,E) be a directed graph and k ≥ 3. The k-th
power of G, Gk = (V, E) is defined as the k-uniform directed hypergraph
with the set of arcs

E = {~e = (e+, e−) | e ∈ E},

where if e = (ie1, i
e
2) ∈ E, then e+ = {ie1, ie,1, ie,2, · · · , ie,k−2} and e− =

{ie2}, and the set of vertices V =
(
⋃

e∈E {ie,1, ie,2, · · · , ie,k−2}
)

∪ V .
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It is easy to see that each power directed hypergraph is a cored
directed hypergraph, but on the contrary, it is not generally correct,
for example, the directed squid which was studied in the previous sub-
section.

The next theorem gives some basic results about an ordinary arc
in a power directed hypergraph.

Theorem 7. Let H = (V, E) be a power k-uniform directed hypergraph
and x be an H-eigenvector of Aα, corresponding to λ 6= α. If ~e =
(e+, e−) ∈ E is an arbitrary arc with e+ = {ie1, ie,1, ie,2, · · · , ie,k−2} and
e− = {ie2}, then we have:

(1) If d+ie1
> 1 , d+ie2

≥ 1 and xie,1 = β 6= 0, then xie1xie2 = (λ−α)β2

(1−α)

when k is odd and xie1xie2 =
(λ−α)β2

(1−α) or − (λ−α)β2

(1−α) when k is even.

(2) If d+ie1
= 1 , d+ie2

≥ 1 and xie,1 = β 6= 0, then xie2 = (λ−α)β
(1−α) when k

is odd and xie2 = (λ−α)β
(1−α) or − (λ−α)β

(1−α) when k is even.

(3) If d+ie2
= 0, then xj = 0 for j ∈ {ie,1, ie,2, · · · , ie,k−2, i

e
2}.

Proof. By Lemma 4, xie,j = β for j = 2, · · · , k − 2 when k is odd and
|xie,j | = β for j = 2, · · · , k − 2 when k is even.
For (1), by Definition 2, we have:

(1− α)βk−3xie1xie2 = (λ− α)βk−1 if k is odd,







(1− α)βk−3xie1xie2 = (λ− α)βk−1

or if k is even.
− (1− α)βk−3xie1xie2 = (λ− α)βk−1

The result follows from β 6= 0.
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For (2), by Lemma 4, xie1 = β or xie1 = −β. By Definition 2, we have:

(1− α)βk−2xie2 = (λ− α)βk−1 if k is odd,







(1− α)βk−2xie2 = (λ− α)βk−1

or if k is even.
− (1− α)βk−2xie2 = (λ− α)βk−1

The result follows from β 6= 0.
For (3), since d+ie2

= 0, then xie2 = 0. Thus by Definition 2 and Lemma

4, xj = 0 for j ∈ {ie,1, ie,2, · · · , ie,k−2}.

In the following we study a special power directed hypergraph which
is a called directed hyperwheel.

Definition 10. Let Wd = (V, E) be a power k-uniform directed hy-
pergraph. We call it a directed hyperwheel if V = V0 ∪ V1 ∪ · · · Vd ∪
V̄1 ∪ V̄2 ∪ · · · ∪ V̄d is a disjoint partition of V in which V0 = {1}, Vi =
{1i, 2i, · · · , (k − 1)i} and V̄i = {1i, 2i, · · · , (k − 2)i} for i = 1, 2, · · · , d
and the arc set E = {~ei, ~ai| i = 1, · · · , d} in which

~ei = ({1, 1i, · · · , (k − 2)i}, {(k − 1)i}), i = 1, · · · , d,

~ai = ({(k − 1)i, 1
i, · · · , (k − 2)i}, {(k − 1)i+1}), i = 1, · · · , d− 1,

~ad = ({(k − 1)d, 1
d, · · · , (k − 2)d}, {(k − 1)1}).

By Definition 10, it can be shown easily.

Lemma 5. Let Wd = (V, E) be a directed k-uniform hyperwheel, then
d+1 = d, d+j = 1 for j 6= 1 and d−(k−1)i

= 2 for i = 1, · · · , d, d−j = 0 for

i = 1, · · · , d and j 6= (k − 1)i.

In the following theorems the H-spectrum of Aα of Wd are deter-
mined.

Theorem 8. Let Wd = (V, E) be a directed k-uniform hyperwheel.
Then Hspec(Aα) = {α,αd, 1} when d and k are odd, and Hspec(L) =
{α,αd, 1, 2α − 1} otherwise.
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Proof. By Theorem 1 and Lemma 5, α,αd ∈ Hspec(Aα). Now suppose
that x is an H-eigenvector of Aα corresponding to H-eigenvalue λ 6=
α,αd. The proof is divided into two cases, which contain several sub-
cases respectively:
1: k is odd.
By Lemma 4, we have:

x1i = x2i = · · · = x(k−2)i = αi, i = 1, · · · , d,

x1i = x2i = · · · = x(k−2)i = x(k−1)i = βi, i = 1, · · · , d.

Now by Definition 2, we have:

(λ− αd)xk−1
1 = (1− α)

d
∑

i=1

βiα
k−2
i , (4)

(λ− α)αk−1
i = (1− α)x1α

k−3
i βi, i = 1, · · · , d, (5)

(λ− α)βk−1
i = (1− α)βk−2

i βi+1, i = 1, · · · , d− 1, (6)

(λ− α)βk−1
d = (1− α)βk−2

d β1. (7)

By (6) and (7), if βi = 0 for some i = 1, · · · , d, then all βi = 0
and thus by (5) and (4), x = 0 that is a contradiction. Therefore,

βi 6= 0 for i = 1, · · · , d. Then by (6) and (7), (λ−α)
(1−α) = βi+1

βi
= β1

βd
for

i = 1, · · · , d− 1, then we have:

β1 =
(λ− α)d

(1− α)d
β1 =⇒ (λ− α)d = (1− α)d

=⇒

{

λ = 1, 2α − 1 if d is even
λ = 1 if d is odd

2: k is even.
By Lemma 4, we have:

|x1i | = |x2i | = · · · = |x(k−2)i |, i = 1, · · · , d,

|x1i | = |x2i | = · · · = |x(k−2)i | = |x(k−1)i |, i = 1, · · · , d.

Now let x1i = αi and x(k−1)i = βi for i = 1, · · · , d. With a little
modification in (4), (5), (6) and (7) and by similar argument in the
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previous case, βi 6= 0 for i = 1, · · · , d. Now we consider two subcases:
(i) d is even. There are two cases:

• βd = (λ−α)d−1

(1−α)d−1 β1, then we have:

if λ < α ⇒ β1 and βd have different signs

⇒ β1 =
(λ− α)

(1− α)
βd ⇒

(λ− α)d

(1− α)d
= 1 ⇒ λ = 2α− 1;

if λ > α ⇒ β1 and βd have the same sign

⇒ β1 =
(λ− α)

(1− α)
βd ⇒

(λ− α)d

(1− α)d
= 1 ⇒ λ = 1.

• βd = − (λ−α)d−1

(1−α)d−1 β1, then we have:

if λ > α ⇒ β1 and βd have different signs

⇒ β1 = −
(λ− α)

(1− α)
βd ⇒

(λ− α)d

(1− α)d
= 1 ⇒ λ = 1;

if λ < α ⇒ β1 and βd have the same sign

⇒ β1 = −
(λ− α)

(1− α)
βd ⇒

(λ− α)d

(1− α)d
= 1 ⇒ λ = 2α− 1.

(ii) d is odd. There are two cases:

• βd = (λ−α)d−1

(1−α)d−1 β1, then β1 and βd have the same sign and we have:

if λ < α ⇒ β1 = −
(λ− α)

(1− α)
βd ⇒

(λ− α)d

(1− α)d
= −1 ⇒ λ = 2α − 1;

if λ > α ⇒ β1 =
(λ− α)

(1− α)
βd ⇒

(λ− α)d

(1− α)d
= 1 ⇒ λ = 1.
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• βd = − (λ−α)d−1

(1−α)d−1 β1, then β1 and βd have different signs and we

have:

if λ < α ⇒ β1 =
(λ− α)

(1− α)
βd ⇒

(λ− α)d

(1− α)d
= −1 ⇒ λ = 2α− 1;

if λ > α ⇒ β1 = −
(λ− α)

(1− α)
βd ⇒

(λ− α)d

(1− α)d
= 1 ⇒ λ = 1.

5 Conclusion

In this paper we consider a k-uniform directed hypergraph in general
form and introduce its adjacency tensor, Laplacian tensor and signless
Laplacian tensor. Then we propose theorems in spectral theory of
the convex linear combination of D and A that has been defined as
Aα = αD + (1 − α)A, where D and A are the degree tensor and the
adjacency tensor of H, respectively. Cored directed hypergraphs and
power directed hypergraphs are introduced, and some their α-spectral
properties are presented.
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