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Abstract

In this paper we present further studies of convex covers and
convex partitions of graphs. Let G be a finite simple graph. A
set of vertices S of G is convex if all vertices lying on a shortest
path between any pair of vertices of S are in S. If 3 ≤ |S| ≤
|X | − 1, then S is a nontrivial set. We prove that determining
the minimum number of convex sets and the minimum number
of nontrivial convex sets, which cover or partition a graph, is in
general NP-hard. We also prove that it is NP-hard to determine
the maximum number of nontrivial convex sets, which cover or
partition a graph.
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1 Introduction

We denote by G = (X; U) a simple undirected graph with vertex
set X, X(G), and edge set U , U(G). The neighborhood of a vertex
x ∈ X is the set of all vertices y ∈ X such that y ∼ x (i.e., adjacent
to x), and it is denoted by Γ(x). Let S be a subset of X. If every two
vertices of S are adjacent in G, then it is called a clique. If every vertex
of X\S is adjacent to at least one vertex of S, then S is a dominating
set of G. If 3 ≤ |S| ≤ |X| − 1, then S is a nontrivial set. The distance
d(x, y) between two vertices x, y ∈ X is the length of the shortest path
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between x and y. The diameter of G, denoted by diam(G), is the
distance between two farthest vertices of G. We denote by G[S] the
subgraph of G induced by S.

We remind some notions defined in [1]. A set S ⊆ X is called
convex if the inclusion {z ∈ X : d(x, z) + d(z, y) = d(x, y)} ⊆ S holds
for any two vertices x, y ∈ S. The convex hull of S ⊆ X, denoted by
d− conv(S), is the smallest convex set containing S.

By [4], the family of sets P(G) is called the convex cover of a graph
G = (X; U) if the following statements hold:

1) each set of P(G) is convex in G;

2) X =
⋃

S∈P(G) S;

3) S 6⊆
⋃

C∈P(G),C 6=S C for each S ∈ P(G).

If |P(G)| = p, then we say that P(G) is a convex p-cover of G. If
any two sets of P(G) are disjoint, then this family is called a convex

partition of G. The family P(G) is said to be the nontrivial convex

cover of G if each set of P(G) is nontrivial and convex. A vertex
x ∈ X is called resident in P(G) if x belongs to only one set of P(G).

We know from [4], [5] and [9] that it is NP-complete to decide
whether a graph has a convex p-cover or a convex p-partition for a
fixed p ≥ 2. If the nontrivial sets are considered as elements of convex
p-covers or convex p-partitions of a graph, the problems also remain
NP-complete for a fixed p ≥ 2.

Since the general convex p-cover problem is NP-complete, several
classes of graphs for which there exist polynomial algorithms for decid-
ing whether a graph can be covered or partitioned by a fixed number
p ≥ 2 of convex sets were identified [4], [5], [8], [11].

Note that there exist graphs for which there are no nontrivial con-
vex covers or nontrivial convex partitions or both. For example, a con-
vex simple graph (a graph that does not contain any nontrivial convex
sets [3]) can not be covered by nontrivial convex sets. The problem of
determining whether a graph G can be partitioned into an arbitrary
number of nontrivial convex sets is NP-complete, but it can be estab-
lished in polynomial time whether G can be covered by an arbitrary
number of nontrivial convex sets [12].

In our previous works, we have studied six different invariants that
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consistently help to determine the existence of convex covers and par-
titions of graphs. The least p ≥ 2 for which a graph G has a convex
p-cover is said to be the minimum convex cover number ϕmin

c (G). Sim-
ilarly, the least p ≥ 2 for which G has a convex p-partition is said to be
the minimum convex partition number θmin

c (G). In the same way, min-

imum nontrivial convex cover number ϕmin
cn (G), minimum nontrivial

convex partition number θmin
cn (G), maximum nontrivial convex cover

number ϕmax
cn (G) and maximum nontrivial convex partition number

θmax
cn (G) are defined in the case when the nontrivial convex sets are
considered. For supplementary information about estimation of these
invariants the papers [9], [10], [11] and [12] can be consulted.

It is obvious that for any graph G we have ϕmin
c (G) ≤ θmin

c (G).
As before, if G can be partitioned into nontrivial convex set, then
θmin
c (G) ≤ θmin

cn (G) and:

ϕmin
cn (G) ≤ θmin

cn (G) ≤ θmax
cn (G) ≤ ϕmax

cn (G).

Anyway, if graph G can be covered by nontrivial convex sets, then
ϕmin
c (G) ≤ ϕmin

cn (G).

2 NP-hardness

In this section, we show that it is NP-hard to determine the values
of the invariants ϕmin

c (G), θmin
c (G), ϕmin

cn (G), θmin
cn (G), ϕmax

cn (G) and
θmax
cn (G) for a graph G. For each problem, firstly, we formulate the
corresponding decision problem.

Determination of minimum convex cover number ϕmin
c (G) has the

following decision problem:

PROBLEM: Minimum convex cover (MinCC).
INSTANCE: Graph G = (X; U), integer p, 2 ≤ p ≤ |X|.
QUESTION: Is there a convex q-cover of G such that 2 ≤ q ≤ p?

As for invariants θmin
c (G), ϕmin

cn (G), θmin
cn (G), their decision prob-

lems are defined in the same manner and only the appropriate specifica-
tion of the type of convex cover (convex q-partition, nontrivial convex
q-cover, nontrivial convex q-partition) in the questions is required.
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The clique partitioning problem is defined as follows:

PROBLEM: Clique partition (CP).

INSTANCE: Graph G = (X; U), integer p, 3 ≤ p ≤ |X|.

QUESTION: Is there a partition ofX into p disjoint setsX1, . . . ,Xp,
such that the subgraph induced by Xi is a complete graph for each i,
1 ≤ i ≤ p?

In the sequel, we show that MinCC, minimum convex partition
(MinCP), minimum nontrivial convex cover (MinNCC) and minimum
nontrivial convex partition (MinNCP) problems are NP-complete. In
order to achieve this goal, we reduce the CP that is a well-known
NP-complete problem [2] to the problems of interest.

Theorem 1. The MinCC problem is NP-complete.

Proof. Verifying whether a set of vertices is convex can be done in
polynomial time [6]. Hence, MinCC problem is in NP.

Let G = (X; U) be a generic graph of CP problem and p be an
integer, 3 ≤ p ≤ |X|. Without loss of generality, it can be assumed
that X is not a clique. We obtain a particular graph G′ = (X ′; U ′) of
MinCC problem from G by adding auxiliary sets Y = {y1, y2, . . . , yp}
and Z = {z1, z2, . . . , zp} to X such that X ′ = X ∪ Y ∪ Z, where
Γ(yi) = X ∪{zi} and Γ(zi) = X ∪{yi} for each i, 1 ≤ i ≤ p. Obviously,
this construction of G′ can be done in polynomial time.

The MinCC instance is defined by the graph G′ and the number p.
In Figure 1 it is shown how a particular graph G′ of MinCC problem
is obtained from a graph G of CP problem.

It can easily be checked that for every two nonadjacent vertices
a, b ∈ X ′ we get X ′ ⊆ d − conv({a, b}). In consequence, a set S ⊂ X ′

is convex in G′ if and only if S is a clique, and further G′ cannot be
covered by k, k < p, convex sets.

If G can be partitioned into p disjoint cliques X1,X2, . . . ,Xp, then
we obtain a convex p-cover P(G′) = {X ′

1,X
′
2, . . . ,X

′
p}, where X ′

i =
Xi ∪ {yi, zi} for each i, 1 ≤ i ≤ p.

Let P(G′) be a convex cover of G′ such that |P(G′)| ≤ p. For the
above reason, |P(G′)| = p. We define a family of convex sets P = ∅.
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Figure 1. a) Graph G of CP problem with p = 3 b) Particular graph
G′ of MinCC problem obtained from G.

For each set S ∈ P(G′), if S\(Y ∪ Z) 6= ∅, we add set S\(Y ∪ Z)
to P. Then, by removing from P all sets contained in the union of
other sets of the family P we obtain a convex k-cover P

′
(G) of G,

2 ≤ k ≤ |P| ≤ |P(G′)|. Note that if any graph H can be covered by
k cliques and there exists a set S of this cover such that |S| ≥ 2, then
by removing every element of S from other cliques and by splitting S

into two cliques, we obtain a cover of H by k+1 cliques. Thus, G can
be covered by p cliques. It stands to reason that G can be partitioned
into p cliques.

So, G can be partitioned into p disjoint cliques if and only if there
exists a cover of G′ by at most p convex sets. Thus, it is proved that
the MinCC problem is NP-complete.

In view of demonstration of the Theorem 1, we obtain the correct-
ness of Corollaries 1, 2 and 3.

Corollary 1. The MinCP problem is NP-complete.

Corollary 2. The MinNCC problem is NP-complete.

Corollary 3. The MinNCP problem is NP-complete.

Determination of maximum nontrivial convex partition number
θmax
cn (G) has the following decision problem:

PROBLEM: Maximum nontrivial convex partition (MaxNCP)

INSTANCE: Graph G = (X; U), integer p, 2 ≤ p ≤ |X|.
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QUESTION: Is there a nontrivial convex q-partition of G such that
q ≥ p?

The partition into triangles problem is defined as follows:

PROBLEM: Partition into triangles (PIT).
INSTANCE: A graph G = (X; U) with |X| = 3k, where k ∈ N .
QUESTION: Is there a partition of X into k disjoint subsets

X1,X2, . . . ,Xk of three vertices each such that the three possible edges
between vertices of every Xi, 1 ≤ i ≤ k, are in U?

We reduce PIT, the well known NP-complete problem [2], to
MaxNCP problem. Therefore, we prove that MaxNCP problem is
NP-complete too.

Theorem 2. The MaxNCP problem is NP-complete.

Proof. Notice that MaxNCP problem is in NP because verifying
whether a set of vertices is convex can be done in polynomial time [6].

Let G = (X; U) be an instance of PIT problem, |X| = 3k, k ∈ N .
Firstly, we determine the structure of a particular graph G′ = (X ′; U ′)
of MaxNCP problem that corresponds to G. We know that the PIT
problem remains NP-complete even if the input graphG is tripartite [7].
Note also that every tripartite graph has no cliques with r ≥ 4 vertices.
Here and in the sequel we consider that G has no cliques with r ≥ 4
vertices.

We construct the graph G′ = (X ′; U ′) as follows:

1) X ′ = X ∪ {a, b, c, d, e, f};

2) U ′ = U ∪ {{a, c}, {a, d}, {b, c}, {b, d}, {c, e}, {d, f}}
∪ {{a, x}, {b, x} : x ∈ X}.

The MaxNCP instance is defined by the graph G′ and a number
p = k + 2. It is easy to see that G′ can be constructed in polynomial
time. We exhibit in Figure 2 how a particular graph G′ of MaxNCP
problem is obtained from a graph G of PIT problem.

We have to show that there exists a partition of X into triangles
if and only if there exists a nontrivial convex partition of G′ of size at
least k + 2.
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Figure 2. a) Graph G of PIT problem b) Particular graph G′ of
MaxNCP problem obtained from G.

Let P(G) = {X1,X2, . . . ,Xk} be a family of triangles that parti-
tions G. Since every triangle is a clique in G, it follows that each Xi,
1 ≤ i ≤ k, is nontrivial and convex in G′ and the set {a, b, c, d, e, f}
remains uncovered in G′. Observe that d − conv({a, c, e}) = {a, c, e}
and d − conv({b, d, f}) = {b, d, f}. For this reason, the family of sets
P(G) ∪ {{a, c, e}, {b, d, f}} generates a partition of G′ into k + 2 non-
trivial convex sets.

Let P(G′) be a partition of G′ into nontrivial convex sets and let
S be a set of P(G′). We distinguish some properties of S:

1) {a, b} 6⊂ S. Assuming the contrary, namely that {a, b} ⊂ S,
we see that d − conv({a, b}) = X ∪ {a, b, c, d} and further we obtain
X ′\d− conv({a, b}) = {e, f}. Note that the set {e, f} is not nontrivial
and convex. Hence, P(G′) cannot partition G′ into nontrivial convex
sets. We get the required contradiction.

2) {c, d} 6⊂ S. Assuming the converse, {a, b} ⊂ d − conv({c, d}).
Therefore, the property 1) is not satisfied and we obtain a contradic-
tion.

3) {e, f} 6⊂ S. Conversely, we have {a, b, c, d} ⊂ d − conv({e, f})
and consequently the properties 1) and 2) are not satisfied. This implies
a contradiction.

4) {x, y} 6⊂ S for every vertex x ∈ X and y ∈ {c, d}. Assuming
the converse, there exist x ∈ X and y ∈ {c, d} such that {x, y} ⊂ S.
Considering that vertices a and b belong to d− conv({x, y}), we obtain
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a contradiction.

5) {x, y} 6⊂ S for every two nonadjacent vertices x, y ∈ X. In the
converse case, there are two nonadjacent vertices x and y of X for
which {x, y} ⊂ S. And it follows that {a, b} ⊂ d− conv({x, y}). Have
a contradiction.

Let S1 = {a, c, e}, S2 = {b, d, f}, S3 = {b, c, e} and S4 = {a, d, f}.
Taking into account the properties 1) – 5) and the fact that each ver-
tex of X ′ belongs exactly to one set of P(G′), it is seen that P(G′)
contains strictly a pair of sets of the following two: S1, S2 or S3, S4.
Each pair of sets covers vertices a, b, c, d, e and f . Hence, vertices of
X ′\{a, b, c, d, e, f} remain to be partitioned into nontrivial convex sets.
By property 5), all of these sets are cliques. As mentioned above, G
has no cliques with r ≥ 4 vertices. Further, all of these sets are trian-
gles and by elimination of a pair of sets S1, S2 or S3, S4 from P(G′) we
obtain a family of triangles P(G) that partitions G. P(G′) contains
exactly k+2 sets and thus if G has a nontrivial convex partition P(G′)
of size at leas k+2, then there exists a partition of X into triangles.

The decision problem for maximum nontrivial convex cover num-
ber ϕmax

cn (G) is formulated similarly to MaxNCP, but with different
question: Is there a nontrivial convex q-cover of G such that q ≥ p?

The 3-Satisfiability problem is defined as follows:

PROBLEM: 3-Satisfiability (3SAT).

INSTANCE: Given a boolean expression E in conjunctive normal
form that is the conjunction of clauses, each of which is the disjunction
of three distinct literals.

QUESTION: Is there a satisfying truth assignment for E?

Now we prove that MaxNCC problem is NP-complete. For this pur-
pose, we reduce the 3SAT problem that is NP-complete [2] to MaxNCC
problem.

Theorem 3. The MaxNCC problem is NP-complete.

Proof. The MaxNCC problem is in NP because verifying whether a set
of vertices is convex can be done in polynomial time [6].
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The following reduction from 3SAT to MaxNCC will establish that
MaxNCC problem is NP-complete. Let E be an instance of the 3SAT
problem with n variables V1, V2, . . . , Vn and m clauses K1,K2, . . . ,Km.
Given this instance, we construct a graph G = (X; U) with 3n+m+16
vertices. Vertices vi, vi, yi correspond to variable Vi, 1 ≤ i ≤ n. One
vertex kj corresponds to clause Kj , 1 ≤ j ≤ m. There are sup-
plimentary vertices grouped in the four sets: A = {a, a1, a2, a3},
B = {b, b1, b2, b3}, C = {c, c1, c2, c3} and {d, e, f, h}. Denote by V ,
V and Y sets of all vertices vi, vi and respectively yi, 1 ≤ i ≤ n. By K

we denote the set of all vertices kj, 1 ≤ j ≤ m.
The graph G has 12n + 6m + 27 edges. The three vertices corre-

sponding to each variable are connected by an edge (i.e., vi, vi, yi form
a triangle). Each clause vertex is connected to its component terms
(that is, the clause vertex kl corresponding to the clause Vi ∨ Vj ∨ Vq is
connected by edges to vertices vi, vj , vq). The three additional vertices
a, b, c are connected to vi, vi, yi for all i, 1 ≤ i ≤ n, and to kj for all
j, 1 ≤ j ≤ m. The vertex d is connected by an edge to each vertex
r ∈ (A∪B∪{h})\{a1, b1}, the vertex e is connected by an edge to each
vertex r ∈ (B ∪ C ∪ {h})\{b1, c1} and f is connected to each vertex
r ∈ (A ∪C ∪ {h})\{a1, c1}. Finally, a1 is connected to a2 and a3, b1 is
connected to b2 and b3, c1 is connected to c2 and c3.

The MaxNCC instance is defined by the graph G and a number
p = 2n +m+ 3. It should be clear that this construction of G can be
done in polynomial time.

For example, consider the 3SAT instance:

E = (V1 ∨ V2 ∨ V3) ∧ (V2 ∨ V3 ∨ V4) ∧ (V1 ∨ V2 ∨ V4).

Then the graph G corresponding to E is presented in Figure 3.
Without loss of generality, we consider that E has no clauses which

contain a variable and its negation.
Let us distinguish some properties of G = (X; U):

Property 1: For any two nonadjacent vertices x, y ∈ V ∪ V ∪ Y ∪
K ∪ {a, b, c}, we have d− conv({x, y}) = X.

Property 2: For any two vertices x ∈ V ∪ V ∪ Y ∪ K, y ∈ (A ∪
B ∪ C ∪ {d, e, f, h})\{a, b, c}, we have d− conv({x, y}) = X.
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Figure 3. Graph G corresponds to the instance E = (V1 ∨ V2 ∨ V3) ∧
(V2 ∨ V3 ∨ V4) ∧ (V1 ∨ V2 ∨ V4). Every vertex of set X1 is adjacent to
every vertex of set X2. Dashed line marks areas of sets X1 and X2.

Property 3: Let P(G) be a nontrivial convex cover or G. Then,
A∗ = A ∪ {d, f, h}, B∗ = B ∪ {d, e, h} and C∗ = C ∪ {e, f, h} are in
P(G).

Correctness of the first two properties can be easily verified. We
will show that the Property 3 is correct too. Let S ⊂ X be a nontrivial
convex set that contains the vertex a1. Since |S| ≥ 3, the structure
of G yields that S also contains vertices a2 and a3. Hence, we get the
equality d−conv({a2, a3}) = A∗. Note that for each x ∈ X\A∗ we have
d − conv(A∗ ∪ {x}) = X. Further, A∗ is a unique nontrivial convex
set, different from X, that contains a1. For the same reason, B∗ and
C∗ are unique nontrivial convex sets, different from X, which contain
vertices b1 and c1, respectively.
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We have to show that E is satisfiable if and only if there exists a
nontrivial convex cover of G of size at least 2n+m+ 3.

Assume E is satisfiable. Then there exists a truth assignment of
variables such that all clauses evaluate to true. We will form a nontriv-
ial convex cover of P(G) as follows. By the Property 3, P(G) includes
the sets A∗, B∗ and C∗. We denote by M the set of all vertices vi for
which Vi are true in the assignment, and all vi for which Vi are false.
P(G) includes sets {x, y, a} for all x ∈ M , where y ∈ Y and y ∼ x.
Also, P(G) includes sets {vi, vi, a} for each i, 1 ≤ i ≤ n. Moreover,
P(G) includes one set {x, kj , a} for each kj , where x ∈ M , x ∼ kj ,
and the existence of such a vertex x yields from the fact that E is sat-
isfiable. The obtained nontrivial convex cover P(G) contains exactly
2n +m+ 3 sets.

Assume there exists a nontrivial convex cover P(G) of size at least
2n+m+3. Taking into account the Property 3, P(G) already includes
the sets A∗, B∗ and C∗. In view of the Property 2, it remains to analyze
a nontrivial convex cover P(G′) resulted from P(G) after elimination
of sets A∗, B∗ and C∗, where G′ = G[V ∪V ∪Y ∪K∪{a, b, c}]. Clearly,
|P(G)| = |P(G′)|+3. It follows from the Property 1 and the structure
of G that every set S ∈ P(G′) is a clique, 3 ≤ |S| ≤ 4, and it can be
classified into one of three types:

(i) S = {x, y, z}, where x, y ∈ V ∪V ∪Y ∪K, x ∼ y, and z ∈ {a, b, c};

(ii) S = {vi, vi, yi} for any i, 1 ≤ i ≤ n;

(iii) S = {vi, vi, yi, x} for any i, 1 ≤ i ≤ n, where x ∈ {a, b, c}.

Now we define a family of convex sets P(G′′) = ∅, obtained from
P(G′), that will cover G′′ = G′[V ∪ V ∪ Y ∪K].

We examine each set S ∈ P(G′) and consider two cases.

1) If S is of the first type (i), then we add set S\{a, b, c} to P(G′′).

2) If S is of the second (ii) or the third (iii) type, then taking into
account the fact that vertices a, b and c are already covered by sets
A∗, B∗ and C∗, we analyze two options. Suppose S contains only one
resident vertex r in P(G′). In this case, we add set {r, x} to P(G′′),
where x ∈ S\{a, b, c}, x 6= r. Suppose S contains at least two resident
vertices r1, r2 inP(G

′). Then, we add sets {r1, x} and {r2, x} toP(G
′′),
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where x ∈ S\{a, b, c}, x 6= r1, x 6= r2.
Let us remark that for a set S ∈ P(G′) of the type (ii) or (iii), any

set S′ ∈ P(G′), S′ 6= S, S′ ∩ S\{a, b, c} 6= ∅, is of the first type (i),
and thus there are no uncovered vertices in G′′, i.e. P(G′′) is a convex
cover of G′′. It is obvious that |P(G′′)| ≥ |P(G′)| and furthermore
|P(G′′)| ≥ |P(G)| − 3 = 2n+m. We need to take a closer look at the
family P(G′′). Every set of P(G′′) has exactly two adjacent vertices.
We choose one resident vertex of each set S ∈ P(G′′) and form the set
W as a union of these vertices. It is clear that D = X(G′′)\W is a
dominating set ofG′′ such that |P(G′′)|+|D| = |V ∪V ∪Y ∪K| = 3n+m.
If we combine this with the previous inequality, we get |D| ≤ n.

Consider the graph G′′. For any i, 1 ≤ i ≤ n, yi is either in D or
adjacent to a vertex of D, and yi is connected by edges only to vi and
vi. It follows that for every i, 1 ≤ i ≤ n, either vi, vi, or yi is in D.
This already specifies n vertices, so exactly one vertex for each variable
is included in D. We create a truth assignment as follows. Vi will be
assigned to true if vi is in D. Otherwise Vi will be assigned to false.
Consider clause Kj . The vertex kj is not in the dominating set. So kj
is adjacent to some vi or vl in the dominating set. If kj is adjacent to
vi in D, then since Vi is set to true, it follows that kj will be true. If
kj is adjacent to vl in D, then vl is not in D and Vl will be false, so Kj

will be true. It follows that this assignment is a solution for E and E

is satisfiable. Thus, if G has a nontrivial convex cover P(G) of size at
least 2n+m+ 3, then E is satisfiable.

So, this completes the proof of the correctness of the reduction and
we conclude that MaxNCC is NP-complete.

3 Conclusion

We have proved that MinCC, MinCP, MinNCC, MinNCP, MaxNCC
and MaxNCP problems are NP-complete. This yields that the prob-
lems of determining the values of the invariants ϕmin

c (G), θmin
c (G),

ϕmin
cn (G), θmin

cn (G), ϕmax
cn (G) and θmax

cn (G) for a general graph G are
NP-hard.

Of course, it is of interest to develop approximate algorithms,

198



The computational complexity of convex covering problems of graphs

heuristics, and establish other classes of graphs for which the above
mentioned invariants can be determined in polynomial time. All these
are issues for further research.
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