
Computer Science Journal of Moldova, vol.28, no.2(83), 2020

Solving transportation problems with concave

cost functions using genetic algorithms

Tatiana Paşa

Abstract

In this paper we propose a genetic algorithm for solving the
non-linear transportation problem on a network with concave
cost functions and the restriction that the flow must pass through
all arcs of the network. We show that the algorithm can be used
in solving large-scale problems. We prove that the complexity of
a single iteration of the algorithm is O(nm) and converges to an
ǫ-optimum solution. We also present some implementation and
testing examples of the algorithm using Wolfram Mathematica.

Keywords: genetic algorithm, population, minimum cost
flow, non-linear transport problem, large-scale problem, concave
function.

MSC 2010: 05C21, 90C06, 90C26, 90B15, 90B06, 90C59.

1 Introduction

Problems that describe real situations using concave functions are often
too complex to be solved by polynomial algorithms; therefore, they can
be solved only by checking each possible solution with brute force algo-
rithms. Because such algorithms would be too time consuming, genetic
algorithms are an alternative that can find the solution in a reasonable
amount of time. These are stochastic and heuristic algorithms, which
means that the obtained solutions are not always optimal, but they
come close to the optima. The use of these algorithms in favour to
other heuristic algorithms is recommended, because they do not need
the gradient or Hessian information. They are also resistant to locks

c©2020 by CSJM; T. Pas
,
a

140



Solving transportation problems with concave cost functions . . .

in a local minimum and can be used to solve large-scale non-linear
optimization problems.

There are several principles [1] that must be followed when de-
signing and implementing a genetic algorithm. We must use several
characteristic operations, i.e. selection, crossover and mutation, to im-
prove the final solution. When codifying a solution, we must keep in
mind to use as little memory as possible for the chromosomes. The
complexity of the evaluation, crossover and mutation has to be of a
low order. Each chromosome, mutation or crossover must correspond
to an admissible solution, thus we can guarantee the correctness of the
algorithm. Although it is possible to decode the chromosomes one-
to-one (each chromosome corresponds to a single solution), one-to-n
(each chromosome corresponds to n solutions) or n-to-one (n chro-
mosomes correspond to a single solution), the one-to-one decoding is
recommended. When searching for a solution to the problem, a balance
must be kept between the exploration of as many of the admissible so-
lutions as possible and the exploitation of the solution as close to the
optimal solution as possible.

An overview and comparative analysis of the genetic algorithms is
given in [3,4]. In [2] an original genetic algorithm with local search is
presented.

In this paper we present a modification to the algorithm discussed in
[5,6] that can solve the non-linear transport problem with concave cost
functions. This new algorithm was tested in Wolfram Mathematica,
and some results are presented.

2 Problem formulation. Main results

We consider the transportation problem on a network described by a
connected acyclic graph. On the finite set of vertices V the real function
of production and consumption q(v) is defined. On the finite set of arcs
E the concave non-decreasing piecewise linear functions of cost ϕe(xe)
are defined. It is required to solve the non-linear optimization problem
that consists in determining a flow x∗ that minimizes the function:

141



T. Pas,a

F (x) =
∑

e∈E

ϕe(xe)

We must solve the non-linear problem:

F (x∗) = min
x∈X

F (x) (1)

∑

e∈E+

xe −
∑

e∈E−

xe = q(v) (2)

xe > 0,∀(e), (3)

where X is the set of admissible solutions which satisfies the conditions
(2) – (3) of existence of flow in the network. An additional restriction
is that there must be a flow passing through every arc of the network.
This condition ensures that the algorithm is capable of arriving at the
solution, otherwise it would be nearly impossible for it to find a solution
with no flow through some arcs. Such a problem is the model of the
transportation of a flow through water or electricity networks.

q (v) =







p (v) =
∑k

i=1 p (vi) , v = v0, vi ∈ Vt,∀i = 1, ..., k
0, V/Vt {v0}

−p (vi) , vi ∈ Vt,∀i = 1, ..., k

(4)

It is preferable to use an elitist model of the genetic algorithm that
transfers the best chromosomes to the next population, in order to
avoid losing solutions that cannot be restored later.

Definition 1. The value of the total objective function of the popu-
lation FT (x) is the sum of the values of the objective function of the
solutions decoded from the chromosomes of the population.

The value of the total objective function will be smaller (better)
after each step, because new chromosomes will have better character-
istics.

142



Solving transportation problems with concave cost functions . . .

2.1 Genetic algorithm P2

The first step in the use of a genetic algorithm is the codification of the
problem, that is, the description of the chromosomes that each repre-
sents the admissible solution of the problem. A population consists of
chromosomes which, in fact, represents a set of admissible solutions.

In this algorithm every gene of a chromosome will be a matrix that
contains the rate of the flow that passes through outgoing arcs of the
vertex i. To save computer memory, the chromosomes will not be
described by a weighted matrix of size n× n which is sparse, but by a
table of lists of total size m. Each list i contains the rate of the flow
for those arcs coming out of the vertex i.

Description of the genetic algorithm P2:

Step 1.

Initialization. The initial population of 4n chromosomes is gener-
ated as follows: every chromosome is described by a list of the form
L = {{li1, ..., limi

} |∀i = 1, . . . ,n}, mi – the number of outgoing arcs of
the vertex i. Every lij , i = 1, . . . , n, j = 1, . . . ,mi shows the part of
the flow that passes through the arc j that comes out of vertex i. For
every vertex the condition

∑mi

j=1 lij = 1, i = 1, . . . , n must be satisfied.

Step 2.

Decoding and Evaluation of the chromosome from the current pop-
ulation. The decoding is the association of each chromosome with an
admissible solution based on how the problem is codified. Evaluation
is the determination of the value of the objective function for each of
the decoded solutions.

Step 3.

Selection of the parent chromosomes that will participate in the
creation of the next population. The chromosomes will be sorted in
order of increasing value of the objective function. The first 2n of
them will be transferred to the next population and will participate in
crossover and creation of the offsprings.

Step 4.

Crossover of the chromosomes will occur between chromosomes
transferred from population P (i − 1) to P (i). The parents will be

143



T. Pas,a

cut randomly at the same point. Then the chromosomes will be com-
bined in the following way: the left half of the first chromosome with
right half of the second chromosome will yield one offspring, then an-
other offspring will be obtained by combining the right half of the first
chromosome with the left half of the second one. Thus every pair of
parents will have two offsprings, and the total size of the population
will remain constant.

Step 5.

Mutation of a chromosome will take place at a rate of α ∈ [0.01, 0.1]
and implies the mutation of a random gene. A new list {li1, ..., limi

} will
be generated for a random vertex i such that the condition

∑mi

j=1 lij =
1, i = 1, . . . , n is satisfied.

Step 6.

Checking the stopping condition implies stopping the algorithm

when the condition
∣

∣f(xP (i))− f(xP (i−1))
∣

∣ ≤ ǫ is satisfied for the so-
lutions associated with the first chromosome of two consecutive pop-
ulations P (i − 1) and P (i) sorted in order of increasing value of the
objective function. The solution to the problem will be the solution
that corresponds to the first chromosome from the last population. If
the stopping condition is not satisfied, the algorithm returns to Step 2.

Observation 1. One of the following conditions can also be used to
stop the algorithm:

• Generation of k populations. During our testing there proved to be
no advantages to this stopping condition in favor of the condition
∣

∣f(xP (i))− f(xP (i−1))
∣

∣ ≤ ǫ, except minor improvements in the
final solution or rare major changes. It works better in small tests
where the solution set isn’t very large and mutation or crossover
that leads to a much better solution can easily be found.

• Generation of populations until a time limit is especially desir-
able for large networks. This condition is useful for extremely
large networks, where the execution time and the complexity of the
problem is too large for the condition

∣

∣f(xP (i))− f(xP (i−1))
∣

∣ ≤ ǫ.
It is preferable for the generation of k populations, because it is

144



Solving transportation problems with concave cost functions . . .

not possible to accurately judge the amount of time needed for an
iteration.

Decoding a chromosome of the population to a solution associated
with it is done as follows: it is known that a flow p(v) must pass
through the transportation network. This flow will be distributed over
the arcs of the network using the list L generated in step 1, which
contains the part of the total flow available in vertex i that passes
through the arc (i, j), ∀j = 1, . . . ,mi. The value obtained thus is the
flow xk associated with the arc (i, j). This value will be placed on the
position k in the admissible solution of the problem, which has the
form x = (x1, x2, ..., xm).

2.2 Theoretical results

The algorithm P2 described above can be applied when the network
satisfies the following conditions:

• The graph that describes the network is acyclic;

• Every vertex of the graph, except the destination, has at least
one outgoing arc;

• The destination vertex does not have any outgoing arcs.

Theorem 1. The genetic algorithm P2 requires memory O(nm).

Proof. The transportation network is described by an adjacency list
of size m. Every chromosome consists of a list L of size m. Thus a
population of 4n chromosomes will be of size 4nm. This population will
be renewed at each iteration of the algorithm and no additional memory
will be needed. Therefore, the algorithm requires memory O(nm).�

Theorem 2. The complexity of a single iteration of the genetic algo-
rithm P2 is O(nm).

Proof. To fill in the adjacency list that describes the graph, O(m)
operations are necessary. The generation of a single chromosome has a

145



T. Pas,a

complexity of O(m), thus the generation of a population requires O(nm)
operations. The evaluation of a solution associated to a chromosome
requires O(m) operations. As there are 4n chromosomes in a popula-
tion, the total complexity is O(nm). The crossover and mutation have
a complexity of O(m) for each chromosome and require O(nm) oper-
ations in total. Therefore a single iteration of the algorithm has the
complexity O(nm).�

Definition 2. An ǫ-optimum solution of the non-linear transportation
problem on a network is the solution xP (i) generated by a population
P (i) that satisfies the condition

∣

∣f(xP (i))− f(xP (i−1))
∣

∣ ≤ ǫ.

Theorem 3. The genetic algorithm P2 always converges to an ǫ-
optimum solution.

Proof. The chromosomes whose objective function is the smallest
will be transferred from the population P (i − 1) to P (i). The value
of the total objective function of each new population will be smaller
than the previous population. Each new population P (i) will generate a
solution whose objective function will be smaller or equal to the solution
generated by the population P (i−1). Because the algorithm converges to
a local minimum and satisfies the condition

∣

∣f(xP (i))− f(xP (i−1))
∣

∣ ≤ ǫ,
we say that it converges to an ǫ-optimum solution.�

Observation 2. Based on Theorem 2, it can be implied that the ex-
ecution time of the genetic algorithm P2 is O(Unm), where U is the
number of necessary iterations to obtain an ǫ-optimum solution.

2.3 Practical results

Below we will consider the application of the Genetic Algorithm P2 on
a set of test cases.

Example 1. Let the transportation network be described by a connected
acyclic graph.

146



Solving transportation problems with concave cost functions . . .

The set of the vertices {1, 2, 3, 4, 5} is associated with the production

and consumption function: q (v) =











15 if v = 1

0 if v = 2, 3, 4

−15 if v = 5

.

Every arc from the set {e1, e2, e3, e4, e5, e6, e7, e8, e9} is associated
with a cost function as follows:

– the cost function ϕ1 (x) =

{

x if x ≤ 1

1 if x > 1
will be associated with

the arcs {e1, e3, e4, e7};

– the cost function ϕ2 (x) =

{

2x if x ≤ 2

4 if x > 2
will be associated with

the arcs {e2, e5, e6, e8, e9}.

The chromosome mutation will be done with a probability of 0.1.

Step 1. Initialization of a population of 20 chromosomes, each con-
taining 5 lists. Each list i will have some numbers that describe the
part of the flow that passes through each outgoing arc of that vertex.

The value of the objective function, calculated for the first generated
chromosome {{0.39, 0.01, 0.23, 0.37} , {0.48, 0.52} , {0.18, 0.82} , {1.00}}
associated with the solution x = {3.4, 5.9, 5.7, 0.11, 1.6, 1.8, 6.1, 1.3, 12.},
is F(x)=17. This value describes the initial cost of transporting 15 units
of the product from vertex 1 to vertex 5. FT (x) = 340 units.

Iteration 1 The chromosomes of the initial population are sorted in
increasing order of the value of the objective function for the solution
associated with the respective chromosomes. The first half of them is
transferred to the next population, and it will be the parents of the sec-
ond half of that population. The offspring is obtained through crossover
and then mutated by choosing a random vertex i and generating a new
list {li1, ..., limi

}. The minimum value of the objective function for the
generated population is: F(x)=10 and FT (x) = 310 units.

Iteration 2 The chromosomes of the population 1 are sorted in in-
creasing order of the value of the objective function for the solution
associated with the respective chromosomes. The first half of them
is transferred to the next population, and it will be the parents of
the second half of that population. The offspring is obtained through

147



T. Pas,a

crossover and then mutated by choosing a random vertex i and gen-
erating a new list {li1, ..., limi

}. The minimum value of the objective
function for the generated population is F(x)=10 which is equal to the
minimum value of the objective function of the previous population.
Because the solutions of two consecutive populations coincide, then
x = {3.4, 0.27, 7.7, 3.6, 3.1, 0.37, 3.2, 0.09, 11.} will be the ǫ-optimum so-
lution of the presented problem. FT (x) = 290 units. STOP.

The following examples will be of much larger dimensions (n – ver-
tices, m – arcs), that is why we will present only the value of FT (x)
obtained at each iteration and the value of the objective function for
the ǫ-optimum solution (Table 1.).

Table 1. Examples 2-4 of GA

Iteration
Ex. 2 (u.c.) Ex. 3 (u.c.) Ex. 4 (u.c.)
n=30 / m=238 n=100 / m=2392 n=150 / m=5875

1 74520 479731 683430

2 70750 463270 658387

3 68168 461585 640905

4 65941 454880 624014

5 63955 448784 608769

6 61794 442621 593624

7 59992 437814 579315

8 58840 433995 564279

9 57422 430823 550445

10 56276 428015 535530

11 56276 - 525713

F(x) 430 1000 820

The tests were performed on an Intel i5-2500 machine with 4 Cores
and 8GB DDR3 memory in the Wolfram Mathematica 12.

Through practical examples the convergence of the algorithm is
evident. By calculating FT (x) we notice a decrease of this value from
one iteration to another.

148



Solving transportation problems with concave cost functions . . .

The algorithm described in Section 2.1 was implemented in Wolfram
Language and tested on a set of examples of transportation networks
of various dimensions in terms of number of arcs and vertices of the
graph that describes the network.

Table 2. Execution time of the GA P2

vertices/
arcs

tǫ(sec.) tk(sec.)
vertices/

arcs
tǫ(sec.) tk(sec.)

10 / 33 0.078 0.3125 50 / 647 9.9687 27,7813

15 / 62 0.3125 0.2300 70 / 1274 42,9375 78,9219

20 / 105 0.4843 1.7675 80 / 1764 45,7031 130,0320

25 / 168 0.9687 3.4843 90 / 2275 216,6410 194,5470

30 / 231 4.8595 5.4218 100 / 2572 354,4537 244,5780

40 / 402 7.3593 13.4219 120 / 4530 237,4530 430,5310

The tests (Table 2 ) were performed using two stopping conditions:

1. the algorithm is stopped only when the condition
∣

∣f(xP (i))− f(xP (i−1))
∣

∣ ≤ ǫ is satisfied for solutions corresponding
to the value of the minimum objective function from two consec-
utive populations P (i− 1) and P (i), i.e. an ǫ-optimum solution
was found;

2. the algorithm is stopped after k = 10 iterations, and the final
solution is the solution from the last population with minimum
objective function.

3 Conclusions

Genetic algorithms are very good solutions to nonlinear transportation
problems with concave cost functions, especially when there are addi-
tional restrictions that force the flow to pass through all arcs of the
network. From the above we can state that:

149



T. Pas,a

• The genetic algorithm P2 is correctly codified because it respects
the condition of existence of flow in the network and lets us solve
large-scale problems in reasonable time;

• The proposed decoding algorithm always obtains an admissible
solution;

• The value of the total objective cost function FT (x) decreases
from one generation to another, and practical tests confirm the
convergence to a local solution that is also an ǫ-optimum solution;

• It has been proven practically that the stopping condition
∣

∣f(xP (i))− f(xP (i−1))
∣

∣ ≤ ǫ is correct and lets us obtain a good
result much faster than constructing a fixed number of popula-
tions.

References

[1] M. Gen, “Multiobjective Genetic Algorithms,” in Network Mod-
els and Optimization, Multiobjective Genetic Algorithm Approach,
Girona, Spain: Springer-Verlag London Limited, 2008, pp. 1–44.

[2] B. Ghasemishabankareh, et al., “A genetic algorithm with lo-
cal search for solving single-source single-sink nonlinear non-
convex minimum cost flow problems,” The Soft Comput, [Online].
Available: https://doi.org/10.1007/s00500-019-03951-2, (vis. July
2019), 17 pages, 2019.

[3] P. K. Kudjo and E. Ocquaye, “Review of Genetic Algorithm and
Application in Software Testing,” International Journal of Com-
puter Applications, vol. 160, no. 2, pp. 1–6, 2017.

[4] E. Osaba, et al., “Crossover versus Mutation: A Com-
parative Analysis of the Evolutionary Strategy of Genetic
Algorithms Applied to Combinatorial Optimization Prob-
lem,” The Scientific World Journal, [Online]. Available:

150



Solving transportation problems with concave cost functions . . .

http://dx.doi.org/10.1155/2014/154676, (vis. July 2019), 22
pages, 2014.

[5] T. Pas,a, “The genetic algorithm for solving the non-linear trans-
portation problem,” in Review of the Air Force Academy, The Sci-
entific Informative Review, SPSR 2018, 21th edition, Bucharest,
2018, vol. XVI, no. 2(37), pp. 37–44. [Online]. Available:
http://www.afahc.ro/ro/revista/ 2018 2/4-TatianaPasa.pdf.

[6] T. Pas,a, “Solving the large-scale non-linear transportation prob-
lem,” in Matematics and Information Tehnologies: Research and
Education, MITRE-2019, (CEP USM, Chis, inău), 2019, p. 53.

Tatiana Paşa Received July 13, 2019

Revised December 24, 2019

Accepted May 4, 2020

Moldova State University

60 A. Mateevici, MD-2009, Chis
,
inău

Republic of Moldova

E–mail: pasa.tatiana@yahoo.com

151


