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Abstract

A total k-rainbow dominating function (TkRDF) of G is a
function f from the vertex set V (G) to the set of all subsets of
the set {1, . . . , k} such that (i) for any vertex v ∈ V (G) with
f(v) = ∅ the condition

⋃

u∈N(v) f(u) = {1, . . . , k} is fulfilled,

where N(v) is the open neighborhood of v, and (ii) the subgraph
of G induced by {v ∈ V (G) | f(v) 6= ∅} has no isolated ver-
tex. The total k-rainbow domination number, γtrk(G), is the
minimum weight of a TkRDF on G. The total k-rainbow dom-
ination subdivision number sdγtrk

(G) is the minimum number
of edges that must be subdivided (each edge in G can be sub-
divided at most once) in order to increase the total k-rainbow
domination number. In this paper, we initiate the study of to-
tal k-rainbow domination subdivision number in graphs and we
present sharp bounds for sdγtrk

(G). In addition, we determine
the total 2-rainbow domination subdivision number of complete
bipartite graphs and show that the total 2-rainbow domination
subdivision number can be arbitrary large.
Keywords: total k-rainbow domination, total k-rainbow domi-
nation subdivision number, k-rainbow domination.
MSC 2010: 05C69.

1 Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set
E(G) (briefly V and E). For every vertex v ∈ V , the open neighborhood

c©2020 by CSJM; R. Khoeilar, M. Kheibari, Z. Shao, S. M. Sheikholeslami

152



Total k-rainbow domination subdivision number in graphs

NG(v) = N(v) is the set {u ∈ V | uv ∈ E} and the closed neighborhood
of v is the set NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex
v ∈ V is degG(v) = deg(v) = |N(v)|. The minimum degree and the
maximum degree of a graph G are denoted by δ = δ(G) and ∆ = ∆(G),
respectively. A leaf is a vertex of degree one, a support vertex is a vertex
adjacent to a leaf and a strong support vertex is a vertex adjacent to
at least two leaves. Let Lv denote the set of leaves adjacent to the
vertex v.

A subset S of vertices of G is a dominating (total dominating) set
if N [S] = V (N(S) = V ). The domination (total domination) number
γ(G) (γt(G)) is the minimum cardinality of a (total) dominating set
of G. A (total) dominating set with cardinality γ(G) (γt(G)) is called
a γ(G)-set (γt(G)-set). The domination and its variations have been
attracted considerable attention and surveyed in three books [20], [21].
Velammal [26] defined the domination subdivision number sdγ(G) to
be the minimum number of edges that must be subdivided (where each
edge in G can be subdivided at most once) in order to increase the
domination number. The domination subdivision number has been
studied by several authors (see for instance [7], [18]). Similar concepts
related to connected domination were studied in [17], to total domina-
tion in [16], [19], [22], to Roman domination in [5], [6], [8], to rainbow
domination in [12], [15], to weakly convex domination in [13] and to
convex domination in [14].

Let k be a positive integer, and let [k] := {1, 2, . . . , k}. A function
f : V (G) → 2[k] is a k-rainbow dominating function (kRDF) of G if for
each vertex v ∈ V (G) with f(v) = ∅, the condition

⋃

u∈N(v) f(u) = [k]
is fulfilled. The weight of a kRDF f on G is ω(f) =

∑

v∈V (G) |f(v)|.
The k-rainbow domination number of G, γrk(G), is the minimum
weight of a kRDF on G. The k-rainbow domination number was intro-
duced by Brešar, Henning and Rall [9] and has been studied by several
authors [6], [10], [11], [23]–[25].

A k-rainbow dominating function f on G, is called a total k-rainbow
dominating function (TkRDF) if the subgraph of G induced by the set
{v ∈ V (G) | f(v) 6= ∅} has no isolated vertex. The total k-rainbow
domination number of G, γtrk(G), is the minimum weight of a TkRDF
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ofG. A TkRDF f ofG with weight γtrk(G) is called a γtrk(G)-function.
Note that γtr1(G) is equal to the classical total domination number,
denoted by γt(G). The total k-rainbow domination has been studied
in [1]–[3].

The total k-rainbow domination subdivision number sdγtrk(G) of a
graph G is the minimum number of edges that must be subdivided
(where each edge in G can be subdivided at most once) in order to
increase the total k-rainbow domination number of G. (An edge uv ∈
E(G) is subdivided if the edge uv is deleted, but a new vertex x is
added, along with two new edges ux and vx. The vertex x is called
a subdivision vertex). Observation 1 below shows that the total k-
rainbow domination number of graphs cannot decrease when an edge
of graph is subdivided.

The purpose of this paper is to initiate the study of the total k-
rainbow domination subdivision number in graphs. We first present
some sharp bounds on sdγtrk(G), and then determine the total 2-
rainbow domination subdivision number of complete bipartite graphs.
In addition, we show that the total 2-rainbow domination subdivision
number can be arbitrary large. Although it may not be immediately
obvious that the total k-rainbow domination subdivision number is de-
fined for all graphs without isolated vertices, we will show this shortly
(see Corollary 4).

We make use of the following results in this paper.

Proposition A. [2] For any graph G of order n without isolated
vertices

min{n, k, γrk(G), γt(G)} ≤ γtrk(G) ≤ kγt(G).

Proposition B. [2] Let k ≥ 2 be an integer, and let G be a graph of
order n ≥ k. Then γtrk(G) = k if and only if n = k and there exists a
set A = {v1, v2, . . . , vt} ⊆ V (G) with 2 ≤ t ≤ k such that the induced
subgraph G[A] has no isolated vertex and V (G) − A ⊆ N(vi) for each
1 ≤ i ≤ t.

Proposition C. [2] For n ≥ 3, γtr2(Cn) = ⌈2n3 ⌉.
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Corollary 1. For n ≥ 3,

sdγtr2(Cn) =

{

1 if n ≡ 0, 1 (mod 3)
2 if n ≡ 2 (mod 3).

Proposition D. [2] For n ≥ 2, γtr2(Pn) = ⌈2n+2
3 ⌉.

Corollary 2. For n ≥ 2,

sdγtr2(Pn) =

{

1 if n ≡ 0, 2 (mod 3)
2 if n ≡ 1 (mod 3).

Proposition E. [2] If k ≥ 3 and n ≥ 3, then γtrk(Pn) = γtrk(Cn) = n.

Corollary 3. If k ≥ 3 and n ≥ 3, then sdγtrk(Pn) = sdγtrk(Cn) = 1.

Observation 1. Let G be a graph and u ∈ V (G) be a support vertex
with a leaf neighbor v. If f is a γtrk(G)-function, then |f(u)|+ |f(v)| ≥
2.

2 Bounds and exact values

In this section we present basic results on the total k-rainbow domi-
nation subdivision number in graphs. Our first result shows that the
total k-rainbow domination number of a graph can not be decreased
by subdividing an edge.

Proposition 1. Let G be a simple connected graph of order n ≥ 3
and e = uv ∈ E(G). If G′ is obtained from G by subdividing the edge
e = uv with vertex x, then γtrk(G

′) ≥ γtrk(G).

Proof. Let f be a γtrk(G
′)-function. If f(x) = ∅, then f |V (G) is a

TkRDF of G. Let f(x) 6= ∅. Since f is a TkRDF of G′, we have
max{|f(u)|, |f(v)|} ≥ 1. Suppose without loss of generality that
|f(v)| ≥ 1. Define g : V (G) → 2[k] by g(u) = f(u) ∪ f(x), and
g(x) = f(x) otherwise. Obviously g is a TkRDF of G with weight
γtrk(G

′) and so γtrk(G
′) ≥ γtrk(G).
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Theorem 1. Let G be a graph and u ∈ V (G) be a vertex with degree
at least two. Then sdγtrk(G) ≤ deg(u).

Proof. Let N(u) = {u1, u2, . . . , ur} and let G′ be the graph obtained
from G by subdividing the edges uu1, . . . , uur with subdivision vertices
x1, . . . , xr, respectively. Suppose f is a γtrk(G)-function. If f(u) =
{1, 2, . . . , k}, then in order that u to be totally rainbow dominated,
we may assume that |f(x1)| ≥ 1, and the function g : V (G) → 2[k]

defined by g(u) = {1}, g(ui) = f(ui) ∪ f(xi) for 1 ≤ i ≤ r, and
g(x) = f(x) otherwise, is a TkRDF of G of weight less than γtrk(G

′). If
1 ≤ |f(u)| ≤ k−1, then in order that u to be totally rainbow dominated,
we can assume that |f(x1)| ≥ 1, and the function g : V (G) → 2[k]

defined by g(u) = f(x1), g(ui) = f(ui) ∪ f(xi) for 2 ≤ i ≤ r, and
g(x) = f(x) otherwise, is a TkRDF of G of weight less than γtrk(G

′).
Henceforth we assume that f(u) = ∅. In order that u to be rainbow
dominated, we must have

∑r
i=1 |f(xi)| ≥ k, and in order that xi to be

totally rainbow dominated, we must have |f(ui)| ≥ 1 for each i. Then
the function g : V (G) → 2[k] defined by g(u) = {1}, and g(x) = f(x)
otherwise, is a TkRDF of G of weight less than γtrk(G

′), and this
implies that sdγtrk(G) ≤ deg(u).

The following results are immediate consequences of Theorem 1.

Corollary 4. If k ≥ 2 is an integer and G is a connected graph of
order n ≥ 2, then

sdγtrk(G) ≤ ∆(G).

Furthermore, this bound is sharp for Cn when n ≡ 2 (mod 3) and
k = 2.

Corollary 4 shows that the total k-rainbow domination subdivision
number is well-defined for all non-trivial graphs when k ≥ 2.

Corollary 5. If k ≥ 2 is an integer and G is a connected graph with
δ(G) ≥ 2, then

sdγtrk(G) ≤ δ(G).

This bound is sharp for Cn when n ≡ 2 (mod 3) and k = 2.
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Corollary 6. If G is a graph and u, v are two adjacent vertices each of
degree at least two, then sdγtrk(G) ≤ deg(u)+deg(v)−|N(u)∩N(v)|−1.

Corollary 7. If G is a connected graph of n ≥ 3 and v ∈ V (G) is a
support vertex, then sdγtrk(G) ≤ deg(v).

Ahangar et al. [2] proved that for any connected graph G of order
n ≥ 3, γtrk(G) ≤ n − δ(G) + 2. Using this bound and Theorem 1 we
obtain the next result.

Corollary 8. For any connected graph G with δ(G) ≥ 2,

sdγtrk(G) ≤ n− γtrk(G) + 2.

Moreover, Ahangar et al. [2] showed that for any connected graph
G of order n ≥ 3, γtrk(G) ≥ ⌈ kn

∆(G)+k−1⌉. Applying this lower bound
and Corollary 8, the next result follows.

Corollary 9. If G is a connected graph with n ≥ 3, then sdγtrk(G) ≤

n−
⌈

kn
∆(G)+k−1

⌉

+ 2.

Now we provide some sufficient conditions to have small total k-
rainbow domination number.

Proposition 2. If k ≥ 2 is an integer and G contains a strong support
vertex, then

sdγtrk(G) = 1.

Proof. Let v be a strong support vertex of G and let v1, v2 ∈ Lv.
Assume that G′ is the graph obtained from G by subdividing the edge
vv1 with vertex x. Suppose f is a γtrk(G

′)-function. By Observation
1, we have |f(x1)| + |f(v1)| ≥ 2, |f(v)| + |f(v2)| ≥ 2 and |f(v)| ≥ 1.
Define g : V (G) → 2[k] by g(v1) = {1}, and g(x) = f(x) otherwise.
Clearly, g is a TkRDF of G with weight smaller than w(f), implying
that sdγtrk(G) = 1.

Proposition 3. Let n > k ≥ 2 be integers and G a simple graph with
γtrk(G) = k. Then sdγtrk(G) = 1.
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Proof. Suppose e = uv is an edge of G and G′ is the graph obtained
from G by subdividing the edge uv with subdivision vertex x. We show
that γtrk(G

′) > γtrk(G). Suppose, to the contrary, that γtrk(G
′) =

γtrk(G) = k. By Theorem B, there exists a set A = {v1, v2, . . . , vt} ⊆
V (G′) with 2 ≤ t ≤ k such that the induced subgraph G′[A] has no
isolated vertex and V (G′)−A ⊆ N(vi) for each 1 ≤ i ≤ t. It follows that
x ∈ V (G) \A and A = {u, v}. Since G[A] has no isolated vertex, there
must exist another edge e′ = uv in G which leads to a contradiction
because G is simple. Thus γtrk(G

′) > γtrk(G) and so sdγtrk(G) = 1.

Proposition 4. Let k ≥ 2 be an integer and G be a connected graph
of order n ≥ k + 2 with γtrk(G) = k + 1. Then sdγtrk(G) ≤ 2.

Proof. The result is immediate for n = 4. Assume that n ≥ 5. If G
is a star, then by Proposition 2 we have sdγtrk(G) = 1. Assume that
G is not a star, and let M = {u1v1, u2v2} be a matching in G. Let
G′ be the graph obtained from G by subdividing the edges u1v1, u2v2
with vertices x, y, and let f be a γtrk(G

′)-function. We show that
γtrk(G

′) ≥ k+2. If f(x) = f(y) = ∅, then we must have f(ui)∪f(vi) =
{1, 2, . . . , k} for i = 1, 2, and this implies that γtrk(G

′) ≥ 2k ≥ k+2 as
desired. Suppose without loss of generality that |f(x)| ≥ 1. Then, in
order that x to be totally dominated, we may assume that |f(u1)| ≥ 1.
Now if f(y) = ∅, then we have f(u2) ∪ f(v2) = {1, 2, . . . , k}, implying
that γtrk(G

′) ≥ k + 2. Suppose |f(y)| ≥ 1. If f(z) 6= ∅ for each z ∈
V (G)\{u1, u2, v1, v2}, then, clearly, γtrk(G

′) ≥ k+2; and if f(z) = ∅ for
some z ∈ V (G)\{u1, u2, v1, v2}, then we have ∪u∈N(z)f(u) = {1, . . . , k},
and this implies that γtrk(G

′) ≥ k + 2 because x, y 6∈ N(z). Thus,
sdγtrk(G) ≤ 2, and the proof is complete.

Lemma 1. Let k ≥ 2 be an integer and G be a connected graph con-
taining a triangle uvw. If G′ is obtained from G by subdividing the
edges uv, vw, wu with vertices x1, x2, x3, respectively, then for any
γtrk(G

′)-function, |f(u)|+|f(v)|+|f(w)|+
∑3

i=1 |f(xi)| ≥ min{5, k+2}.

Proof. Let f be a γtrk(G
′)-function such that f(u) is as large as pos-

sible. By the choice of f we may assume that f(u) 6= ∅. If f(u) =
{1, 2, . . . , k}, then in order that x2 to be totally rainbow dominated, we
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must have |f(w)|+|f(x2)|+|f(v)| ≥ 2, and this leads to the result. Sup-
pose |f(u)| < k. If f(x1), f(x3) 6= ∅, then in order that x2 to be totally
rainbow dominated, we must have |f(w)|+ |f(x2)|+ |f(v)| ≥ 2, imply-
ing that |f(u)|+ |f(v)|+ |f(w)|+

∑3
i=1 |f(xi)| ≥ 5 as desired. Without

loss of generality, assume that f(x1) = ∅. Then |f(u)|+ |f(v)| ≥ k. If
f(x2), f(x3) 6= ∅, then obviously |f(u)|+|f(v)|+|f(w)|+

∑3
i=1 |f(xi)| ≥

k + 2. Assume that f(x3) = ∅ (the case f(x2) = ∅ is similar). In order
that x3 to be rainbow dominated, we must have |f(u)| + |f(w)| ≥ k.
Note that |f(u)∩f(w)| ≥ 1. If f(x2) 6= ∅, then, clearly, |f(u)|+|f(v)|+
|f(w)| +

∑3
i=1 |f(xi)| ≥ k + 2, and if f(x2) = ∅, then in order that x2

to be rainbow dominated, we have f(v) ∪ f(w) = {1, 2, . . . , k}, and so
|f(u)|+ |f(v)|+ |f(w)|+

∑3
i=1 |f(xi)| ≥ k + 2.

Proposition 5. Let G be a simple connected graph of order at least
three. If G has a vertex v ∈ V (G) which is contained in a triangle vuw

such that N(u) ∪N(w) ⊆ N [v], then sdγtrk(G) ≤ 3.

Proof. Let N(v) = {v1 = u, v2 = w, v3, . . . , vdeg(v)} and G′ be ob-
tained from G by subdividing the edges vu, vw, uw with vertices x1,
x2, x3, respectively. By Lemma 1, the inequality |f(u)| + |f(v)| +
|f(w)| +

∑3
i=1 |f(xi)| ≥ min{5, k + 2} holds; and the function g :

V → P({1, 2, . . . , k}) defined by g(v) = {1, 2, . . . , k}, g(u) = {1},
g(w) = ∅, and g(x) = f(x) otherwise, is a TkRDF of G of weight
less than γtrk(G

′), implying that sdγtrk(G) ≤ 3.

3 The special case k = 2

In this section we focus on the case k = 2.

3.1 An upper bound

Here we present an upper bound on sdγtr2(G).

Theorem 2. For any connected graph G of order n ≥ 3 with δ(G) = 1,

sdγtr2(G) ≤ min{γtr2(G)− 1, α′(G) + 1}
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where α′(G) is the matching number of G. This bound is sharp for
complete graphs.

Proof. The result is immediate for γtr2(G) = 2 or 3 by Propositions 3
and 4. Assume that γtr2(G) ≥ 4. Let u ∈ V be vertex of degree one,
uv ∈ E(G) and N(v) = {u = v1, v2, . . . , vk}. By the proof of Theorem
1, subdividing all edges adjacent to u increases the total 2-rainbow
domination number. First, we prove that sdγtr2(G) ≤ γtr2(G)−1. Now
let S be a largest subset of N(v) containing u, such that subdividing the
edges uvi for vi ∈ S does not increase the total 2-rainbow domination
number. If |S| ≤ 2, then sdγtr2(G) ≤ 3 ≤ γtr2(G) − 1. Let |S| ≥ 3
and assume without loss of generality that S = {v1, . . . , vr}. Let G

′ be
the graph obtained from G by subdividing the edges vv1, . . . , vvr with
vertices x1, . . . , xr. By the choice of S, we have γtr2(G) = γtr2(G

′).
Let f be a γtr2(G

′)-function. Clearly, |f(v1)|+ |f(x1)| ≥ 2. If |f(v)| ≥
1, then the function g : V (G) → P({1, 2}) defined by g(v1) = {1},
g(vi) = f(vi) ∪ f(xi) for 1 ≤ i ≤ r, and g(x) = f(x) otherwise, is
a T2RDF of G of weight less than γtr2(G), which is a contradiction.
Hence we assume that f(v) = ∅. In order that xi to be totally rainbow
dominated, we must have |f(xi)| + |f(vi)| ≥ 2 for each 1 ≤ i ≤ r.
Then we have γtr2(G) = γtr2(G

′) ≥ 2s > s + 1 ≥ sdγtr2(G). Thus
sdγtr2(G) ≤ γtr2(G) − 1.

Next we show that sdγtr2(G) ≤ α′(G)+1. If sdγtr2(G) ≤ 2, then the
result is immediate. Suppose sdγtr2(G) ≥ 3. By Corollary 7, we may
have deg(v) ≥ α′ + 1. Let S be a smallest subset of N(v) containing
u, such that subdividing the edges uvi for vi ∈ S increases the total 2-
rainbow domination number. We may assume without loss of generality
that S = {vv1, . . . , vvr}. By assumption we have r ≥ 3. Let G′ be the
graph obtained from G by subdividing the edges vv1, vv2, . . . , vvr−1

with vertices x1, x2, . . . , xr−1, respectively. Then γtr2(G) = γtr2(G
′).

Let f be γtr2(G)-function. By Observation 1, we have |f(v1)|+|f(x1)| ≥
2. As above we may assume that f(v) = ∅. If |f(v1)| + |f(x1)| ≥ 3,
then the function g : V (G) → P({1, 2}) defined by g(v) = g(v1) = {1},
g(vi) = f(vi) ∪ f(xi) for 2 ≤ i ≤ r, and g(x) = f(x) otherwise, is a
T2RDF of G of weight less than γtr2(G

′) which leads to a contradiction.
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Assume that |f(v1)|+|f(x1)| = 2 and so |f(v1)| = |f(x1)| = 1. Suppose
without loss of generality that f(v1) = f(x1) = {1}. If |f(xi)| ≥ 1 for
some 2 ≤ i ≤ r − 1, say i = 2, then the function g : V (G) → P({1, 2})
defined by g(v1) = {1}, g(v) = f(x2), g(vi) = f(vi) ∪ f(xi) for 3 ≤
i ≤ r, and g(x) = f(x) otherwise, is a T2RDF of G of weight less than
γtr2(G

′) which leads to a contradiction. Suppose that f(xi) = ∅ for each
i ∈ {2, . . . , r}. Then in order that xi to be totally 2-rainbow dominated,
we must have f(vi) = {1, 2} for each i ∈ {2, . . . , r−1}. If there is some
vi (2 ≤ i ≤ r− 1), say i = 2, such that f(w) 6= ∅ or ∪x∈N(w)\{vi}f(x) =
{1, 2} for each w ∈ NG(vi) \ {v}, then function g : V (G) → P({1, 2})
defined by g(v) = {1}, g(v2) = {1}, and g(x) = f(x) otherwise, is a
T2RDF of G of weight smaller than γtr2(G

′), a contradiction. Thus
for each 2 ≤ i ≤ r − 1, vi has a private neighbor wi with respect to
{v2, . . . , vr−1}. Clearly, the set {vv1, v2w2, . . . , vr−1wr−1} is a matching
of G and this implies that sdγtr2(G) ≤ r + 1 ≤ α′(G) + 1 as desired.
This completes the proof.

3.2 A family of graphs with large total 2-rainbow dom-

ination subdivision number

In the section we will show that the total 2-rainbow domination subdi-
vision number can be arbitrary large. Haynes et al. in [19] introduced
the following graph to prove a similar result on sdγt(G).

Let X = {1, 2, . . . , 3(k − 1)}, and let Y be the set that consists of

all k-subsets of X. Clearly, |Y| =
(3(k−1)

k

)

. Let G be the graph with
vertex set X ∪ Y and with edge set constructed as follows: add an
edge joining every two distinct vertices of X and for each x ∈ X and
Y ∈ Y, add an edge joining x and Y if and only if x ∈ Y . Then, G is a
connected graph of order n =

(3(k−1)
k

)

+ 3(k − 1). We observe that the
set X induces a clique in G, the set Y is an independent set and each
vertex of Y has degree k in G. It is proved in [19] that γt(G) = 2k − 2
and sdγt(G) = k.

Lemma 2. For any integer k ≥ 3, γtr2(G) = 4(k − 1).

Proof. By Proposition A and the fact γt(G) = 2k−2 we have γtr2(G) ≤
4(k − 1). To prove the inverse inequality, let f be a γtr2(G)-function
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such that |Z = {v ∈ V : |f(v)| = 1}| is as small as possible. We
proceed with two claims.
Claim 1. For each Y ∈ Y, |f(Y )| ≤ 1.
Suppose, to the contrary, that f(Y ) = {1, 2} for some Y ∈ Y. Since f

is a T2RDF of G, Y has a neighbor x ∈ X with |f(x)| ≥ 1. We assume
without loss of generality that 1 ∈ f(x). Let z ∈ Y − {x} and define
the function g : V (G) → P({1, 2}) by g(Y ) = ∅, g(z) = {2} ∪ f(z) and
g(x) = f(x) for all x ∈ V (G)−{Y, z}. Since Y is independent and G[X]
is a clique, g is a T2RDF of G with smaller weight than γtr2(G) which
is a contradiction.

Claim 2. |Z ∩ Y| = 0.
Suppose, to the contrary, that |Z ∩ Y| ≥ 1. Let Y1 ∈ Y such that
|f(Y1)| = 1. Since f is a T2RDF of G, Y1 must have a neighbor
x1 ∈ X, with |f(x1)| ≥ 1. Assume that Y2 is a k-subset of X not
containing x1. In order that Y2 to be totally rainbow dominated, it
has a neighbor x2 ∈ X with |f(x2)| ≥ 1. Now the function g defined
by g(x1) = {1, 2}, g(Y1) = ∅, and g(x) = f(x) otherwise, is a γtr2(G)-
function which contradicts the choice of f , and the claim follows.

Let Xi (i=1,2) be the set of vertices of X such that f(x) = {i} and
letX3 be the set of vertices ofX assigned ∅ by f . If |X1|+|X3| ≥ k, then
no k-subset of X1 ∪X3 is rainbow dominated under f , a contradiction.
Hence, |X1|+ |X3| ≤ k−1. Likewise, we have |X2|+ |X3| ≤ k−1. Note
that the other vertices of X are assigned {1, 2} under f . Let X1,2 =
X − {X1,X2,X3}. Clearly, the following integer linear programming

Min |X1|+ |X2|+ 2|X1,2|
s.t. |X1|+ |X3| ≤ k − 1

|X2|+ |X3| ≤ k − 1
|X1|+ |X2|+ |X1,2|+ |X3| = 3k − 3
|Xi| ∈ Z ≥ 0

has the optimal value 4(k − 1), and this completes the proof.

Theorem 3. For any integer k ≥ 4, sdγtr2(G) = k.

Proof. Let F = {e1, e2, . . . , ek−1} be an arbitrary subset of k− 1 edges
of G. Assume H is obtained from G by subdividing each edge in F .
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We show that γtr2(H) = γtr2(G). Since sdγt(G) = k, we have γt(G) =
γt(H) = 2(k − 1), and we deduce from Proposition A and Lemma 2
that γtr2(H) = γtr2(G) = 4(k − 1). Hence, sdγtr2(G) ≥ k. Now the
result follows by Theorem 1.

3.3 Complete bipartite graphs Km,n

In this subsection we determine the total 2-rainbow domination subdi-
vision number of complete bipartite graphs.

Proposition F. If G = Kn,m is the complete bipartite graph with
m ≥ n ≥ 1, then

sdγtr2(G) =

{

1 if n = 1, 2
2 if n ≥ 3.

Proof. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be the bipartite
sets of Km,n. The result is trivial for m = n = 1. If n = 1 and m ≥ 2,
then, clearly, γtr2(K1,m) = 3, and it follows from Proposition 2 that
sdγtr2(K1,m) = 1.

Assume next that n = 2. If m = 2, then the result follows from
Corollary 1. Suppose m ≥ 3. Then we have γtr2(K2,m) = 3. Let G′ be
the graph obtained from G = K2,m by subdividing the edge x1y1 with
vertex x and let f be a γtr2(G

′)-function. In order that x to be totally
rainbow dominated, we must have |f(x1)|+ |f(x)|+ |f(y1)| ≥ 2.
First, let f(x) 6= ∅. Then in order that x to be totally rainbow domi-
nated, we may assume that |f(x1)| ≥ 1. If |f(y1)| ≥ 1, then the func-
tion f restricted to G = K2,m is a T2RDF of K2,m of weight less than
ω(f), and so sdγtr2(K2,m) = 1. Assume that f(y1) = ∅. Then in order
that y1 to be rainbow dominated, we must have |f(x)| + |f(x2)| ≥ 2.
If f(x2) = ∅, then in order that x2 to be rainbow dominated, we have
∑m

i=2 |f(yi)| ≥ 2, implying that γtr2(G
′) ≥ 4, and if |f(x2)| ≥ 1, then

in order that x2 to be totally dominated, we have
∑m

i=2 |f(yi)| ≥ 1,
yielding γtr2(G

′) ≥ 4 again.
Now let f(x) = ∅. If f(x1) 6= ∅ and f(y1) 6= ∅, then in order
that x1, y1 to be totally dominated, we must have |f(x2)| ≥ 1 and
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∑m
i=2 |f(yi)| ≥ 1, and so γtr2(G

′) ≥ 4. Assume without loss of general-
ity that f(y1) = ∅. Now in order that x, y1 to be rainbow dominated,
we must have f(x1) = {1, 2} and f(x2) = {1, 2}, yielding γtr2(G

′) ≥ 4.
This implies that sdγtr2(K2,m) = 1.

Finally, let n ≥ 3. Clearly, γtr2(Kn,m) = 4 in this case. First,
we show that sdγtr2(Kn,m) ≥ 2. Let e = uivj be an arbitrary edge
of Kn,m. We may assume without loss of generality that i = j = 1.
Assume G′ is obtained from Kn,m by subdividing the edge e. Then
the function g : V (G′) → P({1, 2}) defined by g(x1) = g(y2) = {1},
g(y1) = g(x2) = {2}, and g(x) = 0 otherwise, is a total 2-rainbow
dominating function of G′ of weight 4, and so sdγtr2(Kn,m) ≥ 2.

Next we show that sdγtr2(Kn,m) ≤ 2. Assume that G′ is the
graph obtained from Kn,m by subdividing the edges x1y1 and x1y2
with vertices z1 and z2, respectively, and let f be γtr2(G

′)-function. If
|f(x1)| +

∑2
i=1 |f(zi)| ≥ 3 and |f(xi)| ≥ 1 for each 2 ≤ i ≤ n, then

we have γtr2(G
′) = ω(f) ≥ 5, and if |f(x1)| +

∑2
i=1 |f(zi)| ≥ 3 and

f(xi) = ∅ for some 2 ≤ i ≤ m, then in order that xi to be rainbow dom-
inated, we must have

∑n
j=1 |f(yj)| ≥ 2, yielding γtr2(G

′) = ω(f) ≥ 5.

Henceforth, we assume that |f(x1)| +
∑2

i=1 |f(zi)| ≤ 2. We consider
the following cases.

Case 1. f(x1) = {1, 2}.
Then f(z1) = f(z2) = ∅. In order that x1 to be totally dominated, we
must have |f(yj)| ≥ 1 for some j ≥ 3, say j = 3. If f(yj) = ∅ for some
j ∈ {1, 2}, then in order that yj to be rainbow dominated, we must
have

∑m
i=2 |f(xi)| ≥ 2, implying that γtr2(G

′) = ω(f) ≥ 5. Otherwise
we have |f(y1)| ≥ 1 and |f(y2)| ≥ 1 and again γtr2(G

′) = ω(f) ≥ 5.

Case 2. f(x1) = ∅.
Then in order that z1, z2 to be totally rainbow dominated, we must
have |f(z1)|+ |f(y1)| ≥ 2 and |f(z2)|+ |f(y2)| ≥ 2. If |f(y3)| ≥ 1, then,
clearly, γtr2(G

′) = ω(f) ≥ 5. Assume that f(y3) = ∅. Then in order
that y3 to be rainbow dominated, we must have

∑m
i=2 |f(xi)| ≥ 2, and

this implies that γtr2(G
′) = ω(f) ≥ 6.

Case 3. |f(x1)| = 1.
Suppose without loss of generality that f(x1) = {1}. Then in order
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that zi to be rainbow dominated, we must have |f(zi)| + |f(yi)| ≥ 1
for each i ∈ {1, 2}. If |f(z1)| + |f(y1)| + |f(z2)| + |f(y2)| ≥ 3 and
|f(yi)| ≥ 1 for some i ≥ 3, then we have γtr2(G

′) = ω(f) ≥ 5, and if
|f(z1)|+ |f(y1)|+ |f(z2)|+ |f(y2)| ≥ 3 and f(yi) = ∅ for some i, then in
order that yi to be rainbow dominated, we must have

∑m
i=2 |f(xi)| ≥ 1,

implying that γtr2(G
′) = ω(f) ≥ 5. Hence, we assume that |f(z1)| +

|f(y1)|+ |f(z2)|+ |f(y2)| = 2. We distinguish the following situations.

• f(z1) = f(z2) = ∅.
Considering our assumption, in order that z1, z2 to be rainbow
dominated, we have f(y1) = f(y2) = {2}. In order that y1 to
be totally dominated, we may assume without loss of generality
that |f(x2)| ≥ 1. If |f(xi)| ≥ 1 for each i ≥ 3, then, clearly,
γtr2(G

′) = ω(f) ≥ 5. Assume that f(xi) = ∅ for some i ≥ 3, say
i = 3. Then in order that x3 to be rainbow dominated, we must
have 1 ∈ f(yj) for some j ≥ 3, and so γtr2(G

′) = ω(f) ≥ 5.

• f(z1) = ∅ and |f(z2)| = 1.
By assumption, we have f(y1) = {2} and f(y2) = ∅. As above,
we may assume that |f(x2)| ≥ 1. If |f(xi)| ≥ 1 for some i ≥ 3,
then, clearly, γtr2(G

′) = ω(f) ≥ 5. Otherwise, in order that x3 to
be rainbow dominated, we must have

∑m
i=3 |f(yi)| ≥ 1, yielding

γtr2(G
′) = ω(f) ≥ 5 again.

• |f(z1)| = |f(z2)| = 1.
Then f(y1) = f(y2) = ∅. In order that y1, y2 to be rainbow dom-
inated, we may assume that |f(x2)| ≥ 1. Now in order that x2
to be totally dominated, we must have

∑m
i=3 |f(yi)| ≥ 1, yielding

γtr2(G
′) = ω(f) ≥ 5 again.

Thus sdγtr2(Kn,m) = 2 when n ≥ 3.

4 Conclusion

In this paper, we initiated the study of the total k-rainbow domination
subdivision number in graphs and presented some sharp bounds on
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the total k-rainbow domination subdivision number in terms of the
order, maximum degree and total k-rainbow domination number. In
the special case of k = 2, we proved that the total 2-rainbow domination
subdivision number can be arbitrary large. For further study we pose
the following open problems.

Problem 1. Is it true that for any integer k ≥ 2 and a connected graph
G with δ(G) ≥ 2, sdγtr2(G) ≤ α′(G) + 1?

Problem 2. Is it true that for any integer k ≥ 2 and a connected graph
G with δ(G) ≥ 2, sdγtr2(G) ≤ γtr2(G)− 1?

By Theorem 1 and Proposition 2 we have that for any tree T of
order n ≥ 3, sdγtr2(T ) ≤ 2.

Problem 3. Characterize all tree T with sdγtr2(T ) = 2
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“Weakly convex domination subdivision number of a graph,” Filo-
mat, vol. 30, no. 8, pp. 2101–2110, 2016.

[14] M. Dettlaff, S. Kosari, M. Lemańska, and S.M. Sheikholeslami,
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