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Abstract

A novel design of the signature schemes based on the hidden
discrete logarithm problem is proposed, which is characterized in
using special criterion oriented to providing security to potential
quantum attacks. The criterion consists in the requirement to
ensure practical intractability of the task of constructing a peri-
odic function with a period depending on the value of a discrete
logarithm in a hidden cyclic group. A signature scheme satisfy-
ing the mentioned criterion is introduced. A 4-dimensional finite
non-commutative associative algebra is considered as algebraic
support. To implement the signature scheme, a commutative
hidden group defined by generator system < N,Q >, where vec-
torsN and Q have the same prime order, is exploited. For further
development of the introduced method, an 8-dimensional algebra
is proposed.
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1 Introduction

Development of practical post-quantum signature schemes represents
a current challenge in the area of the applied and theoretic cryptog-
raphy [1], [2]. Currently nine signature schemes proposed in frame-
work of the NIST competition [3] are considered as candidates for
post-quantum signature standard. A significant disadvantage of those
schemes is a large size of public key and signature, except for GeMSS
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and Rainbow signature schemes. In the latter, the signature size is
relatively small, but the public key size is extremely large. In terms of
the trade off between performance and size of the public key and the
signature, the preferred post-quantum signature schemes are Falcon-
512 (657-byte signature; 897-byte public key) and Dilithium-1024x768
(2044-byte signature; 1184-byte public key).

A promissing approach to the design of the public-key post-
quantum cryptoschemes with sorter size of signature and public key
represents using so called hidden discrete logarithm problem (HDLP)
as the post-quantum cryptographic primitive [4], [5]. Several HDLP-
based signature schemes are described in the papers [6], [7]. Usually
the HDLP used in the signature schemes is set in the m-dimensional
(m = 4, 6) finite non-commutative associative algebras (FNAAs) as
follows.

One selects a random integer x < q and a random cyclic group con-
tained in the used FNAA and generated by some m-dimensional vector
N having order equal to the prime q of sufficiently large size. Then he
computes vector Nx and performs homomorphism-map operations ψ1

and ψ2 obtaining public key in the form of the following two vectors
Y = ψ1(N

x) and Z = ψ2(N) or three vectors (Y,Z, T ), where vector
T plays the role of a fitting parameter in verification equation. The
cyclic group generated by the vector N is called the base group. The
vectors Y , Z, and T are contained in other three different cyclic groups
(contained in the used FNAA as different subsets of vectors).

Due to mutual commutativity of each of the masking operations ψ1

and ψ2 with the exponentiation operation, different signature schemes
based on the computational difficulty of the discrete logarithm problem
(see, for example, [8],[9]) can be used as prototypes of the HDLP-based
cryptoschemes.

The earlier proposed rationale of the security of the known HDLP-
based signature schemes to the quantum attacks (attacks with using
a hypothetic quantum computer) is quite straightforward: in the case
of the HDLP-based signature schemes, potential attacker knows no
elements of the base cyclic group in which the exponentiation operation
is performed, therefore, to compute the value x, one cannot directly use
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the Shor quantum algorithm [10] for finding logarithm in a cyclic group.

For a more convincing justification of the security to quantum at-
tacks, an additional criterion can be adopted, which is aimed at pre-
venting the possibility of constructing periodic functions with a period
depending on the value of the discrete logarithm in the base cyclic
group, regardless of the fact that the periodic function takes on only
values from the same finite group. The HDLP-based signature schemes
proposed in [6],[7],[11] do not satisfy this criterion, since one can define
the following periodic function F (i, j) = Y i ◦T ◦Zj in two integer vari-
ables i and j, which contains a period with the length equal to (−1, x).
Indeed, we have Y i ◦ T ◦ Zj = Y i−1 ◦ T ◦ Zj+x. This function takes
on values in different groups contained in the FNAA used as algebraic
carrier of the signature scheme, however, one can suppose that an ad-
vanced quantum algorithm for evaluating the period of the function
F (i, j) can be potentially developed.

In the present paper a new HDLP-based signature scheme is pro-
posed which meets the criterion of ensuring practical intractability of
the task of constructing a periodic function with a period depending
on the value of a discrete logarithm in a hidden cyclic group. The pro-
posed criterion introduces significant limitations in the development
of the HDLP-based signature schemes, which were overcome by using
a three-element signature and doubling the verification equation. Be-
sides, a commutative group defined by generator system < N,Q >,
where the vectors N and Q have the same prime order, is applied as
the hidden group in which the basic exponentiation operation is per-
formed. A 4-dimensional FNAAs set over the ground finite field GF (p),
where prime p = 2q +1 and q is a 255-bit prime, are proposed as alge-
braic support for implementing the proposed signature scheme. This
algebra contains p2 global left-sided units and p2 different isomorphic
commutative groups of the order (p − 1)2. As a promising algebraic
support for further development of the proposed method for construct-
ing post-quantum signature schemes, an 8-dimensional algebra with a
global two-sided unit is proposed.
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2 Preliminaries

2.1 Defining FNAAs

Suppose the m-dimensional vector space is defined over the ground
finite field GF (p). Introducing the vector multiplication operation
that is distributive at the left and at the right relatively the addition
operation, one gets the m-dimensional finite algebra. If the defined
multiplication operation is non-commutative and associative, then we
have FNAA. To define the vector multiplication operation, one can
use the notion of formal basis vectors denoted as e0 = (1, 0, 0 . . . , 0),
e1 = (0, 1, 0 . . . , 0), ... em−1 = (0, 0 . . . , 0, 1) and representation of some
two vectors A = (a0, a1, . . . am−1) and B = (b0, b1, . . . bm−1) in the form
of the following summs of the single component vectors aiei and biei:
A =

∑m−1

i=0
aiei and B =

∑m−1

j=0
bjej .

The vector multiplication operation (denoted as ◦) is defined by the
following formula A ◦ B =

∑m−1

j=0

∑m−1

i=0 aibj (ei ◦ ej), where the prod-
uct ei ◦ ej for all possible pairs of the integers i and j is to be replaced
by some single-component vector λek. The rule of the mentioned sub-
stitution is usually given by so called basis vector multiplication table
(BVMT), like Table 1 (see Subsection 2) and Table 2 (Section 3).

It is assumed that the intersection of the ith row and the jth col-
umn defines the cell which contains the value λek = ei ◦ ej , where
the value λ 6= 1 is called structural coefficient. To build a FNAA,
one should compose and use some BVMT defining non-commutative
associative multiplication operation. Clearly, to implement the associa-
tivity property, it is sufficient to use the BVMP for which the condition
(ei ◦ ej) ◦ ek = ei ◦ (ej ◦ ek) holds true for all possible triples (i, j, k).

2.2 Finite algebra with multiplicative group possessing

two-dimensional cyclicity

In the paper [12] it is shown that the multiplicative group Γ of the finite
2-dimensional commutative algebra with the multiplication operation
defined by Table 1, where the structural coefficient λ is a quadratic
residue in GF (p), has order Ω = (p − 1)2 and includes the generator
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system < G′

1, G
′

2 >, where each of the vectors G′

1 and G′

2 has order
ω = p − 1. One can easily show the group Γ′ contains p finite cyclic
groups Γ′

c of the order p−1. The finite groups generated by a generator
system in which each element has the same order value are called groups
with multi-dimensional cyclicity [13].

When constructing public-key cryptosystems based on the compu-
tational complexity of the discrete logarithm problem, one uses cyclic
groups whose order is equal to a prime number of sufficiently large size.
This defines interest to the case of defining the finite algebras over the
field GF (p) whose characteristic p is such that the integer p−1 contains
a large prime divisor, for example p = 2q+1, where q is a prime. In the
last case the group Γ′ contains the commutative subgroup Γ generated
by the generator system < G1, G2 >, in which each of the vectors G1

and G2 has order q. Evidently, some fixed integers i and j (0 < i < q;
0 < j < q) define the vector Gij = Gi

1 ◦ G
j
2 having order equal to q,

which is a generator of some cyclic group Γc of the prime order q. One
can easily see that the following proposition holds true.

Table 1. The BVMT setting the 2-dimensional commutative algebra.

◦ e0 e1
e0 e0 e1
e1 e1 λe0

Proposition 1. For k = 0, 1, . . . , q − 1 each of the formulas Gk =
Gij ◦ G

k
1 and Gk = Gij ◦ G

k
2 , where i, j = 1, 2, . . . , q − 1, defines q

generators of q different cyclic groups having order q.

Proposition 1 is used in the designed signature schemes (see Sec-
tions 4 and 5) to prevent construction of the periodic functions on the
basis of using the elements of the public key, the period of which is
defined by discrete logarithm in the hidden cyclic group. One can note
that the subgroup Γ contains q2 − 1 elements G 6= (1, 0) that are dis-
tributed among q + 1 different cyclic groups of order q which include
only one common element, namely, the unit element (1,0).
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3 Algebraic support of the proposed signature

scheme

3.1 The used 4-dimensional algebra

For development of the HDLP-based signature scheme satisfying the
criterion of practical intractability of the task of constructing a periodic
function with a period depending on the value of a discrete logarithm in
a hidden cyclic group we have used the 4-dimensional FNAA containing
p2 different global left-sided units L, which is defined over the field
GF (p) using the BVMT presented as Table 2.

To obtain the formula describing the set of the L-units, the fol-
lowing vector equation is to be considered: X ◦ A = A, where A =
(a0, a1, a2, a3) is a fixed 4-dimensional vector and X = (x0, x1, x2, x3)
is the unknown. Using Table 2, one can represent the vector equation
in the form of the following system of four linear equations:



















(x0 + x1) a0 + λ (x2 + x3) a2 = a0;

(x0 + x1) a2 + (x2 + x3) a0 = a2;

(x0 + x1) a1 + λ (x2 + x3) a3 = a1;

(x0 + x1) a3 + (x2 + x3) a1 = a3.

(1)

Using the variable substitution u1 = x0+x1 and u2 = x2+x3, one can
represent the system (1) in the form of the following two independent
systems of two linear equations:

{

u1a0 + λu2a2 = a0;

u1a2 + u2a0 = a2;
(2)

{

u1a1 + λu2a3 = a1;

u1a3 + u2a1 = a3.
(3)

For arbitrary vector A satisfying the conditions a20 6= λa21 and a
2
1 6= λa23,

each of the systems (2) and (3) has the same unique solution u1 = 1
and u2 = 0. One can easily see that the indicated solution satisfies
the systems (2) and (3) for all elements of the considered FNAA (in

85



D.N. Moldovyan, A.A. Moldovyan, N.A. Moldovyan

Table 2. The BVMT for defining the 4-dimensional FNAA (λ 6= 0).

◦ e0 e1 e2 e3
e0 e0 e1 e2 e3
e1 e0 e1 e2 e3
e2 e2 e3 λe0 λe1
e3 e2 e3 λe0 λe1

the cases a20 6= λa21 and a21 6= λa23 there exist some additional solutions
defining local left-sided units). Thus, the solution (u1, u2) = (1, 0)
defines the set of the global left-sided units X, the coordinates of which
satisfy the conditions x0 + x1 = u1 = 1 and x2 + x3 = u2 = 0. These
left-sided units are called global, since every of them acts as the left-
sided unit on every vector in the FNAA. The set of p2 global left-sided
units L is described as follows:

L = (l0, l1, l2, l3) = (h, 1 − h, k,−k) , (4)

where h, k = 0, 1, 2, . . . p− 1.

The considered FNAA contains local right-sided units R acting in
some subsets of the algebra elements. The local right-sided unit RA

relating to some vector A can be computed as solution of the vector
equation A ◦ X = A that can be easily reduced to the following two
systems of two linear equations:

{

(a0 + a1)x0 + λ (a2 + a3) x2 = a0;

(a2 + a3)x0 + (a0 + a1) x2 = a2;
(5)

{

(a0 + a1)x1 + λ (a2 + a3) x3 = a1;

(a2 + a3)x1 + (a0 + a1) x3 = a3.
(6)

Each of the systems (5) and (6) has the same main determinant ∆A:

∆A = (a0 + a1)
2 − λ (a2 + a3)

2 . (7)
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Thus, in the case ∆A 6= 0, the equation A◦X = A has a unique solution
X = RA and the single right-sided unit RA = (r0, a1, r2, a3) relates to
the vector A. One can obtain the following formula for computing the
value RA:

RA =

(

a0 (a0 + a1)− λa2 (a2 + a3)

∆
,
a1 (a0 + a1)− λa3 (a2 + a3)

∆
,

a1a2 − a0a3

∆
,
a0a3 − a1a2

∆

)

.

(8)
The value RA acts as the local right-sided unit in the frame of the
sequence of the vectors A,A2, . . . , Ai, . . . . Besides, the latter sequence
is periodic and composes a finite cyclic group with the unit RA, i. e.,
the element RA is the single local two-sided unit EA relating to the
vector A (and to cyclic group generated by the vector A).

Proposition 2. The local right-sided unit RA is simultaneously the
local two-sided unit EA relating to the vector A.

Proof. It is sufficient to show that the vector RA is contained in the
set (4) of the global left-sided units. Suppose in (4) we have h = r0
and k = r2. Then one can compute

1− h = 1− r0 = 1−
a0 (a0 + a1)− λa2 (a2 + a3)

∆
=

=
a1 (a0 + a1)− λa3 (a2 + a3)

∆
= r1;

−k = −r2 = −
a1a2 − a0a3

∆
=
a0a3 − a1a2

∆
= r3.

Thus, the vector RA is equal to the global left-sided unit corresponding
to the integers h = r0 and k = r2.

Proposition 3. Suppose the vector A is such that ∆A 6= 0. Then there
exists some integer ω such that Aω = EA and the local two sided-unit
EA is the unit of the cyclic group generated by the vector A.
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Proof. Let us consider the sequence of the vectors A,A2, . . . Ah, . . .

Ak, . . . . For all integer values i one has Ai 6= O, where O = (0, 0, 0, 0),
since ∆A 6= 0. Due to finiteness of the considered algebras and condi-
tion ∆A 6= 0, the indicated sequence is periodic, i. e., for some integer
h and some minimum integer k > h we have the following:

Ak = Ah ⇒ Ah ◦Ak−h = Ah ⇒ Ah−1 ◦
(

A ◦ Ak−h −A
)

= O ⇒

A ◦Ak−h −A = O ⇒ A ◦Ak−h = A⇒ Ak−h = RA,

A ◦Ak−h = A⇒ Ak−h ◦ A = A⇒ Ak−h = LA = RA = EA.

Thus, the vector EA is the unit of the cyclic group containing elements
{

A,A2, . . . Aω
}

, where ω = k − h, and Proposition 3 holds true.

The Proposition 3 shows Aω−i ◦ Ai = Ai ◦ Aω−i = EA, i. e., the
vector Aω−i is the inverse value of the vector Ai relatively the local
two-sided unit EA. Therefore, the value ω can be called the local order
of the vector A and the last can be called a locally invertible vector.

Proposition 4. If the vector equation X ◦A = B has solution X = S,
where ∆S 6= 0, then p2 different values Xi = S ◦ Li, where Li takes on
all values from the set (4), are also solutions of the given equation.

Proof. (S ◦ Li)◦A = S ◦(Li ◦ A) = S ◦A = B. Suppose S ◦Li = S ◦Lj,
then S ◦ (Li − Lj) = (0, 0, 0, 0) and Li = Lj . Therefore, the number of
different solutions is equal to the number of different L-units, i. e., to
p2. The Proposition 4 is proven.

Proposition 5. Suppose the vector L is a global left-sided unit. Then
the map of the FNAA defined by the formula ϕL(X) = X ◦ L, where
the vector X takes on all values in the algebra, is a homomorphism.

Proof. For two arbitrary vectors X1 and X2 we have
ϕL (X1 ◦X2) = (X1 ◦X2) ◦ L = (X1 ◦ L) ◦ (X2 ◦ L) =

= ϕL (X1) ◦ ϕL (X2) ;
ϕL (X1 +X2) = (X1 +X2) ◦ L = X1 ◦ L+X2 ◦ L =

= ϕL (X1) + ϕL (X2).
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Proposition 6. All locally invertible vectors of the considered 4-
dimensional FNAA form p2 different groups with p2 different units
E = (h, 1 − h, k,−k), where h, k = 0, 1, 2, . . . p− 1.

Proof. Suppose the set {A1, A2, . . . Ai, . . . AΩ} of locally invertible vec-
tors includes all vectors relating to a fixed local two-sided unit E (in-
cluding the vector E) and only such vectors. It is easy to see this
set is the group ΓE with the unit E. Every fixed global left-sided
unit L′ from the set (4) is the unit E′ of some group ΓE′ represent-
ing a set of locally invertible vectors {A′

1, A
′

2, . . . A
′

i, . . . A
′

Ω
}. Indeed,

due to the Proposition 5, we have A′

i = Ai ◦ L
′ for i = 1, 2, . . .Ω, and

E′ = E ◦ L′ = L′. The considered FNAA contains p2 different global
left sided units E = (h, 1− h, k,−k), where h, k = 0, 1, 2, . . . p − 1,
every one of which defines a unique group of the order Ω.

Proposition 7. If the structural coefficient λ is a quadratic non-
residue, then the considered 4-dimensional FNAA contains p2

(

p2 − 1
)

locally invertible vectors. If λ is a quadratic residue, then the algebra
contains p2 (p− 1)2 locally invertible vectors.

Proof. Condition of the local invertibility of the vector A is ∆A 6= 0.
Let us compute the number of non-invertible vectors using the con-
dition ∆A = 0. Using the formula (7), one can represent the last
condition in the form of the following equation

a20 + 2a0a1 + a21 − λ (a2 + a3)
2 = 0.

If the coordinates of the vector A satisfy the last equation, then A is
a non-invertible vector. Solving the equation relatively the unknown

value a0, one can get a0 = −a1 ±
√

λ (a2 + a3)
2.

If λ is a quadratic non-residue, then solution exists only in the case
a2+a3 = 0, i. e. we have p different variants of the values of coodinates
a2 and a3. In every of such variants the solution exists for arbitrary
value a1. Thus, the number of non-invertible vectors is equal to p2.
Correspondingly, the number µ of invertible vectors contained in the
algebra is equal to µ = p4 − p2 = p2

(

p2 − 1
)

.
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If λ is a quadratic residue, then we have one value of the square
root for the case a2 + a3 = 0 (p variants of the pairs of the values
(a2, a3) : a2 + a3 = 0) and p2 variants of the triples (a1, a2, a3) for
which the considered equation has a solution, i. e., p2 non-invertible
vectors. For the case a2+a3 6= 0 we have two values of the square root
(p2 − p variants of the pairs of the values (a2, a3) : a2 + a3 6= 0) and
2p

(

p2 − p
)

variants of the triples (a1, a2, a3) for which the considered
equation has a solution, i. e., in the second case we have 2p

(

p2 − p
)

non-invertible vectors.
Thus, taking into account both of the cases, one gets the number of

non-invertible vectors equal to 2p
(

p2 − p
)

+p2 = 2p3−p2 and the value

µ = p4 −
(

2p3 − p2
)

= p2 (p− 1)2. The Proposition 7 is proven.

Proposition 8. The considered 4-dimensional FNAA contains p2 iso-
morphic commutative groups and every locally invertible vector of the
algebra is contained only in one of these groups. If the structural co-
efficient λ is a quadratic residue (non-residue), then every of these
groups is cyclic (has 2-dimensional cyclicity) and its order is equal to
Ω = p2 − 1

(

Ω = (p− 1)2
)

.

Proof. Due to the Proposition 6, one should only derive a formula for
the order Ω of every of p2 isomorphic groups contained in the considered
algebra and show that the algebra contains at least one cyclic group or
one commutative group having 2-dimensional cyclicity.

Clearly we have Ω = µ
p2

= p2−1, if the value λ is a quadratic residue,

and Ω = µ
p2

= (p − 1)2, if the value λ is a quadratic non-residue.

One can easily see that the set of the vectors (h, 0, k, 0), where
h, k = 0, 1, 2, . . . p − 1, represents subalgebra that is isomorphic with
the commutative 2-dimensional algebra described in Subsection 2.2,
therefore, the set of the invertible vectors in this subalgebra represents
a cyclic group, if the value λ is a quadratic non-residue, or commuta-
tive group with 2-dimensional cyclicity, if the value λ is a quadratic
residue [12]. The Proposition 8 is proven.

Suppose the vector B is such that ∆B 6= 0 and L is a random global
left-sided unit L. One can compute the single vector A that satisfies

90



Digital signature scheme with doubled verification

the condition

B ◦ A = L. (9)

The main determinant of the system of linear equations, which corre-
sponds to the vector equation (9), is equal to ∆B 6= 0, therefore, the
equation (9) has a unique solution.

Proposition 9. Suppose B◦A = L. Then the formula ψL = A◦X ◦B,
where the vector X takes on all values in the considered 4-dimensional
FNAA, sets the homomorphism map.

Proof. For two arbitrary 4-dimensional vectors X1 and X2, one can get
the following:
ψL (X1 ◦X2) = A ◦ (X1 ◦X2) ◦B = A ◦ (X1 ◦ L ◦X2) ◦B =

= (A ◦X1 ◦B) ◦
(

A ◦X2 ◦B
t
)

= ψL (X1) ◦ ψL (X2) ;
ψL (X1 +X2) = A ◦ (X1 +X2) ◦B = (A ◦X1 ◦B) + (A ◦X2 ◦B) =

= ψL (X1) + ψL (X2).

Proposition 10. The homomorphism-map operation ψL(X) = A ◦
X ◦B and the exponentiation operation Xk are mutually commutative,
i. e., the equality A ◦Xk ◦B = (A ◦X ◦B)k holds true.

Proof. Due to Proposition 9, we have ψL(X
k) = (ψL(X))k, i. e., A ◦

Xk ◦B = (A ◦X ◦B)k.

3.2 Perspective 8-dimensional algebra

In algebras with a global two-sided unit, local masking operations can
be applied that operate within the set of non-invertible elements of
the algebra. Methods for setting local masking operations are quite
diverse and are of interest for building digital signature schemes (see,
for example, [14]). The possibility of setting new types of masking
operations is due to the fact that a large number of local left-sided units
and a large number of local right-sided units operate simultaneously
on some fixed subsets of non-invertible elements. Implementation of
the signature schemes with doubled verification equation on the base
on FNAAs of such type represent significant interest. However, the
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developer needs to use FNAAs containing commutative groups with
two-dimensional cyclicity.

Algebra with the multiplication operation specified in Table 3 solves
this problem when selecting a structural coefficient λ equal to the
quadratic residue in the field GF (p). However, this algebra is an ob-
ject of independent research focused on obtaining formulas that define
the criterion of non-invertibility of vectors and describe the sets of lo-
cal right-sided and local left-sided units for a fixed non-invertible vec-
tor, as it had been done for 4-dimensional FNAAs considered in the
works [6], [14].

Besides, one should develop a procedure for computing the gener-
ator system < N,Q > defining the hidden commutative group with
two-dimensional cyclicity. The following three possibilities represent
interest for implementing the signature schemes with doubled verifica-
tion equation: i) N is a non-invertible vector and Q is invertible; ii) N
and Q are non-invertible vectors; iii) N and Q are invertible vectors.
In each of the cases for many different fixed pairs of integers (u,w) the
vectors Nu ◦ Qw are generators of different cyclic groups of the same
order q.

Table 3. The BVMT defining the 8-dimensional FNAA with global
two-sided unit (λ 6= 0, µ 6= 0, µ 6= 1)

◦ e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 µe6 µe7 µe0 µe1 e6 e7
e1 e1 λe0 µe7 λµe6 µe1 λµe0 e7 λe6
e2 e4 e5 e2 e3 e4 e5 e2 e3
e3 e5 λe4 e3 λe2 e5 λe4 e3 λe2
e4 e4 e5 µe2 µe3 µe4 µe5 e2 e3
e5 e5 λe4 µe3 λµe2 µe5 λµe4 e3 λe2
e6 e0 e1 e6 e7 e0 e1 e6 e7
e7 e1 λe0 e7 λe6 e1 λe0 e7 λe6

For the said 8-dimensional algebra, one can select a random invert-
ible vector N of the order q and number β having order q in GF (p), for
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which the pair of the vectors N and Q = βN (scalar multiplication)
with high probability compose the generator system of some commu-
tative group with two-dimensional cyclicity. When using this pair of
vectors and various variants of the automorphism map operation as
masking operations, the said 8-dimensional FNAA can be used as alge-
braic support for implementing some versions of the signature scheme
described in the next section.

For example, in the case of prime p = 2q + 1 = 501659, prime
q = 250829, λ = 4, µ = 2, and β = 123456 we have:
N = (22334; 57857; 35656; 45457; 17645; 61268; 62597; 57864)
Q = βN =
= (148440; 172950; 391070; 381818; 177742; 389465; 419996; 33824)

N q = Qq = E = (501658; 0; 501658; 0; 1; 0; 2; 0),
where E is the global two-sided unit.

4 The proposed signature scheme

4.1 Generation of the hidden commutative group

The 4-dimensional FNAA described in Section 3 and defined over the
field GF (p) with characteristic p = 2q + 1, where q is a 255-bit prime,
is used as algebraic support of the designed signature scheme. The
hidden finite group Γ<N,Q> is generated as computation of its basis
< N,Q > that includes two vectors N and Q each of which has order
equal to the prime q. The basis < N,Q > is computed as follows:

1. Generate a random value d that is a primitive element modulo
p. The primitive element d defines a locally invertible vector G1 =
(d, 0, 0, 0)z 6= (1, 0, 0, 0), where z = p−1

q
, having order equal to the

prime q.

2. Generate the vector G2 = (b, 0, r, 0)z, where b < p − 1 and
r < p − 1 are such random numbers that the vector G2 has order
equal to q. (For example, generate several different pairs of random
numbers b′ and r′ and compute G′

2 = (b′, 0, r′, 0)z and take the value
G′

2 6= (1, 0, 0, 0) as the vector G2.)

3. Generate a random global left-sided unit Lr and a random num-
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ber u < q and compute the vectors N and Q of the order q as follows:
N = G1 ◦G

u
2 ◦ Lr; Q = G2 ◦ Lr.

The vectors G1 and G2 represent the basis < G1, G2 > of the com-
mutative group with the unit element equal to E = (1, 0, 0, 0) (see the
proof of the Proposition 8). Since the multiplication at the right by
any global left-sided unit defines a homomorphism map of the algebra,
the vectors N and Q define the basis < N,Q > of some commutative
group of the order equal to q2, which has 2-dimensional cyclicity. It is
easy to see the unit element of the hidden commutative group Γ<N,Q>

is the vector E = (1, 0, 0, 0) ◦ Lr = Lr.

4.2 Generation of parameters of masking operations

The exponentiation operations performed in two different cyclic groups
contained in the hidden commutative group are used as base opera-
tions. Vector N is used as generator of the first of these cyclic groups.
Generator J of the second cyclic group is computed as follows:

1. Generate two random integers t < q and u < q.

2. Compute the vector J = N t ◦Qu.

The values N , J , Nx, and Jx, where x < q is an element of the
private key, are used to compute the elements ψ0 (N ◦Q), ψ1 (N

x),
ψ0 (J ◦Q), and ψ2 (J

x), of the public key. Thus, the elements N and J
are masked performing multiplication by the vector Q followed by per-
forming the ψ0-map operation, and the vectors Nx and Jx are masked
performing the ψ1-map and ψ2-map operations, correspondingly. Pa-
rameters of the homomorphism-map operations ψ0(X) = C ◦ X ◦ D,
ψ1(X) = A1◦X ◦B1, and ψ2(X) = A2◦X ◦B2 are computed as follows:

1. Select a random global left-sided unit L0 (for example, using
the formula (4)), generate a random locally invertible vector D, and
compute the value C as solution of the following vector equationD◦C =
L0. (It has a unique solution, since ∆D 6= 0.)

2. Select a random global left-sided unit L1, generate a random
locally invertible vector B1, and compute the value A1 as solution of
the vector equation B1 ◦A1 = L1.

3. Generate two random integers h < p− 1 and k < p− 1, take the
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global left-sided unit L2 = (h, 1 − h, k,−k), generate a random locally
invertible vector B2 (∆B2

6= 0), and compute the value A2 as solution
of the vector equation B2 ◦ A2 = L2.

4.3 Public and private kyes

Public key represents the following two triples of the vectors (Y1, Z1, T1)
and (Y2, Z2, T2) which are computed as follows:

1. Y1 = A1 ◦N
x ◦B1; Z1 = C ◦N ◦Q ◦D.

2. Y2 = A2 ◦ J
x ◦B2 : Z2 = C ◦ J ◦Q ◦D.

3. T1 = A1 ◦D ◦ L, where L is a random global left-sided unit.

4. T2 = A2 ◦D ◦ L′, where L′ is a random global left-sided unit.
One can consider private key as the set of all secret elements used to

compute the public key and the signature. In another interpretation,
the private key is a set of secret elements that are needed to calculate
only the signature. We will use the second interpretation for which we
have the private key representing the set of the values N , J , x, Q, A1,
A2, and D.

4.4 Signature generation procedure

Suppose one is to compute a signature to the electronic document M ,
using some specified 256-bit hash-function fH . The signature genera-
tion algorithm is as follows:

1. Generate a random integer k < q and a random locally invertible
4-dimensional vector K. Then compute the vectors V1 and V2:

{

V1 = A1 ◦N
k ◦K;

V2 = A2 ◦ J
k ◦K.

2. Compute the hash-function value e (the first signature element)
from the documentM to which the vectors V1 and V2 are concatenated:
e = fH (M,V1, V2).

3. Compute the second signature element s = k + xe mod q.

4. Compute the third signature element S as solution of the follow-
ing vector equation: Qs ◦D ◦ S = K.
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The last vector equation has a unique solution, since the product
of the locally invertible vectors Qs and D is a locally invertible vector,
i. e., the main determinant ∆ of the system of four linear equations
corresponding to the last vector equation satisfies the condition ∆ 6=
0. The major contribution to the computational complexity of the
fourth step in the last procedure is introduced by the exponentiation
operation.

Thus, in the introduced signature scheme the digital signature is
composed from three elements, two 256-bit integers e and s and one
vector S. On the whole, the computational difficulty of the signa-
ture generation procedure can be estimated as three exponentiation
operations in the FNAA used as algebraic support (roughly equal to
three exponentiations modp for 1024-bit prime p, for example, in the
Schnorr signature scheme [8]).

4.5 Signature verification procedure

Suppose one is to verify the signature (e, s, S) to the document M ,
using the public key (Y1, Z1, T1; Y2, Z2, T2). The signature verification
procedure is as follows:

1. Using the public key, compute the vectors V ′

1 and V ′

2 :

{

V ′

1 = Y −e
1 ◦ T1 ◦ Z

s
1 ◦ S;

V ′

2 = Y −e
2 ◦ T2 ◦ Z

s
2 ◦ S.

2. Compute the hash-function value e′ from the document M to
which the vectors V ′

1 and V ′

2 are concatenated: e′ = fH (M,V ′

1 , V
′

2).
3. Compute the value ∆S (see formula (7)) corresponding to the

locally invertible vector S = (s0, s1, s2, s3).
4. If e′ = e and ∆S 6= 0, then the signature is genuine. Otherwise

the signature is rejected as the false one.

4.6 Correctness proof

Correctness proof of the signature scheme consists in proving that the
signature (e, s, S) computed correctly will pass the verification proce-
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dure as genuine signature. Taking into account the mutual commuta-
tivity of the ψ-map operation with the exponentiation operation, for
the vectors V ′

1 and V ′

2 computed at the first step of the signature veri-
fication procedure, we have the following:

V ′

1 = Y −e
1 ◦ T1 ◦ Z

s
1 ◦ S =

= (A1 ◦N
x ◦B1)

−e ◦ T1 ◦ (C ◦ (N ◦Q) ◦D)s ◦ S =

= A1 ◦N
−ex ◦B1 ◦ A1 ◦D ◦ L ◦ C ◦ (N s ◦Qs) ◦D ◦ S =

= A1 ◦N
−ex ◦ L1 ◦D ◦ C ◦N s ◦D ◦ C ◦Qs ◦D ◦ S =

= A1 ◦N
−ex ◦ L0 ◦N

k+ex ◦ L0 ◦Q
s ◦D ◦ S =

= A1 ◦N
−ex+k+ex ◦K = A1 ◦N

k ◦K = V1;

V ′

2 = Y −e
2 ◦ T2 ◦ Z

s
2 ◦ S =

= (A2 ◦ J
x ◦B2)

−e ◦ T2 ◦ (C ◦ (J ◦Q) ◦D)s ◦ S =

= A2 ◦ J
−ex ◦B2 ◦ A2 ◦D ◦ L′ ◦ C ◦ (Js ◦Qs) ◦D ◦ S =

= A2 ◦ J
−ex ◦ L2 ◦D ◦ C ◦ Js ◦D ◦ C ◦Qs ◦D ◦ S =

= A2 ◦ J
−ex ◦ L0 ◦ J

k+ex ◦ L0 ◦Q
s ◦D ◦ S =

= A2 ◦N
−ex+k+ex ◦K = A2 ◦N

k ◦K = V2.

Since V ′

1 = V1 and V ′

2 = V2, the equality e
′ = e holds true. Besides, the

correctly computed signature element S is a locally invertible vector,
therefore, the inequality ∆S 6= 0 holds true.

5 Alternative design

When using the 8-dimensional FNAA with global two-sided unit as
algebraic support, one can propose the following signature scheme with
doubled verification equation, in which automorphism-map operations
αV (X) = V ◦X ◦V −1 (mutually commutative with the exponentiation
operation) are used as masking ones.

Computation of the public key is performed as follows:
1. Generate at random the invertible vector N of the order q and

integer β ∈ GF (p) of the order q and compute the vectors Q = βN
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and J = N ◦Qz, where z is a random integer (z < q).
2. Generate at random the integer x < q and the invertible vectors

A1 and A2. Then compute the public-key elements Y1 = A1 ◦N
x ◦A−1

1

and Y2 = A2 ◦ J
x ◦ A−1

2 .
3. Generate at random the integer u < q and the invertible vector

B1. Then compute the vector B2 = B1 ◦ Q
u and the public-key ele-

ments Z1 = B1 ◦N ◦Q ◦B−1
1 , T1 = A1 ◦B

−1
1 , Z2 = B2 ◦ J ◦Q ◦B−1

2 ,
and T2 = A2 ◦B

−1
2 .

The signature generation is performed as follows:
1. Generate at random the integer k < q and the invertible vector

K. Then compute V1 = A1 ◦N
k ◦K and V2 = A2 ◦ J

k ◦Q−u ◦K.
2. Using a specified hash function fH , compute the first signature

element e: e = fH (M,V1, V2), where M is a document to be signed.
3. Compute the second signature element s: s = k + ex mod q.
4. Compute the third signature element S = B1 ◦Q

−s ◦K.

The signature verification is performed as follows:
1. Using the signature (e, s, S) and the public key

(Y1, Z1, T1; Y2, Z2, T2), compute the vectors V ′

1 and V ′

2 :
V ′

1 = Y −e
1 ◦ T1 ◦ Z

s
1 ◦ S; V ′

2 = Y −e
2 ◦ T2 ◦ Z

s
2 ◦ S.

2. Compute the hash-function value e′ = fH (M,V ′

1 , V
′

2).
3. If e′ = e and S is an invertible vector, then the signature is

genuine. Otherwise the signature is rejected.

Correctness proof of the signature scheme:

V ′

1 = Y −e
1 ◦ T1 ◦ Z

s
1 ◦ S =

=
(

A1 ◦N
x ◦ A−1

1

)

−e
◦A1 ◦B

−1
1 ◦

(

B1 ◦ (N ◦Q) ◦B−1
1

)s
◦ S =

= A1 ◦N
−ex ◦N s ◦Qs ◦B−1

1 ◦ S =

= A1 ◦N
−ex+k+ex ◦Qs ◦B−1

1 ◦B1 ◦Q
−s ◦K =

= A1 ◦N
k ◦K = V1;
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V ′

2 = Y −e
2 ◦ T2 ◦ Z

s
2 ◦ S =

=
(

A2 ◦ J
x ◦ A−1

2

)−e
◦A2 ◦B

−1
2 ◦

(

B2 ◦ (J ◦Q) ◦B−1
2

)s
◦ S =

= A2 ◦ J
−ex ◦ Js ◦Qs ◦B−1

2 ◦ S =

= A2 ◦ J
−ex+k+ex ◦Qs ◦Q−u ◦B−1

1 ◦B1 ◦Q
−s ◦K =

= A2 ◦ J
k ◦Q−u ◦K = V2.

6 Discussion

In the known signature scheme [6] based on the computational difficulty
of the HDLP the public key (Y,Z, T ) is formed as a homomophism
mapping of some elements N and Nx belonging to the same hidden
cyclic group: Z = ψ′ (N) and Y = ψ′′ (Nx), where ψ′ and ψ′′ are
different homomorphism-map operations. Therefore, using these two
values and the fitting element T of the public key, it is possible to
construct a periodic function f(i, j) = Y i ◦ T ◦ Zj containing a period
that is determined by the value of the discrete logarithm x. Indeed,
the condition Y i−1 ◦ T ◦ Zj = Y i ◦ Z ◦ T j+x holds true. In this case
the assumed resistance to quantum attacks is justified by the fact that
the values taken on by the function f(i, j) lie in many different cyclic
groups contained in the algebra.

To provide an advance justification of the HDLP-based signature
scheme as candidates for post-quantum ones, a method for eliminating
the periodicity with the period length depending on the value x is
used. The method consists in using the commutative hidden group
that is generated by the generator system < N,Q > in which each
of the vectors has order equal to the prime value q and computing
the value Z as the vector Z = ψ0 (N ◦Q). Multiplying by the vector
Q destroys the periodicity associated with the value of the discrete
logarithm. Indeed, the vector Q can not be represented as a power of
the vector N , since these two vectors lie in different cyclic groups, so
the construction of a periodic function with a period length other than
the prime q, with the use of public key elements, seems computationally
intractable.

However, the use of the product N ◦Q as the preimage of the vector
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Table 4. Comparison with the signature schemes Falcon-512,
Dilithium-1024x768, and RSA-2048.

Signature signature publi-key sign. gener. sign. verific.
scheme size, bytes size, bytes rate, arb. un. rate, arb. un.

Section 4 192 768 70 50

Section 5 320 1536 17 12

Falcon 657 897 50 25

Dilithium 2044 1184 15 10

RSA-2048 256 256 10 > 50

Z leads to the fact that the multiplier Q contributes also to the result
of calculating the right part of the verification equation, which depends
on the computed second signature element s. To compensate for this
contribution, the calculation of the third element of the signature in the
form of an invertible vector S is used. In order to prevent the possibility
of signature forgery using the element S as a fitting parameter, the
proposed signature scheme uses a doubled verification equation.

Table 4 presents a rough comparison of the proposed two signatures
schemes (note different algebras used to implement these schemes) with
the candidates for post-quantum signatures Falcon-512 and Dilithium-
1024x768 [3].

In comparison with the known HDLP-based signature algorithms,
a certain disadvantage of the proposed new signature scheme is the
increased size of the signature and about two times higher compu-
tational complexity of the signature generation and verification algo-
rithms. However, this disadvantage is quite acceptable in the light of
ensuring the implementation of an enhanced criterion aimed at ensur-
ing resistance to potential quantum attacks.

In the method [15] providing formal security proof of the Schnorr
signature scheme [8] it is considered a forger that can compute the
fitting signature element s equally well for different hash functions fH
and f∗H . That model of the reductionist security proof is well applicable
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to the HDLP-based signature schemes described in papers [6], [7], [14].
However, the said model is not applicable to the proposed signature
schemes. In this connection, one can propose a topic for future de-
velopment of the proposed design approach, i. e., development of the
provably secure signature schemes satisfying the advanced criterion of
postquantum resistance.

On the whole, it seems the post-quantum security estimate of the
introduced two signature algorithms and known HDLP-based signa-
tures is mainly connected with finding algebraic methods for reducing
the HDLP to the ordinary HDLP in a finite field GF (ph) for some fixed
value h ≥ 1. This item represents a topic of individual study.

7 Conclusion

In this paper, a new design of the HDLP-based signature schemes
is proposed, which is characterized in using the hidden commutative
group having 2-dimensional cyclicity. Thanks to the latter, it is possi-
ble to specify the calculation of the corresponding elements Z1 and Y1
(Z2 and Y2, respectively) of the public key in such a way that, when
constructing periodic functions using these two elements, we obtain a
period length value equal to the prime order of the elements of the hid-
den commutative group. Method which provides masking the private
value x < q consists in calculation of elements Z1 and Y1 as homomor-
phic (or as automorphic) images of vectors belonging to different cyclic
groups, available in the hidden group with the 2-dimensional cyclicity.

One of directions of the further development of the HDLP-based
signature schemes is connected with finding new algebras providing
possibility to set the hidden commutative groups with 2-dimensional
and 3-dimensional cyclic structure.
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