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Chromatic Spectrum of Ks-WORM Colorings

of Kn
�
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Abstract

An H-WORM coloring of a simple graph G is the coloring of
the vertices of G such that no copy of H b G is monochrome or
rainbow. In a recently published article by one of the authors [3],
it was claimed that the number of r-partitions in a Ks-WORM
coloring of Kn is ζr � �

n

r
�, where �n

r
� denotes the Stirling number

of the second kind, for all 3 B r B s � n. We found that ζr � �

n

r
 

if and only if �

n�3

2
� � s B n with r � s. Further investigations

into ζ2, given any K3-WORM coloring of Kn, show its relation
with the number of spanning trees of cacti and the Catalan num-
bers. Moreover, we extend the notion of H-WORM colorings
to �H1;H2�-mixed colorings, where H1 and H2 are distinct sub-
graphs of G; these coloring constraints are closely related to those
of mixed hypergraph colorings.

Keywords: Catalan numbers, Chromatic spectrum, Mixed
hypergraph coloring, Stirling numbers.
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1 Preliminaries

A partition P of a set A is a set of nonempty subsets of A such that
each element of A is in exactly one subset of A. The elements of P

are often called blocks and an r-partition is a partition with r number
of blocks.
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A coloring of a set S is a mapping c � S � �r�, where �r� �

�1,2, . . . , r� and an r-coloring of S is a coloring of the elements of S
using exactly r colors. As such, a coloring c�S� is a partition of the set
S since all of the elements of S are assigned a color; elements that share
the same color (monochrome subset) belong to the same block and ele-
ments with different colors (rainbow subset) belong to distinct blocks.
A set A b S is said to be monochrome if all of its elements share the
same color and A is rainbow if all of its elements have different colors.

Let G � �V,E� denote a simple graph and let H be a subgraph of G;
we write H b G. An H-WORM (vertex) coloring of G is the coloring of
the vertices of G such that no copy of H b G is monochrome or rainbow.
This coloring constraint was first introduced by W. Goddard, K. Wash
and H. Xu [9], [10], and independently studied by Cs. Bujtás and Zs.
Tuza [4],[6],[9],[10]. In [2], it was extended to the notion of F -WORM
colorings, where F represents a collection of distinct subgraphs of G
instead of a single subgraph of G. Given any H-WORM coloring of
G, the sequence �ζα, . . . , ζβ� is called a chromatic spectrum, where α

and β are known as lower and upper chromatic numbers, respectively.
Each chromatic spectral value, ζr with α B r B β, counts the number of
proper r-partitions which are the r distinct partitions that satisfy the
coloring constraint. We note that the term partition vector was used
in [2] to describe chromatic spectrum. The integer set F � �r � ζr A 0�
with α B r B β is called a feasible set and it has been the subject of
numerous research publications (see e.g., [5], [7], [8], [16], [22], [23]). In
general, (see [6], for instance) it is NP-hard to determine α and it is
NP-complete to decide whether or not a graph G admits a K3-WORM
coloring. Moreover, it is a far more difficult problem to find the chro-
matic spectral values ζr, since one must first determine the feasible set.
Recently, the chromatic spectra of some 2-trees given any K3-WORM
coloring have been found [2],[3]. Specifically, in [2], the chromatic spec-
tral values in any Ks-WORM coloring of Kn have been determined.
Unfortunately, there was an oversight in the estimates of some of these
spectral values. In this article, we provide a result (Theorem 2) that
resolves the issue by classifying these spectral values in relation to the
well-know Stirling number of the second kind. Further, given any K3-
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WORM coloring of Kn, we found that the lower spectral values, ζ2, are
closely related to the well-known Catalan numbers. Other relations
between the lower spectral value and the number of spanning trees of
some cacti are also shown. In the last section, we extend the notion of
H-WORM colorings to �H1;H2�-mixed colorings. In particular, some
related results between �Kr;Ks�-mixed colorings of Kn and complete
�r, s�-uniform mixed hypergraph colorings are established.

2 Ks-WORM Colorings

The Stirling number of the second kind (see for e.g., [17]) which we
denote by �

n
r
�, counts the r-partitions of a set of order n. Clearly

�

n
1
�
� 1 �

�

n
n
� for n C 1. It is often computed with the identity

�

n

r
  �

1

r!

r

Q

j�0

��1�n�
r

j
��r� j�n. There are several other well-known com-

binatorial identities and generating functions on the Stirling numbers
of the second kind that can be found in [11]. Recently ( [3]), the Stir-
ling numbers of the second kind appeared in the chromatic spectrum
of some Ks-WORM colorings of Kn. However, many of the proposed
spectral values turned out to be significantly less than the Stirling num-
bers of the second kind. The main result of this section outlines the
spectral values that are equal to the Stirling numbers of the second
kind and those that are not.

We begin with a restatement of the original work in [3] concerning
the spectral values.

Theorem 1. [ [3], Theorem 2.1] The partition vector in a Ks-

WORM coloring of Kn is �ζ



n
s�1

�

, . . . , ζs�1�, where ζr � �

n

r
  for all 3 B

s � n.

Here is one simple counterexample to Theorem 1.
Let n � 4 and s � 3. Clearly, 3 B s � n. Suppose there is a K3-

WORM coloring of K4 and let V � �a, b, c, d�, where V � V �K4�. The
total number of 2-partitions (with no constraint) of V is �4

2
�
� 7. Now,

consider ζ2, the number of 2-partitions.
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Claim. ζ2 � �

4

2
  (when r � 2).

Proof. It suffices to show that there is a 2-partition that fails to satisfy
the K3-WORM coloring condition of K4: no monochrome K3 and no
rainbow K3. Suppose V � �a, b, c, d�. Clearly, ��a, b, c�,�d�� is a 2-
partition of V that contains a subset of size 3, giving a monochrome
K3. Thus, it is not a proper 2-partition of V . So, the number of all
proper 2-partitions of V must be smaller than �

4

2
�, the number of all

2-partitions of V .

Later, in Corollary 6, we show that ζ2 �
4�4�1�

4
� 3, in which case

the 2-partitions of V that satisfy the K3-WORM coloring condition are
��a, b�,�c, d��, ��a, c�,�b, d�� and ��a, d�,�b, c��. The four remaining
2-partitions that fail to satisfy the K3-WORM coloring condition are:
��a�,�b, c, d��, ��b�,�a, c, d��, ��c�,�a, b, d��, ��d�,�a, b, c��.

Lemma 1. There is a Ks-WORM vertex coloring of Kn if and only if
n B �s � 1�2 for all 3 B s B n.

Proof. Suppose there is a Ks-WORM coloring of Kn. There is an r-
partition of �n� such that no block contains s or more elements from
�n�. It follows that n B r�s � 1�. Moreover, r B s � 1, or else some
subgraph Ks bKn is rainbow. Conversely, suppose that there is a Ks-
WORM vertex coloring ofKn and n C �s�1�2�1. Let A � �n�. Partition
the elements of A into �s� 1�-blocks, each containing �s� 1� elements.
Any remaining element, since there is at least one, say x > A, must be
added to the elements of one of blocks, giving a monochrome s-block,
or else, at least one extra block is needed for x, giving a rainbow s-set.
Hence, n B �s � 1�2.

Remark 1.

A result similar to Lemma 1 had been first proved by Goddard,
Wash, and Xu in [9]. Also, from the previous two results, it is clear
that not every Kn admits a Ks-WORM coloring for some s � n. For
example, there is no K2-WORM coloring of K5 even though there is a
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2-partition of K5. Moreover, it is easy to see that an �s�1�-partition of
�n� is a Ks-WORM coloring of Kn if every block is of size s� 1 or less.
Thus, it is clear that an r-partition of �n� is a Ks-WORM coloring of
Kn if and only if r B s � 1 and every block is of size s � 1 or less. Such
partition will be said to be representative of a Ks-WORM coloring of
Kn.

The next result is simply a restatement of Lemma 1.

Corollary 1. Suppose Ks bKn. There is a Ks-WORM vertex coloring
of Kn if and only if �

º

n� � s B n for all n C 3.

Corollary 2. The feasible set in a Ks-WORM vertex coloring of Kn

is F � ��

n
s�1

�, . . . , s � 1�, for all s A �

º

n�.

Proof. Suppose there is a Ks-WORM vertex coloring of Kn, in which
case �

º

n� � s B n. It follows that each block is of size at most s � 1,
giving at least � n

s�1
� distinct blocks for all n C 3.

Here, we correct Theorem 1 with Theorem 2 which identifies the
spectral values that are actually equal to the Stirling numbers of the
second kind, given any Ks-WORM coloring of Kn, n C 3.

Theorem 2. Suppose ζi denotes a spectral value in a Ks-WORM col-
oring of Kn. Then ζi B �

n
i
� with equality if and only if n B s� i� 2, for

2 B i � s B n.

Proof. Suppose there is a Ks-WORM coloring of Kn. It is clear that
ζr B �

n
r
�, r � s B n since every Ks-WORM coloring of Kn is a partition

of �n�. Consider all r-partitions of �n�, for some r B s � 1. If all
partitions have only blocks of size less than s, in which case they are
representatives of a Ks-WORM coloring of Kn, then there are exactly
�

n
r
� such partitions.
Now, consider any r-partition of �n�, with r B s � 1. If r � s � 1,

we simultaneously remove elements from some existing blocks to form
new blocks of the partition until we attain the maximum number of
allowable blocks, when r � s � 1; this is always possible since r � s B n.

Let P �

r

#

j�1

Aj denote the newly formed r-partition of �n�, with r � s�1,
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such that SAiS B SAk S, for 1 B i � k B r. P is representative of a Ks-
WORM coloring of Kn and without loss of generality, we can assume
that there is a block Ar > P such that SAr S � s�1; otherwise, the result
follows easily from the next argument.

Suppose that SAtS C 2, for some t, with 1 B t B r � 1. Let xt > At and

define A�

t � At��xt�, and A�

r � Ar8�xt�. Let P
�

�

r�2

#

j�1

Aj 8A
�

t8A
�

r is an

r-partition. This implies SA�

r S � s in which case P
� is not representative

of a Ks-WORM coloring of Kn. Thus, given some SAj S � s � 1, every r

partitions of �n� are representives of Ks-WORM colorings of Kn if and
only if SA1S � . . . � SAr�1S � 1, for each Aj > P, 1 B j B r � 1. Hence,
it must be that n B s � r � 2 whenever the number of r-partitions in a
Ks-WORM coloring of Kn is �n

r
�, giving the result for all 2 B r � s B n.

The next result is a special case of Theorem 2 when n � s.

Corollary 3. Given a Kn-WORM coloring of Kn, the chromatic spec-

trum is �ζ2, . . . , ζn�1�, where ζi � �

n

i
  with 2 B i B n � 1.

Proof. By definition, every r-partition of �n� represents a coloring of
Kn. Further, with 2 B r B n � 1, no r-partition of �n� contains a block
of size n, by the pigeonhole principle. Clearly, if either r � 1 or r � n,
then �n� becomes monochrome or rainbow, respectively.

Corollary 4. Given any Ks-WORM coloring of Kn, if s C �

n�3
2
�, then

the chromatic spectrum is �ζ2, . . . , ζs�1�, where ζi � �

n

i
  with 2 B i B

s � 1.

Proof. The result follows from Theorem 2 when n B s � r � 2 and the
fact that r B s � 1.

The next result follows from Corollary 2 and Corollary 4, for all
n C 4.
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Corollary 5. Given any Ks-WORM coloring of Kn, if �

º

n� � s �

�

n�3
2
�, then the chromatic spectrum is �ζ

�

n

s�1
�

, . . . , ζs�1�, where ζi � �

n

i
 

for all � n
s�1

� B i B s � 1.

In the case when n � 3 it is clear that we obtain ζ2 � �

3

2
 , showing

that the bounds on s in the previous two results are tight.
In Figure 1, we summarize the results on the feasible sets, the chro-

matic spectral values given any Ks-WORM coloring of Kn, n C 3.

��

n
s�1

�, . . . , s � 1� Feasible set

Spectral values
i

ζi � �

n
i
� ζi � �

n
i
�

s
�

n � 1

2
�

n
�

º

n�2
i

g

Figure 1. Ks-WORM coloring of Kn, for 3 B s B n

In the next result we give the lower spectral values, ζ2, when ζ2 �

�

n
2
�; these values are related to the Catalan numbers as shown in a

remark after the result. We note here that, for r C 3, the exact values
of ζr when s � �

n�3
2
� remain to be found.

Corollary 6. Suppose there is a Ks-WORM coloring of Kn. If
s � �

n
2
� � 1, then the chromatic spectrum is �ζ2, . . . , ζs�1�, where

ζ2 �

¢

¨

¨

¨

�

¨

¨

¨

¤

�

n
n

2

�
~2, if n is even

�

n
�

n
2
�

�, if n is odd.

Proof. Suppose there is a Ks-WORM coloring of Kn. Because �
n
2
��1 �

�

n�3
2
� for all n C 4, it is clear from Corollary 5 that 0 � ζ2 � �

n
2
�. Now,

consider a 2-partition of �n� that is representative of a Ks-WORM
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coloring. Since s � �

n
2
� � 1, the blocks of the partition must be of sizes

�

n
2
� and 


n
2
�. When n is even, the result follows by symmetry, when

considering all n
2
-subsets of �n� to form one block of the partition,

leaving the remaining (half) elements of �n� for the other block. On
the other hand, when n is odd, each �

n
2
� subset of �n� paired with the

remaining 


n
2
� elements of �n� form distinct 2-partitions, giving the

result.

Remark 2.

The kth Catalan number is known to be given by Ck �

1

k�1
�

2k
k
�;

besides having numerous combinatorial meanings (see for e.g., [19]),
Ck also counts the number of triangulations of a convex �k � 2�-gon.
Further, from Corollary 6 we establish the following relation between
2-partitions in a Ks�1-WORM coloring of K2s, and the kth Catalan
number. Namely,

ζ2 �

�s � 1�

2
Cs.

Thus, the number of 2-partitions of a Ks�1-WORM coloring of K2s

is
�2s�!

2�s!�2
, s C 2. In the case when s � 2 we obtain ζ2 � 3, a value

that is supported by both Corollary 6 and the remark following the
counterexample given at the beginning of this section.

Suppose τ�G� denotes the number of spanning trees of a graph G.
It is clear that τ�G� � 1 for any acyclic graph, and when G � Cm, which
we denote a cycle on m vertices, τ�G� � m. Further, it is well-known
(see for e.g., [1]) that if G � Km,n, a complete bipartite graph, then
τ�G� �mn�1nm�1. Here, we show a close relation between K3-WORM
colorings and spanning trees. We recall that the girth of a graph is the
length of its smallest cycle and a cactus is a simple connected graph
in which every pair of cycles share at most one vertex. Figure 2 shows
some cacti with girth 3.
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Proposition 1. Suppose G is a cactus with k cycles of length

m1,m2, . . . ,mk. Then the number of its spanning trees is τ�G� �

k

M

i�1

mi,

for each mi C 3.

Proof. If G � Cm1 , then τ�G� �m1, each spanning tree is obtained by
deleting exactly one edge from Cm1 . Because every two cycles share
exactly one vertex, the argument follows by induction on k C 1.

Suppose G denotes a simple graph and F � �F1, . . . , Fk� is a col-
lection of distinct subgraphs Fi b G, 1 B i B k. An F -WORM coloring
of G is the coloring of the vertices of G such that no copy of Fi b G is
monochrome or rainbow. This notion was first introduced in [2] as a
generalization of F -WORM colorings. For the next two results, given
a cactus G, we denote by C � �C1,C2, . . . ,Ck

� the collection of all
distinct cycles Ci

b G.

Proposition 2. Let G denote a cactus of order n. If there is a C -
WORM coloring of G, then the feasible set is F � �2, . . . , n � k�, with
1 B i B k.

Proof. Suppose there is a C -WORM coloring of G. It follows that no
Ci is rainbow or monochrome for each 1 B i B k. We give the colorings
or partitions that produce the infimum and the supremum of F . Color
the vertices of G in such a way that, for each of the k cycles, exactly two
vertices are monochrome while all other vertices of G are kept rainbow.
This gives the supremum. On the other hand, select a pair of vertices
from each of the k cycles. Color all such pairs with a single color, and
any other (remaining) vertices of G with another color. This gives the
infimum of G. In both cases it is easy to verify that each coloring is
representative of a proper C -WORM coloring.

Proposition 3. Suppose G denotes a cactus with k cycles, each of
length m1,m2, . . . ,mk, mi C 3. The number of 2-partitions in a C -

WORM coloring of G is at least
k

M

i�1

mi, the number of its spanning

trees.
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Proof. In every spanning tree of a graph G, exactly one edge ei >

E�Cmi
�, for each 1 B i B k, is removed to create an acyclic connected

graph. Let A1 be the block whose elements are the endpoints of ei,
1 B i B k, and let A2 be the block that contains any remaining vertices
of G. Clearly no Cmj

b G is monochrome or rainbow, and the collec-
tion �A1,A2� is a 2-partition of G. Hence the number of 2-partitions
ζ2�G� C τ�G�, and the result follows from Proposition 1.

Proposition 4. Suppose G is a cactus with k cycles each of length 3.
If ζ2 counts the 2-partitions of G in a K3-WORM coloring, then ζ2 C 3k

with equality if and only if G is bridgeless.

Proof. Suppose G is a bridgeless cactus with k cycles each of length 3
and consider a K3-WORM coloring. It follows from Proposition 3 that
ζ2 C 3k. Further, a 2-coloring of each K3 b G is a 2-coloring of G since
no other vertex of G lies outside some K3. This implies that ζ2 B 3k.
Hence the equality.

Remark 3.

Proposition 4 points out that a K3-WORM coloring of G is equiv-
alent to a graph operation that yields spanning trees provided G is
bridgeless (see Figure 2�c�)–In every 2-coloring of K3 b G, exactly one
pair of vertices share the same color, in which case the edge incident to
those vertices can be considered “deleted”–Because no edge is a bridge,
the resulting graph G� remains connected. Also since G is a cactus, no
edge is shared by two or more cycles, and the removal of an edge does
not induce any (larger) cycle as a subgraph. Therefore the resulting
graph G� contains no cycle and yet, it includes all vertices of G, giving
a spanning tree.

Figure 2 helps illustrate this previous remark. Both Figures 2�a�
and 2�b� show some K3-WORM 2-colorings that do not represent span-
ning trees; in both cases ζ2 C 33. Further, in Figure 2�c�, G is bridgeless
and ζ2 � 34.
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�a� �b� �c�

Figure 2. Spanning trees and 2-colorings of some cacti

Remark 4.

It is shown in [2] that when G � θ�1,2, . . . ,2�, an �n � 1�-bridge,
then ζ2�G� � 2n�2 � 1. Further when G � Fn, a Fan on n C 3 vertices,

ζ2 �

1
º

5
�

β � 2

β
αn

�

α � 2

α
βn

�, a shifted Fibonacci number, with α �

1 �
º

5

2
and β �

1 �
º

5

2
.

Although, given any K3-WORM coloring of G, τ�G� � ζ2�G� when
G is a bridgeless cactus of girth 3, it is also true that, for any acyclic
graph G, 1 � τ�G� � ζ2�G�. With this observation, it is tempting to
claim that, for any graph G with girth 3, the number of its spanning
trees τ�G� B ζ2�G�, the number of its 2-partitions in an K3-WORM
coloring. However, the next proposition shows that it is not always the
case. In particular, ζ2�G� � τ�G� when G � θ�1,2, . . . ,2�.

Proposition 5. If G � θ�1,2, . . . ,2�, an �n�1�-bridge on n C 3 vertices,
then τ�G� � n2n�3.

Proof. Consider the path �u, v� ` E�G� where every other vertices of G
are adjacent to both u and v. In every spanning tree of G, either �i� the
edge uv is deleted or �ii� uv is kept, in which case, for each K3 which
necessarily includes uv, exactly one of the edges incident to either u or
v is deleted. From case �i�, it follows that the resulting graph is Kn�2,2
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where u and v are the vertices of part size 2 and τ�Kn�2,2� counts the
number of its spanning trees. In case �ii�, this is equivalent to a 2-
partition of G, given a K3-WORM coloring. However, ζ2�G� includes
the case when c�u� � c�v�, and there is exactly one such partition which
we remove since it falls under case (i). Together, we have

τ�G� � τ�Kn�2,2� � ζ2�G� � 1 (1)

� �n � 2�2n�3 � 2n�2

� n2n�3,

giving the result for all n C 3.

It is clear from equation 1 that when n � 3, the equality ζ2�G� �

3 � τ�G� holds since τ�K1,2� � 1 and for all n C 4, the inequality
ζ2�G� � τ�G� holds.

Example 1.

Given Proposition 5, the case when n � 4, i.e., when G � θ�2,1,1�,
is illustrated by Figure 3. We show all spanning trees of G (after
the arrows), and τ�G� � 8. The spanning trees in case �ii�, when
c�u� � c�v�, are not representative of K3-WORM colorings; each pair
of deleted edges would yield a corresponding monochrome K3. Also,
ζ2�G� � 5 which are obtained from case �i�, when c�u� x c�v�, and one
additional graph from case �ii� which has exactly one edge deleted;
this produces a C4, which is trivially counted as a 2-partition in a
K3-WORM coloring of G.

3 (Kr;Ks)-mixed coloring

A hypergraph H is an ordered pair �V ,E �, where V is a finite set of
vertices with order SV S � n and E is a collection of nonempty subsets of
V , called hyperedges. When E is a collection of all nonempty s-subsets
of V , then H is called a complete s-uniform hypergraph.

Hypergraphs are extensively used in machine learning techniques,
data mining and information retrieval tasks such as clustering and clas-
sification. See for instance [12]–[14].
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G �

u v

u v

i

ii

Figure 3. K3-WORM 2-colorings and the spanning trees of G �

θ�2,1,1�

Given any vertex coloring of H , if no hyperedge e > E is
monochrome, H � �V ,D� is called a D-hypergraph which is the clas-
sic hypergraph vertex coloring. When no hyperedge e > E is rainbow,
H � �V ,C � is called a cohypergraph. In the event no hyperedge e > E is
monochrome or rainbow, H � �V ,B� is called a bihypergraph, where
B is a nonempty intersection of C and D or when C � D . As a
generalization of these different coloring constraints on the vertices of
V , it is customary to define a mixed hypergraph H � �V ,C ,D� as a
triple such that C and D are (not necessarily distinct) subsets of E .
Mixed hypergraph colorings were first introduced by Voloshin (see for
e.g., [8], [20]–[23]). They are often used to encode partitioning con-
straints and also to construct cyber security models [15], [18].

A mixed hypergraph H is said to be uncolorable if its feasible set
F � g, in which case H admits no proper coloring. It is obvious that
when SeS B 2 for some e > B, H is uncolorable, so we assume SeS C 3 for
every e > B. Various classes of uncolorable mixed hypergraphs have
been extensively discussed, including complete �r, s�-uniform mixed hy-
pergraphs [7], [20], [23] which are complete uniform mixed hypergraphs
such that, for every hyperedges d > D and c > C , SdS � r and ScS � s.
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Remark 5.

With the concept of mixed hypergraph colorings, it is natural to
define an �H1;H2�-mixed (vertex) coloring of a graph G as the color-
ing of the vertices of G such that no H1 b G is rainbow and no H2 b G

is monochrome. In particular when H1 � H2 � H, an �H;H�-mixed
coloring of G is anH-WORM coloring. Thus, by definition, a (Kr;Ks)-
mixed coloring of Kn is equivalent to a proper coloring of a complete
�r, s�-uniform mixed hypergraphs, and when r � s, a Ks-WORM col-
oring is a complete s-uniform bihypergraph. Within these contexts,
we later state equivalent results without offering any additional proof.

Further, it is clear that, if P �

k

#

j�1

Aj is a k-partition of �n�, then P is

representative of a (Kr;Ks)-mixed coloring of Kn if and only if k � r

and SAj S � s.

Proposition 6. There exists a set of k positive integers t1, . . . , tk such

that
r�1

Q

i�1
ti�s

ti � n if and only if n B �s � 1��r � 1�, 2 B r B s B n.

Proof. Take r � 1 integers, say ti’s, such that each ti B s� 1. They add
up to at most �s � 1��r � 1�, giving the result.

Lemma 2. There is a �Kr,Ks�-mixed coloring of Kn if and only if
n B �s � 1��r � 1�, 2 B r B s B n.

Proof. Let P �

k

#

j�1

Aj denote an k-partition of �n� such that SAiS � s.

For all k � r, let SAiS � ti with 3 B ti � s and the result follows from
Proposition 6.

Lemma 3. A complete �r, s�-uniform mixed hypergraph of order n is
colorable if and only if n B �s � 1��r � 1�, 2 B r B s B n.

We note here that Zs. Tuza and V. Voloshin ( [20], Theorem 8) were
first to prove the negation of the statement in Lemma 3, and Lemma 1
is a special case when r � s. We state the equivalent statement of this
special case in the next Lemma.
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Lemma 4. A complete s-uniform bihypergraph of order n C 3 is col-
orable if and only if n B �s � 1�2, for 3 B s B n.

Corollary 7. Suppose Cs denotes the sth Catalan number for all s C 2.
The number of 2-colorings of a complete �s � 1�-uniform bihypergraph

of order 2s, from a list of r C 2 colors is �

r

2
��s � 1�Cs.

Proof. Following Remark 2, and the fact that there are exactly r�r�1�
ways of colorings the elements of each 2-partition, we have a total of
r�r � 1��s � 1�

2
Cs such colorings.
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