
Computer S
ien
e Journal of Moldova, vol.27, no.2(80), 2019

Mixed Algorithm for Combinations

Generation

Constantin Ciubotaru

Abstra
t

Modi�
ations are proposed to the re
ursive algorithm of 
om-

binations generation by redu
ing the number of non-performing

re
ursive 
alls and re
overing this gap through iterative pro
esses.

Keywords: 
ombinations, 
ombinations generation, re
ursive

algorithm, iterative algorithm, Common LISP, Rosetta Code.

1 Introdu
tion

To 
al
ulate the number of all k-
ombinations from a given set of n
elements (0 ≤ k ≤ n) we will use the well known formula

C
k
n =

n!

k!(n− k)!
.

However, not only the number of 
ombinations is often important,

but also generation (enumerating) of all possible 
ombinations, e.g.,

for some optimization problems solution. In this 
ase we will use the

formula below. It 
an easily be dedu
ed:

C
k
n−1 =

(n− 1)!

k!(n− k − 1)!
=

(n− 1)!(n− k)

k(k − 1)!(n− k − 1)!(n− k)
=

n− k

k
C

k−1

n−1.

This equality helps us to demonstrate the following re
urring for-

mula:

C
k
n = C

k−1

n−1 + C
k
n−1. (1)

Really

C
k−1

n−1 +C
k
n−1 = C

k−1

n−1 +
n− k

k
C

k−1

n−1 = (1 +
n− k

k
)Ck−1

n−1 =


©2019 by CSJM; C. Ciubotaru

242



Mixed Algorithm for Combinations Generation

=
n(n− 1)!

k(k − 1)!(n− k)!
=

n!

k!(n− k)!
= C

k
n.

Formula (1) 
an also be trans
ribed in the following way:

Ck
n = Ck−1

n−1 + Ck−1

n−2 + . . .+ Ck−1

k + Ck
k . (2)

Formulas (1) and (2) 
onstitute the basis of re
ursive algorithms

for 
ombinations generation. Of 
ourse, the elegan
e and the way of

implementing the re
ursive algorithms by sta
ks impresses. In some

situations, however, re
ursive 
alls be
ome too expensive. The e�orts

made to organize the re
ursive 
all outweigh the 
al
ulations s
heduled

within the 
all. In su
h situations it is more e�
ient to substitute re
ur-

sion by iteration. The di�
ulty that appears here is to determine the

boundary of separation between re
ursive pro
ess and the iterative one.

Just this is the 
ase of 
ombinations generation. We will propose some

modi�
ations to the re
ursive algorithm by inserting iterative elements.

2 Re
ursive Algorithm for Combination Gener-

ation

Let M be an arbitrary set of n elements, and com � an arbitrary k-

ombination of distin
t elements from M or nil (empty 
ombination,

notation from Common LISP). For example, M={1,2,3}, com = (13),

M= {a, b, c, d}, com=(abd). If we denote Ck
M = {c1, c2, . . . , cm}, then

Ck
M ·com = {c1·com, c2·com, . . . , cm·com}. The 
on
atenation operation

is denoted by "·". For example, C2
{1,2,3} = {(12), (13), (23)}, C2

{1,2,3} ·

(45) = {(1245), (1345), (2345)}, and C2
{1,2,3} · nil = {(12), (13), (23)}.

It should be noted that the order of elements in 
ombination is not

relevant.

Let us denote further M = {1, 2, ..., n} = M1, M2 = {2, 3, ..., n},
M3 = {3, 4, ..., n},..., Mn = {n}. Using these denotations and Formula

(2) we de�ne Ck
M :

C
k
M = C

k−1

M2
· (1) ∪ C

k−1

M3
· (2) ∪ ... ∪ C

k−1

Mn−k+1
· (n− k) ∪ C

k
Mn−k+1

. (3)

243



C. Ciubotaru

Let us make sure that this formula really 
omputes all possible k-

ombinations over the M . First, let us de�ne C0

M = {nil} for any M ,

in
luding M=∅ = {} and Ck
M = {(i1 i2 . . . ik)} forM = {i1, i2, . . . , ik},

k = card(M).

Theorem

The set Ck
M 
ontains all possible Ck

card(M) k-
ombinations of ele-

ments from the set M , 0 ≤ k ≤ card(M).

Proof

Let M = {1, 2, ..., n}. We will prove that the theorem is true for any

Ci
M by indu
tion on i. For i=0, by de�nition, C0

M ={nil}, C0
card(M)=1.

For i = 1 we obtain: C1
M = C0

M2
·(1)∪C0

M3
·(2)∪...∪C0

Mn
·(n−1)∪C1

Mn
=

{nil}·(1)∪{nil}·(2)∪...∪{nil}·(n−1)∪{(n)} = {(1), (2), ..., (n−1), (n)}.
Let's assume that the statement is true for i = 0, 1, ..., k, and we

will prove it for i = k+1. So, Ci
M 
ontains all possible i-
ombinations

of elements from M , in total Ci
card(M) 
ombinations, i = 0, 1, ..., k. We

will show that Ck+1
M 
ontains Ck+1

card(M) distin
t (k+1)-
ombinations of
elements from M . A

ording to the Formula 3

Ck+1
M = Ck

M2
· (1) ∪ Ck

M3
· (2) ∪ ... ∪ Ck

Mn−k
· (n−k−1) ∪ Ck+1

Mn−k
. (4)

Note that:

• card(Mn−k+1) = k+1, so, Ck+1
Mn−k+1

= {(n−k+1n−k ...n−1n)},

Ck+1
k+1 = 1.

• Ck
Mi

· (i − 1) ∩ Ck
Mj

· (j − 1) = ∅ for any i 6= j. The s
heme of

possible layout of the sets Mi, Mj is shown in Figure 1. In the


ase a) (i− 1) /∈ Mj , and in the 
ase b) � (j − 1) /∈ Mi.

• Ck
Mi

· (i− 1) ∩Ck+1
Mn−k+1

= ∅ for all 2 ≤ i ≤ n− k + 1. The 
ase c)
is 
lear from Figure 1.

• card(Ck
Mi

·(i−1)) = card(Ck
Mi

) = Ck
card(Mi)

.

So we get:

card(Ck+1
M ) = Ck

n−1+Ck
n−2+. . .+Ck

k+1+Ck+1
k+1 = Ck+1

card(M). (5)

(Formula 2).

244



Mixed Algorithm for Combinations Generation

To 
omplete the proof, let us mention that all 
ombinations in

Ck
Mi

· (i−1) are distin
t (k+1)-
ombinations. �

Further we will refer to the re
ursive algorithm for 
ombinations

generation written in the Common LISP language [1,2℄ and published on

the portal Rosetta Code

1

[3℄ (Figure 2). The termination 
onditions

•
1
· · · •

i−1
•
i
· · · •

j−1
•
j

· · · •
n

(a) (i−1) /∈ Mj

Mj

Mi

•
1
· · · •

j−1
•
j

· · · •
i−1

•
i
· · · •

n
(b) (j−1) /∈ Mi

Mi

Mj

•
1
· · · •

i−1
•
i
· · · •

n−k+1
· · · •

n
(c) (i−1) /∈Mn−k+1

Mn−k+1

Mi

Figure 1: S
hemati
 pla
ement of Mi, Mj , Mn−k+1

for re
ursive 
alls in Rosetta COMB using the above denotations are:

1) Ck
M · com = C0

M · com (k=0) and 2) Ck
M · com, card(M) < k.

In the �rst 
ase the fun
tion will return the com value, and in the

se
ond 
ase we have a deadlo
k, that is, the respe
tive 
all does not

generate anything. It 
an be noti
ed that for k=0, com will be exa
tly

one possible k-
ombination.

1

Rosetta Code is a wiki-based programming 
hrestomathy website with imple-

mentations of 
ommon algorithms and solutions to various programming problems

in many di�erent programming languages.

245



C. Ciubotaru

Rosetta COMB

(defun 
omb (k lst)

(labels((
omb1 (l 
 k)

(when (>= (length l) k)

(if (zerop k) (return−from 
omb1 (print 
)))

(
omb1 (
dr l) 
 k)

(
omb1 (
dr l) (
ons (�rst l) 
) (− k 1)))))

(
omb1 lst nil k)))

; (
omb 3 '(1 2 3 4 5))

; (5 4 3) (5 4 2) (5 3 2) (4 3 2) (5 4 1) (5 3 1) (4 3 1) (5 2 1) (4 2 1) (3 2 1)

Figure 2: The re
ursive fun
tion Rosetta COMB for 
ombinations

generation.

3 Modi�ed Algorithm for Combination Gener-

ation

We will modify the Rosetta COMB fun
tion (Figure 2) by redu
ing

the number of non-performing re
ursive 
alls and re
overing this gap

through iterative pro
esses. For this purpose we 
hange the termina-

tion 
onditions for re
ursive 
alls. The new 
onditions that ensure the


onvergen
e of the re
ursive pro
ess and de
rease the total number of


alls are:

1) C1
M · com (k = 1) and 2) C

card(M)
M · com (k=card(M)).

In the �rst 
ase all 1-
ombinations of elements fromM 
on
atenated

with com will be generated, in total card(M) 
ombinations, and in the

se
ond 
ase one single k-
ombination will be generated, k = card(M).
Namely these 
onditions generate iterative pro
esses. The fun
tion so

modi�ed is shown in Figure 3.

For C3
5 the modi�ed fun
tion produ
es 11 re
ursive 
alls, and the

initial fun
tion � 69 
alls. For C5
12 these indi
ators are 659 and 2573

respe
tively, and for C13
26 � 10400599 and 40116599, respe
tively. The

246



Mixed Algorithm for Combinations Generation

modi�ed fun
tion re
overs this gap by 
alling (iteratively) the dolist

and append fun
tions.

COMB Modi�ed

(defun 
omb (k lst)

(labels((
om (l 
 k)

(
ond((= (length l) k)(print(append l 
)))

((>= (length l) k)

(
ond((= 1 k) (dolist (x l) (print(
ons x 
))))

(t(
om (
dr l) (
ons(
ar l) 
)(− k 1))(
om (
dr l) 
 k)))))))

(
om lst nil k)))

; (
omb 3 '(1 2 3 4 5))

; (3 2 1) (4 2 1) (5 2 1) (4 3 1) (5 3 1) (4 5 1) (4 3 2) (5 3 2) (4 5 2) (3 4 5)

Figure 3: The re
ursive fun
tion Rosetta COMB Modified for


ombinations generation.

To 
olle
t all 
ombinations, we 
an use an auxiliary parameter, re-

pla
ing the print fun
tions with 
olle
tion fun
tions, for example, push

(Figure 4).

COMB Modi�ed with 
olle
tion

(defun 
omb (k lst &aux rez))

(labels((
om (l 
 k)

(
ond((= (length l) k)(push(append l 
)rez))

((>= (length l) k)

(
ond((= 1 k) (dolist (x l) (push(
ons x 
)rez)))

(t(
om (
dr l) (
ons(
ar l) 
)(− k 1))(
om (
dr l) 
 k)))))))

(
om lst nil k))rez)

; (
omb 3 '(1 2 3 4 5))

;((3 4 5) (4 5 2) (5 3 2) (4 3 2) (4 5 1) (5 3 1) (4 3 1) (5 2 1) (4 2 1) (3 2

1))

Figure 4: The re
ursive fun
tion COMB Modified with the 
olle
tion of

results.

247



C. Ciubotaru

Using the primitive fun
tion time of the Common LISP language,

we 
an also 
ompare some program runtime indi
ators. Thus, for

C13
26 , exe
ution time for Rosetta COMB will be: Run time:25.984375

se
 and for Rosetta Comb Modified � Run time:10.859375 se
. For

C18
30 , these indi
ators will be: Run time:261.70313 se
 and Run

time:105.4375 se
, respe
tively.

C3
{1,2,3,4,5} · nil

C2
{2,3,4,5} ·(1) C3

{2,3,4,5} · nil

C1
{3,4,5} ·(21) C2

{3,4,5} ·(1)

C1
{4,5} ·(31) C2

{4,5} ·(1)

C2
{3,4,5} ·(2) C3

{3,4,5} · nil

C1
{4,5} ·(32) C2

{4,5} ·(2)

k=1

k=1 k=card(M) k=1 k=card(M)

k=card(M)

C3
{1,2,3,4,5} = {(321), (421), (521), (431), (531), (451), (432), (532), (452), (345)}

(321)

(421)

(521)

(431)

(531)

(451)

(432)

(532)

(452)

(345)

Figure 5: S
hemati
 illustration of re
ursive 
alls for the COMB

modified fun
tion, 
all C3
5 .

248



Mixed Algorithm for Combinations Generation

Some generated 
ombinations will not appear in lexi
ographi
 order

(des
ending in our 
ase), but, we re
all, the order of the elements in


ombination is irrelevant. If, however, in the modi�ed fun
tion we sub-

stitute the 
all (append l 
) with (append(reverse l) 
), we will

get all 
ombinations in lexi
ographi
 order.

In the Figure 5 we present the re
ursive 
alls s
heme for the mod-

i�ed version (
omb 3 {1,2,3,4,5}). This s
heme helps us to better

understand the proposed modi�ed algorithm for 
ombinations genera-

tion.

Referen
es

[1℄ Guy L. Steele, Common Lisp the Language, 2nd edition, Thinking

Ma
hines, In
. Digital Press, ISBN: 1-55558-041-6, 1990, 1029 p.

[2℄ http://sour
eforge.net/proje
ts/
lisp/files/
lisp/2.49/


lisp-2.49-win32-mingw-big.exe/download

[3℄ http://rosetta
ode.org/wiki/Combinations#Common_Lisp

Constantin Ciubotaru, Re
eived May 24, 2019

A

epted June 20, 2019

Constantin Ciubotaru

Vladimir Andruna
hievi
i Institute of Mathemati
s and Computer S
ien
e

5, A
ademiei street, Chisinau, Republi
 of Moldova, MD 2028

Phone: (373 22) 73-80-73

E�mail: 
hebotar�gmail.
om

249

http://sourceforge.net/projects/clisp/files/clisp/2.49/
clisp-2.49-win32-mingw-big.exe/download
http://rosettacode.org/wiki/Combinations#Common_Lisp

	Introduction
	Recursive Algorithm for Combination Generation
	Modified Algorithm for Combination Generation

