
Computer Siene Journal of Moldova, vol.27, no.2(80), 2019

Mixed Algorithm for Combinations

Generation

Constantin Ciubotaru

Abstrat

Modi�ations are proposed to the reursive algorithm of om-

binations generation by reduing the number of non-performing

reursive alls and reovering this gap through iterative proesses.

Keywords: ombinations, ombinations generation, reursive

algorithm, iterative algorithm, Common LISP, Rosetta Code.

1 Introdution

To alulate the number of all k-ombinations from a given set of n
elements (0 ≤ k ≤ n) we will use the well known formula

C
k
n =

n!

k!(n− k)!
.

However, not only the number of ombinations is often important,

but also generation (enumerating) of all possible ombinations, e.g.,

for some optimization problems solution. In this ase we will use the

formula below. It an easily be dedued:

C
k
n−1 =

(n− 1)!

k!(n− k − 1)!
=

(n− 1)!(n− k)

k(k − 1)!(n− k − 1)!(n− k)
=

n− k

k
C

k−1

n−1.

This equality helps us to demonstrate the following reurring for-

mula:

C
k
n = C

k−1

n−1 + C
k
n−1. (1)

Really

C
k−1

n−1 +C
k
n−1 = C

k−1

n−1 +
n− k

k
C

k−1

n−1 = (1 +
n− k

k
)Ck−1

n−1 =

©2019 by CSJM; C. Ciubotaru

242

Mixed Algorithm for Combinations Generation

=
n(n− 1)!

k(k − 1)!(n− k)!
=

n!

k!(n− k)!
= C

k
n.

Formula (1) an also be transribed in the following way:

Ck
n = Ck−1

n−1 + Ck−1

n−2 + . . .+ Ck−1

k + Ck
k . (2)

Formulas (1) and (2) onstitute the basis of reursive algorithms

for ombinations generation. Of ourse, the elegane and the way of

implementing the reursive algorithms by staks impresses. In some

situations, however, reursive alls beome too expensive. The e�orts

made to organize the reursive all outweigh the alulations sheduled

within the all. In suh situations it is more e�ient to substitute reur-

sion by iteration. The di�ulty that appears here is to determine the

boundary of separation between reursive proess and the iterative one.

Just this is the ase of ombinations generation. We will propose some

modi�ations to the reursive algorithm by inserting iterative elements.

2 Reursive Algorithm for Combination Gener-

ation

Let M be an arbitrary set of n elements, and com � an arbitrary k-
ombination of distint elements from M or nil (empty ombination,

notation from Common LISP). For example, M={1,2,3}, com = (13),

M= {a, b, c, d}, com=(abd). If we denote Ck
M = {c1, c2, . . . , cm}, then

Ck
M ·com = {c1·com, c2·com, . . . , cm·com}. The onatenation operation

is denoted by "·". For example, C2
{1,2,3} = {(12), (13), (23)}, C2

{1,2,3} ·

(45) = {(1245), (1345), (2345)}, and C2
{1,2,3} · nil = {(12), (13), (23)}.

It should be noted that the order of elements in ombination is not

relevant.

Let us denote further M = {1, 2, ..., n} = M1, M2 = {2, 3, ..., n},
M3 = {3, 4, ..., n},..., Mn = {n}. Using these denotations and Formula

(2) we de�ne Ck
M :

C
k
M = C

k−1

M2
· (1) ∪ C

k−1

M3
· (2) ∪ ... ∪ C

k−1

Mn−k+1
· (n− k) ∪ C

k
Mn−k+1

. (3)

243

C. Ciubotaru

Let us make sure that this formula really omputes all possible k-
ombinations over the M . First, let us de�ne C0

M = {nil} for any M ,

inluding M=∅ = {} and Ck
M = {(i1 i2 . . . ik)} forM = {i1, i2, . . . , ik},

k = card(M).

Theorem

The set Ck
M ontains all possible Ck

card(M) k-ombinations of ele-

ments from the set M , 0 ≤ k ≤ card(M).

Proof

Let M = {1, 2, ..., n}. We will prove that the theorem is true for any

Ci
M by indution on i. For i=0, by de�nition, C0

M ={nil}, C0
card(M)=1.

For i = 1 we obtain: C1
M = C0

M2
·(1)∪C0

M3
·(2)∪...∪C0

Mn
·(n−1)∪C1

Mn
=

{nil}·(1)∪{nil}·(2)∪...∪{nil}·(n−1)∪{(n)} = {(1), (2), ..., (n−1), (n)}.
Let's assume that the statement is true for i = 0, 1, ..., k, and we

will prove it for i = k+1. So, Ci
M ontains all possible i-ombinations

of elements from M , in total Ci
card(M) ombinations, i = 0, 1, ..., k. We

will show that Ck+1
M ontains Ck+1

card(M) distint (k+1)-ombinations of
elements from M . Aording to the Formula 3

Ck+1
M = Ck

M2
· (1) ∪ Ck

M3
· (2) ∪ ... ∪ Ck

Mn−k
· (n−k−1) ∪ Ck+1

Mn−k
. (4)

Note that:

• card(Mn−k+1) = k+1, so, Ck+1
Mn−k+1

= {(n−k+1n−k ...n−1n)},

Ck+1
k+1 = 1.

• Ck
Mi

· (i − 1) ∩ Ck
Mj

· (j − 1) = ∅ for any i 6= j. The sheme of

possible layout of the sets Mi, Mj is shown in Figure 1. In the

ase a) (i− 1) /∈ Mj , and in the ase b) � (j − 1) /∈ Mi.

• Ck
Mi

· (i− 1) ∩Ck+1
Mn−k+1

= ∅ for all 2 ≤ i ≤ n− k + 1. The ase c)
is lear from Figure 1.

• card(Ck
Mi

·(i−1)) = card(Ck
Mi

) = Ck
card(Mi)

.

So we get:

card(Ck+1
M) = Ck

n−1+Ck
n−2+. . .+Ck

k+1+Ck+1
k+1 = Ck+1

card(M). (5)

(Formula 2).

244

Mixed Algorithm for Combinations Generation

To omplete the proof, let us mention that all ombinations in

Ck
Mi

· (i−1) are distint (k+1)-ombinations. �

Further we will refer to the reursive algorithm for ombinations

generation written in the Common LISP language [1,2℄ and published on

the portal Rosetta Code

1

[3℄ (Figure 2). The termination onditions

•
1
· · · •

i−1
•
i
· · · •

j−1
•
j

· · · •
n

(a) (i−1) /∈ Mj

Mj

Mi

•
1
· · · •

j−1
•
j

· · · •
i−1

•
i
· · · •

n
(b) (j−1) /∈ Mi

Mi

Mj

•
1
· · · •

i−1
•
i
· · · •

n−k+1
· · · •

n
(c) (i−1) /∈Mn−k+1

Mn−k+1

Mi

Figure 1: Shemati plaement of Mi, Mj , Mn−k+1

for reursive alls in Rosetta COMB using the above denotations are:

1) Ck
M · com = C0

M · com (k=0) and 2) Ck
M · com, card(M) < k.

In the �rst ase the funtion will return the com value, and in the

seond ase we have a deadlok, that is, the respetive all does not

generate anything. It an be notied that for k=0, com will be exatly

one possible k-ombination.

1

Rosetta Code is a wiki-based programming hrestomathy website with imple-

mentations of ommon algorithms and solutions to various programming problems

in many di�erent programming languages.

245

C. Ciubotaru

Rosetta COMB

(defun omb (k lst)

(labels((omb1 (l k)

(when (>= (length l) k)

(if (zerop k) (return−from omb1 (print)))

(omb1 (dr l) k)

(omb1 (dr l) (ons (�rst l)) (− k 1)))))

(omb1 lst nil k)))

; (omb 3 '(1 2 3 4 5))

; (5 4 3) (5 4 2) (5 3 2) (4 3 2) (5 4 1) (5 3 1) (4 3 1) (5 2 1) (4 2 1) (3 2 1)

Figure 2: The reursive funtion Rosetta COMB for ombinations

generation.

3 Modi�ed Algorithm for Combination Gener-

ation

We will modify the Rosetta COMB funtion (Figure 2) by reduing

the number of non-performing reursive alls and reovering this gap

through iterative proesses. For this purpose we hange the termina-

tion onditions for reursive alls. The new onditions that ensure the

onvergene of the reursive proess and derease the total number of

alls are:

1) C1
M · com (k = 1) and 2) C

card(M)
M · com (k=card(M)).

In the �rst ase all 1-ombinations of elements fromM onatenated

with com will be generated, in total card(M) ombinations, and in the

seond ase one single k-ombination will be generated, k = card(M).
Namely these onditions generate iterative proesses. The funtion so

modi�ed is shown in Figure 3.

For C3
5 the modi�ed funtion produes 11 reursive alls, and the

initial funtion � 69 alls. For C5
12 these indiators are 659 and 2573

respetively, and for C13
26 � 10400599 and 40116599, respetively. The

246

Mixed Algorithm for Combinations Generation

modi�ed funtion reovers this gap by alling (iteratively) the dolist

and append funtions.

COMB Modi�ed

(defun omb (k lst)

(labels((om (l k)

(ond((= (length l) k)(print(append l)))

((>= (length l) k)

(ond((= 1 k) (dolist (x l) (print(ons x))))

(t(om (dr l) (ons(ar l))(− k 1))(om (dr l) k)))))))

(om lst nil k)))

; (omb 3 '(1 2 3 4 5))

; (3 2 1) (4 2 1) (5 2 1) (4 3 1) (5 3 1) (4 5 1) (4 3 2) (5 3 2) (4 5 2) (3 4 5)

Figure 3: The reursive funtion Rosetta COMB Modified for

ombinations generation.

To ollet all ombinations, we an use an auxiliary parameter, re-

plaing the print funtions with olletion funtions, for example, push

(Figure 4).

COMB Modi�ed with olletion

(defun omb (k lst &aux rez))

(labels((om (l k)

(ond((= (length l) k)(push(append l)rez))

((>= (length l) k)

(ond((= 1 k) (dolist (x l) (push(ons x)rez)))

(t(om (dr l) (ons(ar l))(− k 1))(om (dr l) k)))))))

(om lst nil k))rez)

; (omb 3 '(1 2 3 4 5))

;((3 4 5) (4 5 2) (5 3 2) (4 3 2) (4 5 1) (5 3 1) (4 3 1) (5 2 1) (4 2 1) (3 2

1))

Figure 4: The reursive funtion COMB Modified with the olletion of

results.

247

C. Ciubotaru

Using the primitive funtion time of the Common LISP language,

we an also ompare some program runtime indiators. Thus, for

C13
26 , exeution time for Rosetta COMB will be: Run time:25.984375

se and for Rosetta Comb Modified � Run time:10.859375 se. For

C18
30 , these indiators will be: Run time:261.70313 se and Run

time:105.4375 se, respetively.

C3
{1,2,3,4,5} · nil

C2
{2,3,4,5} ·(1) C3

{2,3,4,5} · nil

C1
{3,4,5} ·(21) C2

{3,4,5} ·(1)

C1
{4,5} ·(31) C2

{4,5} ·(1)

C2
{3,4,5} ·(2) C3

{3,4,5} · nil

C1
{4,5} ·(32) C2

{4,5} ·(2)

k=1

k=1 k=card(M) k=1 k=card(M)

k=card(M)

C3
{1,2,3,4,5} = {(321), (421), (521), (431), (531), (451), (432), (532), (452), (345)}

(321)

(421)

(521)

(431)

(531)

(451)

(432)

(532)

(452)

(345)

Figure 5: Shemati illustration of reursive alls for the COMB

modified funtion, all C3
5 .

248

Mixed Algorithm for Combinations Generation

Some generated ombinations will not appear in lexiographi order

(desending in our ase), but, we reall, the order of the elements in

ombination is irrelevant. If, however, in the modi�ed funtion we sub-

stitute the all (append l) with (append(reverse l)), we will

get all ombinations in lexiographi order.

In the Figure 5 we present the reursive alls sheme for the mod-

i�ed version (omb 3 {1,2,3,4,5}). This sheme helps us to better

understand the proposed modi�ed algorithm for ombinations genera-

tion.

Referenes

[1℄ Guy L. Steele, Common Lisp the Language, 2nd edition, Thinking

Mahines, In. Digital Press, ISBN: 1-55558-041-6, 1990, 1029 p.

[2℄ http://soureforge.net/projets/lisp/files/lisp/2.49/

lisp-2.49-win32-mingw-big.exe/download

[3℄ http://rosettaode.org/wiki/Combinations#Common_Lisp

Constantin Ciubotaru, Reeived May 24, 2019

Aepted June 20, 2019

Constantin Ciubotaru

Vladimir Andrunahievii Institute of Mathematis and Computer Siene

5, Aademiei street, Chisinau, Republi of Moldova, MD 2028

Phone: (373 22) 73-80-73

E�mail: hebotar�gmail.om

249

http://sourceforge.net/projects/clisp/files/clisp/2.49/
clisp-2.49-win32-mingw-big.exe/download
http://rosettacode.org/wiki/Combinations#Common_Lisp

	Introduction
	Recursive Algorithm for Combination Generation
	Modified Algorithm for Combination Generation

