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Computation of general Randi¢ polynomial and
general Randi¢ energy of some graphs
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Abstract

The general Randi¢ matrix of a graph G, denoted by GR(G)
is an n x n matrix whose (4, j)-th entry is (d;d;)®, a € R if the
vertices v; and v; are adjacent and 0 otherwise, where d; is the
degree of a vertex v; and n is the order of G. The general Randi¢
energy Eqr(G) of G is the sum of the absolute values of the
eigenvalues of GR(G). In this paper, we compute the general
Randié¢ polynomial and the general Randi¢ energy of path, cycle,
complete graph, complete bipartite graph, friendship graph and
Dutch windmill graph.

Keywords: General Randi¢ eigenvalues, general Randi¢ en-
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1 Introduction

Topological indices are the numerical quantities of a graph which are
invariant under graph isomorphism. The interest in topological in-
dices is mainly related to their use in quantitative structure-property
relationship (QSPR) and quantitative structure-activity relationship
(QSAR) [16].

Throughout the paper we consider only simple finite graphs, with-
out directed, multiple or weighted edges and without loops. Let G be
a simple graph with n vertices and m edges. Let the vertex set of G be
V(G) = {v1,v2,...,v,}. If two vertices v; and v; of G are adjacent,
then we write v; ~ v;. For v; € V(G), the degree of the vertex v;,
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denoted by d;, is the number of vertices adjacent to v;.

The general Randi¢ (GR) matrix of a graph G is a square matrix
GR(G) = (dij)nxn in which

(didj)a if Vi ~ Uy
dij =
0 otherwise,

where a € R.

If « = —1/2, then the above definition reduces to the Randi¢ ma-
trix, which was invented by Milan Randi¢ [23] in 1975 as a molecular
structure descriptor. In 1998, Bollobéds and Erdés [2] generalized this
index as Ry, = Ro(G) = Zviij(didj)a, called general Randi¢ index.
The Randié¢ index concept suggests that it is a purposeful to associate
to the graph G a symmetric square matrix R(G). The Randi¢ ma-
trix [3],[4],[9], [13] is denoted by R(G) = (74 )nxn, Where

1 .
—~— if Vi ~ Uy
0 otherwise.
Denote the eigenvalues of the GR matrix of G by A1, Ag, ..., A\, and
order them in nonincreasing order. Similar to the characteristic poly-
nomial of a matrix, we consider the general Randi¢ (GR) polynomial

of G as det(A\] — GR(G)) = ¢ar(G, \), where I is the identity matrix
of order n. The general Randié¢ energy is defined as Eqr(G) = > |\l
i=1

The Eqr(G) is defined in analogous to the ordinary graph energy
defined as the sum of the absolute values of the eigenvalues of the ad-
jacency matrix [15]. The ordinary graph energy is closely related to
the total m-electron energy of a non-saturated hydrocarbons as cal-
culated with the Huckel molecular orbital (HMO) method in chem-
istry [11]. Detail information about the graph energy can be found
in [12],[14],]20]. There are many other kinds of graph energies, such
as incidence energy [5], [6], distance energy [18], Laplacian energy [17],
matching energy [7],[19],]21], Randi¢ energy [23] and skew energy [22].
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In this paper we obtain the G R-polynomial and G R-energy of some
specific graphs. These results generalise the results obtained in paper

[1].

Remark 1. Given graph G, its general Randié¢ energy Eqr(G), is di-
rectly obtained from its general Randié¢ polynomial ¢gr(G) by :

(a) finding the solutions, \;’s, (which are eigenvalues) for the equa-
tion

¢GR(G) =0,

(b) and computing Eqr(G) = > |\il.
i=1

2 GR-polynomial and GR-energy:

Let P, Cy, K,, K, 4, and S,, = K1 ,—1 denote the path, the cycle, the
complete graph, complete bipartite graph and star graph respectively
on n vertices.

Theorem 2.1 For n > 5 and a € R, the GR polynomial of the path
P, is

SGR(Pny A) = A2A,, 0 — 2(4)*AA,,_3 + (16)*A,,_4 , where for every
k > 3, Ak = /\Ak—l - (16)aAk_2 with A1 = )\ and A2 = /\2 - (16)a.

Proof. For every k > 3, consider

A —4* 0 0
—4* X =4 0

0 —4* X -4«

0 0 —4* A

o O o O
o O O O
o O O O

B, = .
0 0 0 0 A —4« 0
0 0 0 0 —4« A —4
0 0 0 0 0 —4> A

| d kxk,
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and let Ay = det(By). It is easy to see that Ay = AMA;_1—(16)Ax_o.

Therefore

Pr(PnsA) =

OGR(Pns A) =

Further,

det(\] — GR(P,))

A
_9a
0
0

A

+ 2¢

-2 0

A —

0 —

0

4“ 0
/T N
4% A
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A =4 0 ... 0 0
—4* X —4* ... 0 0
N 0 -4« X ... 0 0
Par(PnsA) = A AA(_2) +2 . . .
0 0 0O ... A 0
0 0 o ... 0 —2¢
A —4« 0 0
(—4)* A 0 0
—(@)* [ A :
0 0 A =4
0 0 . D\
A 4 0
—4% A 0 0
+ 2% : SR :
0 0 cee A 0
0 0 ... —4> =2¢

Hence,
¢GR(Pn7 /\) = /\2An_2 — 4a/\An_3 — 4a/\An_3 + 16%A,,_4.
= MNA, 9 —2(4)“A\\,_3 + 16%A,,_4.

O

Theorem 2.2 For n > 3 and o € R, the GR polynomial of the cycle
C,, is

66R(Crs ) = M1 = 2(16) A5 — (4)°"2,

where for every k > 3, Ay = AMy_1 — (16)*Ax_o with A; = X and
Ay = 22 — (16)>.

Proof. Similar to the proof of Theorem 2.1, for every k > 3, we consider

63



H. S. Ramane, G. A. Gudodagi

o O O O
- O O O O
o O O O

B = .
0 0 0 0 A —4« 0
0 0 0 0 —4« A —4~
0 0 0 0 0 —4« A

| 1 kxk,

and let Ay = det(By). It is easy to see that Ay = AMA;_1—(16)Ag_o.

Therefore

$GRr(Cn, A) = det(A — GR(Cy))

A =42 0 0 0 0 —4¢
—4* X —4* 0 0 0 0
0o —4* X —4¢ 0 0 0
0 0 —4* A 0 0 0
0 0 0 0 A —4* 0
0 0 0 0 —4* A -4«
—4* 0 0 0 0 —4* A

nxn.
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¢GR(Cn7 /\) =
—4« 0
—4« A
0 —4«
— /\A(n—l) —+ 4« .
0 0
0 0
0 0
—4« 0
A —4«
—4« A
H(=1) [ (g)2]| O 4
0 0
0 0

¢GR(Cn, )\) — )‘A(n—l) - 16aA(n_2

e
0o -4«
0 0
1) (=16
0 0
0 0
()@ | (-

0 0 0 —4~
—4« 0 0
A 0 0 0
0 A =4 0
0 —4« A =4
0 0 —4" A (n—1)x(n—1)
0 0 0 —4~
0 0 0 0
—4« 0 0 0
A 0 0 0
0 A =4 0
0 —4" A —4" (n—1)x(n—1).
) T
—4« 0 0
A 0 0
—4« 0 0
0 —4* A
0 0 —47 (n—2)x(n—2)
—4« 0 0
A —4” 0
0 0 —47 (n—2)x(n—2)

+(=1)"[=4"An o

65



H. S. Ramane, G. A. Gudodagi

Therefore,

$GR(Cn, N) = M1 — 16%A,_p + (—1)"(—16)[—(4)°]" 2
+ (_1)n+1[_(4)a]n + (_1)2n+1(16)aAn_2
= AM,_1 —2(16%)A, o — (2)410™),

Lemma 2.3 [8] If M is a nonsingular square matrix, then

det < ]\Jf g ) = det(M)det(Q — PM~'N).

Theorem 2.4 For n > 2 and «a € R,
(i) the GR polynomial of the complete graph K, is
Sar(Kn, A) = (A = (n = 1A+ (n — 1)1,
(ii) the GRE of K, is

Egr(K,) = 2(n —1)%%1,

Proof. 1t is easy to see that the GR matrix of K, is
(n —1)2%(J, — I), where J,, is a matrix whose all entries are equal to
one and [ is an identity matrix. Therefore

dGr(Kn, N) = |A = (n—1)>"J, + (n —1)*]|
= |A+(n—1%1—(n—1)*J,|.

Since the eigenvalues of .J,, are n (once) and 0 (n — 1 times), the
eigenvalues of (n — 1)2®J,, are n(n — 1)2* (once) and 0 (n — 1 times).
Hence

bar(Kn,A) = (A= (n = (A + (n— 1)2)"1),

(ii) It follows from Remark 1. O
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Theorem 2.5 For any positive integers p,q > 1 and a € R,
(i) The GR polynomial of complete bipartite graph K, , is
PGR(Kpg,A) = NHI72(A2 — (pg)***1),
(il) Egr(Kp,q) =24/ (pg)** 1.

Proof. 1t is easy to see that the GR matrix of K, is

of O J,
ons - (%7 %)

Jaxp
Therefore,
Al —(Pa)* Jpxq
¢GR(Kp,q7 )\) =
—(pa)* Jgxp Ay
Using Lemma 2.3 we have
« [P «
Pr(Kp g, A) = [Mp| | Mg — (=pa)* gxp By (—=pa)* Ipxq

= N1 |)\2Iq —p (pq)2O‘Jq| since JyxpJpxg = pJy-
Since the eigenvalues of .J,, are n (once) and 0 (n — 1 times), the

eigenvalues of p(pq)?®.J, are (pg)***! (once) and 0 (¢—1 times). There-
fore

(ii) It follows from Remark 1.

Corollary 2.6 For n > 2 and a € R,
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(i) the GR polynomial of the star S, = Kj 1 is
¢GR(Sn, )\) = )\(n—2)()\2 _ (n o 1)2014—1)’

(ii) the GRE of S, is

EGr(S,) =2/ (n— 1)2a+1‘

Figure 1. Friendship graphs F5, F3 and F;, respectively

Let n be any positive integer and F;, be a friendship graph with
2n + 1 vertices and 3n edges. In other words, the friendship graph F;,
is a graph that can be constructed by coalescence n copies of the cycle
Cs of length 3 with common vertex. The Friendship theorem of Erdds
et al. [10], states that graphs with the property that every two ver-
tices have exactly one neighbour in common are exactly the friendship
graphs. The Fig. 1 shows some examples of friendship graphs. Here
we compute the GRFE of friendship graphs.

Theorem 2.7 For n > 2 and a € R,

(i) the GR polynomial of friendship graph F,, is

por(Fn,X) = (A= 42)" I (A+4%) (/\ - [22‘“1 + 2“*\/%})
()\ - [220471 _g2a-l /11 8n2a+1]) ,

68



Computation of general Randié¢ polynomial and ...

(ii) the GR energy of friendship graph F), is

4%(2n — 1) 4 220 if n2tl <0
Eqr(F,) =

4%(2n — 1) + 229y/1 + 8n2eF1  if p2atl > (.

Proof. The GR matrix of F}, is

0 (4n)> (4n)* ... (4n)* (4n)*
(4n)* 0 o L0 0
(4n)> 4@ 0 ... 0 0
GR(F,) = , . . . .
(4n)* 0 0 0 4
| (4n)” 0 0 4% U (2n+1)x (2n+1) .

Now, for computing |\ — GR(F},)|, we consider its first row. The
cofactor of the first array in this row is

Ao =4 00 0
—4* A 0 0
0 0 A 4
0 0 —4 A (2n)x(2n)

and the cofactor of another arrays in the first row are similar to

—(4n)* —40 0 0

“Un)® A 0 0

_(n)® 0 -

—(4n)* 0 =A% A @)
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Now solving the above two determinants, we get

bcr(Fas\) = A2 — 42" 1 (4n)*2n [(-(4@% ~ (d4n)*4%)(N* — 42a)<"*1>]
(A2 — 4271 () 4 4%) (,\ - [22“*1 + 22‘“1W])

()\ - [22‘**1 - 22“*1\/WD .

(ii) It follows from Remark 1.

§ Y <Y

Figure 2. Dutch Windmill graph D? , D} and D7 respectively

Let n be any positive integer and D} be Dutch Windmill graph
with 3n + 1 vertices and 4n edges. In other words, the graph D} is a
graph that can be constructed by coalescing n copies of the cycle Cy
of length 4 with a common vertex. Figure 2 shows some examples of
Dutch Windmill graphs. Here we compute the GRE of Dutch Wind-
mill graphs.

Theorem 2.8 For n > 2 and o € R,
(i) the GR polynomial of Dutch Windmill graph D} is
Sor(DiA) = NN = (2)47)" 7N — (2)4% — 2n(4n) ],
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(i) Egr(Dj}) =2v2 4% (n— 1) + 2271 /2(1 4 n2FT).
Proof. The GR matrix of D} is

0 (4n)* (4n)~ 0 (4n)* (4n)~ 0
(4n)* 0 0 4o 0 0 0
(4n)* 0 0 4 0 0 0
0 4 4 0 0 0 0
(4n)* 0 0 0 0 0 4o
(4n)* 0 0 0 0 0 4e
L 0 0 0 o ... 4 0 ] gy x@nt).
A0 40 —(4n)* 0 0
Let A = 0 A =4 |, B=| —(4n)* 0 0 |and
—4* —4* A 0 0 0
—(4n)* 0 —4¢
C=| —(4n)* X —4¢
0 —4> A
Then
bcr(DIN) = det(\ — GR(DY))
c O O (0]
B A O (0]
= Adet(A)" + 2n(4n)*det | B O A 0
B O O ... A (3n) (3n) .

Now, by the straightforward computation we have the result.

(ii) It follows from Remark 1.

Let n be any positive integer and Df be Dutch Windmill graph
with 4n + 1 vertices and 5n edges. In other words, the graph Dy is a
graph that can be constructed by coalescing n copies of the cycle Cy
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Figure 3. Dutch Windmill graph DZ, D3 and D respectively

of length 5 with a common vertex. Figure 3 shows some examples of
Dutch Windmill graphs.

Theorem 2.9 For n > 2 and o € R, the GR polynomial of Dutch
Windmill graph Dy is
dar(DE,A) = (M= 3X24% 4 41) (=) (A5 — gA3420 4 jgler
—2n 23 (4n) ) 4 an\(4n) P 420 — 2p(4n) ) 43,

Proof. The GR matrix of D} is

[0 (4n)* (@n)* 0 O (4n)*  (4n)* 0 07
(4n) 0 0 0 4° 0 0 0 0
(4n)* 0 0 4% 0 0 00 0
0 0 4“0 4 0 o 0 0
0 4 0 4% 0 0 0 0 0
(4n)* 0 0 0 0 0 0o 0 4
(4n)* 0 0 0 0 0 0 4% 0
0 0 0 0 0 0 4 0 4
L O 0 0 0 0 4 0 4% 0 ] (3n+1) x (3n+1).
Let
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0 —4¢

3 g S T —(4n)® 0 0 0
A= . loB={ @) 0 0 0
0 —4 A —4 0 00 0
—4~ 0 —4* )
@) 0 0 40
| —n)e A a0 o
and C = 0 e\ _ge
0 0 —4> A
Then
dcr(Dy,\) = det(A\ — GR(Dy))
c O O O ... O
B A O O ... O
B O A O ... O
= A(det(A))" +2n(4n)%det| B O O A ... O
B O O O A

(4n) % (4n) .

Now, by the straightforward computation we have the result.
O

) .

Figure 4. K4-Windmill graph K7, K} and K} respectively
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Let n be any positive integer and K} be K,-Windmill graph with
4n + 1 vertices and 6n edges. In other words, the graph K} is a graph
that can be constructed by coalescing n copies of the complete graph K,
with a common vertex. Figure 4 shows some examples of K4-Windmill

graphs.
Theorem 2.10 For n > 2 and o € R,

(i) the GR polynomial of K}-Windmill graph is

dar(KP,A) = [(A+9%)°(A=2(9)")]" V(A +9%)
(A= |97+ 9°v/1 430207 )
</\ - [ —9o/1+ 3n20‘+1D'

(ii) the GR energy of K;-Windmill graph is

90&

4n(9) if n2etl <o

Ear(K}) = {
2(9)%[(2n — 1) + V1 + 3n2etl if p2otl >,

Proof. The GR matrix of K} is

[0 (9n)* (9n)* (9n)* ... (9n)* (9n)* (9n)*]
O 0 9 9° ... 0 0 0
On)* 9% 0 9° ... 0 0 0
On)* 9% 9* @ 0 0 0
On)® 0 0 0 ... 0 9o oo
On)® 0 0 0 9 0 oo
Lo 00 0 990 e
Let
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A 9% 92
A= —9¢ X -9 |, B=
—9* —9% )

—(9n)* —9> —g~

andC=| —(9n)* X —9¢
—(9n)* —9* A
Then
der(KY,\) = det(\ — GR(KY))

A(det(A))"™ + 3n(9n)“det

- W Q

B

@)
A
@)

)

0
0
A

0

- 000

A

(3n)x(3n).

Now, by the straightforward computation we have the result.

(ii) It follows from Remark 1.

ot

Figure 5. Double star S(3,3)

For p,q > 1 the double star S(p,q) is the graph on the points

{vo,v1,...,vp, wo, w1, ..., we} with lines

{(vo, wo), (vo,v3), (wo,w;) : 1 <i < p,1 <5< q} (see Fig. 5).

Theorem 2.11 For p,q > 1 and a € R,
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(i) the GR polynomial of double star graph S(p,q) is

cr(SP, @), \) = NTIHIN =A% ((p— D)p*™ + (¢ — 1)¢*
+(pg)*™) + (p— 1)(q — 1)(pa)**] .

Eor(S(p.0) = V23X + VX —ap—D(a-Dpa™
VX - /X1 - Da - D™,

where X = (p — 1) p** + (¢ — 1) ¢** + (pq)**.

Proof. The GR polynomial of S(p,q) is

ocr(S(p,q), ) = det(A — GR(S(p,q))) =

A —(pg)* —q* ... —q* 0 ... 0
—(pg)™ A o ... 0 —p* ... —p“
s 0 A 0 0 0
o 0 0 A0 0
0 0 0 A 0
0 —p* 0 0 0 0
0 - 0 0 0 A (p+a)x(p+aq).
Using Lemma 2.3,
N —(g-1g*  —Apg)®

bar(S(p,q),\) = Iptat
“Apg)* A= (p—1)p*

Now, by the straightforward computation we have the result.
(ii) It follows from Remark 1.
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3 Conclusion

In this paper we obtained the expression for the GR polynomial and
GR energy of some specific graphs. These results generalise the results
obtained in paper [1]. The results in [1] follow from our work by letting

a=—(1/2).
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