Computer Science Journal of Moldova, vol.27, no.2(80), 2019

Mixed Algorithm for Combinations
Generation

Constantin Ciubotaru

Abstract

Modifications are proposed to the recursive algorithm of com-
binations generation by reducing the number of non-performing
recursive calls and recovering this gap through iterative processes.
Keywords: combinations, combinations generation, recursive
algorithm, iterative algorithm, Common LISP, Rosetta Code.

1 Introduction

To calculate the number of all k-combinations from a given set of n
elements (0 < k < n) we will use the well known formula

However, not only the number of combinations is often important,
but also generation (enumerating) of all possible combinations, e.g.,
for some optimization problems solution. In this case we will use the
formula below. It can easily be deduced:

(n—1)! (n—1Dln—k) n—k

ko o o k—1
Cn-1= Kn—k—1D! k(k—D)!n—k—Di(n—k) & Cn-1-

This equality helps us to demonstrate the following recurring for-
mula:
ch=cki4+cCk_ ). (1)
Really
n—=k
k

ot o PG s S et Vet BB el VG

(©2019 by CSJM; C. Ciubotaru

242



Mixed Algorithm for Combinations Generation

_ n(n —1)! _ n! _
T k(k—-D!(n—k)!  K(n-k! Cn-

Formula (IJ) can also be transcribed in the following way:

Ck=cli+Ciy+.. . +Ci '+ 0. (2)

Formulas (1) and (2)) constitute the basis of recursive algorithms
for combinations generation. Of course, the elegance and the way of
implementing the recursive algorithms by stacks impresses. In some
situations, however, recursive calls become too expensive. The efforts
made to organize the recursive call outweigh the calculations scheduled
within the call. In such situations it is more efficient to substitute recur-
sion by iteration. The difficulty that appears here is to determine the
boundary of separation between recursive process and the iterative one.
Just this is the case of combinations generation. We will propose some
modifications to the recursive algorithm by inserting iterative elements.

2 Recursive Algorithm for Combination Gener-
ation

Let M be an arbitrary set of n elements, and com — an arbitrary k-
combination of distinct elements from M or nil (empty combination,
notation from Common LISP). For example, M={1,2,3}, com = (13),
M= {a,b,c,d}, com=(abd). If we denote C¥, = {c1,ca,...,cn}, then

C’J]‘“/I-com ={e1-com, cy-com, ..., cp-com}. The concatenation operation
is denoted by "-". For example, 0{21 23} = {(12), (13),(23)}, 0{21 23}

(45) = {(1245), (1345),(2345)}, and 0217273} -nil = {(12),(13),(23)}.
It should be noted that the order of elements in combination is not

relevant.

Let us denote further M = {1,2,....,n} = My, My = {2,3,...,n},
Ms ={3,4,...,n},..., M,, = {n}. Using these denotations and Formula
@) we define C%;:

Cir=Cyy' - (HUCK - (QU..uCy ! - (n—k)UCh,_, - (3)

243



C. Ciubotaru

Let us make sure that this formula really computes all possible k-
combinations over the M. First, let us define CY; = {nil} for any M,
including M =@ = {} and C¥, = {(i1ia ... i)} for M = {iy, iz, ..., i},
k = card(M).

Theorem

The set C]"Q contains all possible C’(’far (M) k-combinations of ele-

ments from the set M, 0 < k < card(M).

Proof
Let M ={1,2,...,n}. We will prove that the theorem is true for any
C*%, by induction on i. For i=0, by definition, CY, = {nil}, C’Sard(M):l.

For i = 1 we obtain: C}; = O}, -(1)UCY, -(2)U...UCY; -(n—1)UC}, =
{nil}-()U{nil}-(2)U...u{nil}-(n—1)U{(n)} = {(1),(2),...,(n—1), (n)}.

Let’s assume that the statement is true for ¢« = 0,1,..., &k, and we
will prove it for ¢ = k+1. So, th contains all possible -combinations
of elements from M, in total Céa’/‘d(M) combinations, ¢ = 0,1, ..., k. We

will show that C¥' contains Cf;f 4 distinct (k+1)-combinations of

elements from M. According to the Formula [3
Cyi' =Clip- (HUCK,-(2U..UCy, - (n—k=1)UCH . (4)

Note that:
o card(M,_k+1) = k+1, so, C’ﬁikﬂ ={(n—k+1n—Fk..n—1n)},
ot =1

. C]’f/[i- t—1)nN C]I%- (j — 1) = @ for any 7 # j. The scheme of
possible layout of the sets M;, M; is shown in Figure [l In the
case a) (1 — 1) ¢ M;, and in the case b) — (j — 1) ¢ M,;.
. C]lf/[i~(i—1)00%1“ =@ forall 2 <i<n—k+1. The case ¢)
is clear from Figure [I]
. card(C&'(i—l)) = card(C]'fL,) = Cfard(Mi).
So we get:

card(Cyf') = Cruy+Cpot.. +Cin+Cf = Collny- ()

(Formula [2]).

244



Mixed Algorithm for Combinations Generation

To complete the proof, let us mention that all combinations in
C]’%- (¢—1) are distinct (k+1)-combinations. W

Further we will refer to the recursive algorithm for combinations
generation written in the Common LISP language [1,2] and published on
the portal Rosetta Code [l [3] (Figure[2). The termination conditions

1 i-1 4 J=17 n
. I A (a) (i—1) ¢ M;
M;
M;
1 _]—1 ] i—1 4 n .
° ° ° ° w (b) (j_l) ¢M’L
M;
M;
1 i—1 4 n—k+1 n
. I SIS (c) (i=1)¢& My g
My 1
M;

Figure 1: Schematic placement of M;, M;, M, .1

for recursive calls in Rosetta COMB using the above denotations are:
1) C%, - com = CY, - com (k=0) and 2) C%, - com, card(M) < k.

In the first case the function will return the com value, and in the
second case we have a deadlock, that is, the respective call does not
generate anything. It can be noticed that for k=0, com will be exactly
one possible k-combination.

'Rosetta Code is a wiki-based programming chrestomathy website with imple-
mentations of common algorithms and solutions to various programming problems
in many different programming languages.

245



C. Ciubotaru

—[ Rosetta COMB }

(defun comb (k Ist)
(labels((combl (1 c k)
(when (>= (length 1) k)
(if (zerop k) (return—from combl (print c)))
(combl (cdr 1) ¢ k)
(combl (cdr 1) (cons (first 1) ¢) (— k 1)))))
(combl Ist nil k)))

; (comb 3 (123145))

i(543)(542)(532)(432)(541)(531)(431)(521)(421)(321)

Figure 2: The recursive function Rosetta COMB for combinations
generation.

3 Modified Algorithm for Combination Gener-
ation

We will modify the Rosetta COMB function (Figure 2) by reducing
the number of non-performing recursive calls and recovering this gap
through iterative processes. For this purpose we change the termina-
tion conditions for recursive calls. The new conditions that ensure the
convergence of the recursive process and decrease the total number of
calls are:

1) C}; - com (k=1) and 2) Cﬁrd(M) -com (k=card(M)).

In the first case all 1-combinations of elements from M concatenated
with com will be generated, in total card(M) combinations, and in the
second case one single k-combination will be generated, k = card(M).
Namely these conditions generate iterative processes. The function so
modified is shown in Figure Bl

For Cg’ the modified function produces 11 recursive calls, and the
initial function — 69 calls. For C}, these indicators are 659 and 2573
respectively, and for C33 — 10400599 and 40116599, respectively. The

246



Mixed Algorithm for Combinations Generation

modified function recovers this gap by calling (iteratively) the dolist
and append functions.

—| COMB Modified }

(defun comb (k Ist)
(labels((com (1 ¢ k)
(cond((= (length 1) k)(print(append 1 c)))
((>= (length 1) k)
(cond((= 1 k) (dolist (x 1) (print(cons x c))))

(t(com (cdr 1) (coms(car 1) ¢)(— k 1))(com (cdr 1) ¢ k)))))))
(com Ist nil k)))

; (comb 3 7(123145))

i(321)(421)(521)(431)(531)(451)(432)(532)(452)(345)

Figure 3: The recursive function Rosetta COMB Modified for
combinations generation.

To collect all combinations, we can use an auxiliary parameter, re-
placing the print functions with collection functions, for example, push

(Figure []).

—{ COMB Modified with collection }

(defun comb (k Ist &aux rez))
(labels((com (I ¢ k)
(cond((= (length 1) k)(push(append 1 c)rez))
((>= (length 1) k)
(cond((= 1 k) (dolist (x 1) (push(cons x c)rez)))

(t(com (cdr 1) (cons(car 1) ¢)(— k 1))(com (cdr 1) c k)))))))
(com Ist nil k))rez)

; (comb 3 (12345))
;((34)5))(452)(55’2)(45’2)(451)(55’1)(45’1)(521)(421)(32
1

Figure 4: The recursive function COMB Modified with the collection of
results.

247



C. Ciubotaru

Using the primitive function time of the Common LISP language,
we can also compare some program runtime indicators. Thus, for
C33, execution time for Rosetta COMB will be: Run time:25.984375
sec and for Rosetta Comb Modified —Run time:10.859375 sec. For
C35, these indicators will be: Run time:261.70313 sec and Run

time:105.4375 sec, respectively.

{1,2,34,5}" nil

C{2 34,51 (1) 0{2 345} - mil
{3 4 5} {3 4 5} {3 4,5} *(2) {3 4 5} - nil

k%l /\ k= cm‘d
EZ;B {4 5)°(31) {4 51" (1) {4 51°(32) {4 51°(2) 345
em ] | H H [

kU1 k=card(M) kEl k=card(M)

(431) (451) (432) (452)

(531) (532)

Cf1’2,374,5} = {(321), (421), (521), (431), (531), (451), (432), (532), (452), (345) }

Figure 5: Schematic illustration of recursive calls for the COMB
modified function, call C3.

248



Mixed Algorithm for Combinations Generation

Some generated combinations will not appear in lexicographic order
(descending in our case), but, we recall, the order of the elements in
combination is irrelevant. If, however, in the modified function we sub-
stitute the call (append 1 c¢) with (append(reverse 1) c), we will
get all combinations in lexicographic order.

In the Figure [6] we present the recursive calls scheme for the mod-
ified version (comb 3 {1,2,3,4,5}). This scheme helps us to better
understand the proposed modified algorithm for combinations genera-
tion.

References

[1] Guy L. Steele, Common Lisp the Language, 2nd edition, Thinking
Machines, Inc. Digital Press, ISBN: 1-55558-041-6, 1990, 1029 p.

[2] http://sourceforge.net/projects/clisp/files/clisp/2.49/
clisp-2.49-win32-mingw-big.exe/download

[3] http://rosettacode.org/wiki/Combinations#Common_Lisp

Constantin Ciubotaru, Received May 24, 2019
Accepted June 20, 2019

Constantin Ciubotaru

Vladimir Andrunachievici Institute of Mathematics and Computer Science
5, Academiei street, Chisinau, Republic of Moldova, MD 2028

Phone: (373 22) 73-80-73

E-mail: chebotar@gmail.com

249


http://sourceforge.net/projects/clisp/files/clisp/2.49/
clisp-2.49-win32-mingw-big.exe/download
http://rosettacode.org/wiki/Combinations#Common_Lisp

	Introduction
	Recursive Algorithm for Combination Generation
	Modified Algorithm for Combination Generation

