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Abstract

A signed Italian dominating function on a graph G = (V,E)
is a function f : V → {−1, 1, 2} satisfying the condition that for
every vertex u, f [u] ≥ 1. The weight of signed Italian dominat-
ing function is the value f(V ) =

∑

u∈V
f(u). The signed Italian

domination number of a graph G, denoted by γsI(G), is the min-
imum weight of a signed Italian dominating function on a graph
G. In this paper, we determine the signed Italian domination
number of some classes of graphs. We also present several lower
bounds on the signed Italian domination number of a graph. In
particular, for a graph G without isolated vertex we show that
γsI(G) ≥ 3n−4m

2
and characterize all graphs attaining equality in

this bound. We show that if G is a graph of order n ≥ 2, then
γsI(G) ≥ 3

√

n

2
− n and this bound is sharp.

Keywords: Domination, Signed Italian Dominating Func-
tion, Signed Italian Domination Number.
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1 Introduction

Throughout this paper we consider (non trivial) simple graphs, that
are finite and undirected graphs without loops or multiple edges.

Let G = (V,E) be a graph of order n and size m. For every vertex
v ∈ V , the open neighborhood of v is defined by NG(v) = {u ∈ V | uv ∈
E(G)}. Also the closed neighborhood of v is defined byNG[v] = NG(v)∪
{v}. For a subset S ⊂ V we denoted the number of neighbors of a
vertex v ∈ S by dS(v). In particular, d(v) = degG(v) = |N(v)|. The
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minimum and maximum degree among the vertices of G are denoted
by δ and ∆, respectively.

A graph G is k-colorable if there exists the function f : V (G) →
{1, 2, . . . , k} such that f(u) 6= f(v) for any edge uv ∈ E(G).
The minimum positive integer k for which G is k-colorable is the
Chromatic number of G and is denoted by χ(G).

A set S ⊂ V in a graph G is called a dominating set if every vertex
of G is either in S or adjacent to a vertex of S. The domination number

γ(G) equals the minimum cardinality of a dominating set on G.

For a subset T ⊂ Z, the weight of function f : V → T is denoted
by w(f) and defined by w(f) =

∑

v∈V f(v). For S ⊂ V , we set f(S) =
∑

v∈S f(v).

A signed dominating function (SDF) on a graph G = (V,E) is a
function f : V → {−1, 1} such that f(N [v]) ≥ 1 for every vertex v ∈ V .

The signed domination number, denoted by γs(G), is the minimum
weight of a SDF on G; that is, γs(G) = min{w(f) | f is a SDF on G}.

Recently, Ahangar et al. [1] defined a signed Roman dominating

function (SRDF) on a graph G = (V,E) as a function f : V →
{−1, 1, 2} such that f(N [v]) ≥ 1 for every vertex v ∈ V (G) and every
vertex u with f(u) = −1 is adjacent to a vertex v with f(v) = 2. The
signed domination number, denoted by γsR(G), is the minimum weight
of a SRDF on G; that is, γs(G) = min{w(f) | f is a SRDF on G}.

Mustapha Chellali et al. (2016) [4] defined an Italian dominating

function (IDF) on a graph G = (V,E) to be a function f : V →
{0, 1, 2} with the property that for every vertex v ∈ V (G) with
f(v) = 0, f(N [v]) ≥ 2. The Italian domination number denoted
by γI(G), is the minimum weight of a IDF on graph G; that is,
γI(G) = min{w(f) | f is a IDF on G}. For further results on Italian
domination see [7] and [6].

A signed Italian dominating function (SIDF) on a graph G = (V,E)
is a function f : V → {−1, 1, 2} with the property that for every
vertex v ∈ V , f(N [v]) ≥ 1. Thus a signed Italian dominating function
combines the properties of both an Italian dominating function and
a signed dominating function. The signed Italian domination number,
denoted by γsI(G), is the minimum weight of a SIDF on G; that is,
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γsI(G) = min{w(f) | f is a SIDF on G}. A SIDF of weight γsI(G)
is called a γsI(G)-function. For a vertex v ∈ V , we denote f(N [v])
by f [v] for notational convenience. For a SIDF f on G, let Vi = {v ∈
V (G) | f(v) = i} for i = −1, 1, 2. Since this partition determines f , we
can equivalently write f = (V−1, V1, V2).

Firstly note that if f = (V−1, V1, V2) is a SIDF on a graph G of
order n, then

(i) |V−1|+ |V1|+ |V2| = n,

(ii) w(f) = |V1|+ 2|V2| − |V−1|,

(iii) V1 ∪ V2 is a dominating set of G.

A function f : V (G) → {−1, 1, 2, 3} is a signed double Roman

dominating function (SDRDF) on graph G if (i) every vertex v with
f(v) = −1 is adjacent to at least two vertices assigned a 2 or
to at least one vertex w with f(w) = 3, (ii) every vertex v with
f(v) = 1 is adjacent to at least one vertex w with f(w) ≥ 2 and
(iii) f [v] =

∑

u∈N [v] f(u) ≥ 1 holds for any vertex v. The signed dou-

ble Roman domination number γsdR(G) is the minimum weight of a
SIDF on G. The signed double Roman domination was introduced by
Ahangar et al. [2]

A cycle on n vertices is denoted by Cn, while a path on n vertices is
denoted by Pn. We denoted byKn the complete graph on n vertices and
Kn,m the complete bipartite graph with one partite set of cardinality n

and the other of cardinality m. A star is a complete bipartite graph of
the form Sn = K1,n−1. A double star with respectively p and q leaves
attached at each support vertex is denoted by DSp,q. The distance

dG(u, v) between two vertices u and v in a connected graph G is the
length of a shortest u−v path in G. The diameter of a graph G, denoted
by diam(G), is the greatest distance between two vertices of G. The
corona product of two graphs G1 and G2, denoted by G = G1 ⊙G2, is
a graph obtained by taking one copy of G1 and |V (G1)| copies of G2

and joining the ith-vertex of G1 with all the vertices of the ith-copy of
G2.

In this paper, we present various bounds on the signed Italian dom-
ination number of graph. In addition, we determine the signed Italian
domination number for special classes of graphs including complete
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graphs, cycles, paths and complete bipartite graphs.

2 Special Classes Of Graphs

In this section we determine the signed Italian domination number for
complete graphs, cycles, paths and complete bipartite graphs.

Lemma 1. Let G be a graph of order n such that γ(G) = 1. Then

γsI(G) ≥ 1.

Proof. Let v be a vertex of G with deg(v) = n − 1 and f be a γsI -
function of G. Hence γsI(G) = w(f) = f [v] ≥ 1.

Proposition 1. For n ≥ 1, γsI(Kn) = 1.

Proof. Let f be a γsI-function on Kn. Since γ(Kn) = 1, hence
γsI(Kn) ≥ 1 by Lemma 1.

Now define the functions f : V (Kn) → {−1, 1, 2} as following:
If n is even, then let f(v1) = 2, f(vi) = −1 for 2 ≤ i ≤ n+2

2 and
f(vi) = 1 for n+4

2 ≤ i ≤ n. If n is odd, then let f(vi) = 1 for 1 ≤
i ≤ n+1

2 and f(vi) = −1 for n+3
2 ≤ i ≤ n. It is clear that in any case

we have defined a SIDF on Kn of weight 1. Hence γsI(Kn) ≤ 1 and
consequently, γsI(Kn) = 1.

Proposition 2. For n ≥ 3,

γsI(Pn) =

{

⌈n3 ⌉+ 1 if n ≡ 0 or 2 (mod 3),
⌈n3 ⌉ if n ≡ 1 (mod 3).

Proof. Let Pn = v1v2 . . . vn. Define the function f : V (Pn) → {−1, 1, 2}
as follows:
If n ≡ 0(mod 3), then let f(v3i+1) = −1 for 0 ≤ i ≤ (n−3)

3 , f(v2) = 2,

f(v3i) = 1 for 1 ≤ i ≤ n
3 and f(v3i+2) = 1 for 1 ≤ i ≤ (n−3)

3 . If n ≡

1(mod 3), then let f(v3i) = −1 for 0 ≤ i ≤ (n−1)
3 , f(v1) = f(vn−2) = 2,

f(v3i+2) = 1 for 0 ≤ i ≤ (n−7)
3 and f(v3i+1) = 1 for 1 ≤ i ≤ (n−4)

3 . If

n ≡ 2(mod 3), then let f(v3i+1) = −1 for 0 ≤ i ≤ (n−5)
3 , f(vn) = −1,
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f(v2) = f(vn−1) = 2, f(v3i) = 1 for 1 ≤ i
(n−2)

3 and f(v3i+2) = 1 for

1 ≤ i ≤ (n−5)
3 . Clearly, f is a SIDF of Pn and thus γsI(Pn) ≤ ⌈n3 ⌉ if

n ≡ 1 (mod 3) and γsI(Pn) ≤ ⌈n3 ⌉+ 1 when n 6≡ 1 (mod 3).
To prove the inverse inequality, let f be a γsI-function on Pn. First,

assume that n ≡ 0(mod 3). If f(v1) + f(v2) ≥ 2, then f(v1) ≥ 1 and
we have

γsI(Pn) = f(v1) +

(n−3)
3

∑

i=0

f [v3i+3] ≥ 1 +
n

3
.

Hence we assume that f(v1) + f(v2) = 1. Then we must have f(v1) =
−1, f(v2) = 2 and to Italian dominate v2, we must have f(v3) ≥ 1,
and so f [v2] ≥ 2. Therefore

γsI(Pn) = f [v2] +

(n−3)
3

∑

i=1

f [v3i+2] ≥ 2 +
(n− 3)

3
= 1 +

n

3
.

By the same argument, the result is obtained in cases n ≡ 1, 2 (mod 3).

Proposition 3. For n ≥ 3,

γsI(Cn) =







⌈n3 ⌉ = t if n = 3t,
⌈n3 ⌉ = t+ 1 if n = 3t+ 1,

⌈ (n+4)
3 ⌉ = t+ 2 if n = 3t+ 2.

Proof. Let Cn = v1v2...vnv1 and let f be a γsI -function on Cn.
Assume first that n = 3t with an integer t ≥ 1. We deduce from

the fact f(v3i−2) + f(v3i−1) + f(v3i) ≥ 1 for 1 ≤ i ≤ t that

γsI(Cn) = γsI(C3t) =

t
∑

i=1

f(v3i−2) + f(v3i−1) + f(v3i) ≥ t.

Now define the function f : V (C3t) → {−1, 1, 2} by f(v3i−1) = −1
and f(v3i−2) = f(v3i) = 1 for 1 ≤ i ≤ t. Then f [vj] ≥ 1 for each
0 ≤ j ≤ 3t − 1 and therefore f is a SIDF on C3t of weight t. Thus
γsI(C3t) ≤ w(f) = t. Consequently, γsI(C3t) = t = ⌈n3 ⌉.
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Assume next that n = 3t + 1 with an integer t ≥ 1. If f(vi) ≥ 1
for all 1 ≤ i ≤ n, then γsI(Cn) ≥ n > ⌈n3 ⌉. Hence assume now that
f(v1) = −1. By definition v1 must have a neighbor with label 2 or two
neighbors with label 1. Let v1 have a neighbor with label 2, say v3t+1.
Since f [v1] ≥ 1, then we must have f(v2) ≥ 1. It follows that

γsI(Cn) = γsI(C3t+1) =
t

∑

i=1

f [v3i−1] + f(v3t+1) ≥ t+ 2 > t+ 1.

Let v1 have two neighbors with label 1, i.e f(v3t+1) = f(v2) = 1. Since
f [v3t+1] ≥ 1 and f [v2] ≥ 1, we must have f(v3t) ≥ 1 and f(v3) ≥ 1. It
follows that

γsI(Cn) = γsI(C3t+1) = f [v2] +
t−1
∑

i=1

f [v3i+2] + f(v3t+1) ≥ t+ 1.

On the other hand define f : V (C3t+1) → {−1, 1, 2} by f(v3i−1) =
−1, f(v3i) = f(v3i−2) = 1 for 1 ≤ i ≤ t and f(v3t+1) = 1. Then
f [vj ] ≥ 1 for each 1 ≤ j ≤ 3t + 1 and therefore f is a SIDF on C3t+1

of weight t + 1. Thus γsI(C3t+1) ≤ w(f) = t + 1. Consequently,
γsI(C3t+1) = ⌈n3 ⌉ = t+ 1.

Finally, assume that n = 3t + 2 with an integer t ≥ 1. The result
holds if f(v) ≥ 1 for all v ∈ V (C3t+2). Thus without loss of generality,
assume that f(v1) = −1. By definition v1 must have a neighbor with
label 2 or two neighbors with label 1. Let v1 have a neighbor with label
2, say v2. Since f [v2] ≥ 1 and f [v3t+2] ≥ 1, we must have f(v3) ≥ 1. It
follows that

γsI(C3t+2) =

3
∑

i=1

f(vi)+

t−1
∑

i=1

f [v3i+2]+f [v3t+2] ≥ 2+(t−1)+1 = t+2.

Let v1 have two neighbors with label 1, i.e f(v3t+2) = f(v2) = 1. Since
f [v3t+2] ≥ 1 and f [v2] ≥ 1, we must have f(v3t+1) ≥ 1 and f(v3) ≥ 1.
It follows that

γsI(C3t+2) = f [v2] +

t−1
∑

i=1

f [v3i+2] + f(v3t+1) + f(v3t+2) ≥

≥ 1 + (t− 1) + 2 = t− 2. (1)
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Now define the function f : V (C3t+2) → {−1, 1, 2} by f(v3i) = −1,
f(v3i−1) = f(v3i−2) = 1 for each 1 ≤ i ≤ t and f(v3t+1) = f(v3t+2) = 1.
Then f [vj ] ≥ 1 for each 1 ≤ j ≤ 3t + 2 and therefore f is a SIDF on
C3t+2 of weight t+ 2. Thus γsI(C3t+2) ≤ w(f) = t+ 2.

Thus the proof is complete.

Proposition 4. For n ≥ 2,

γsI(K1,n−1) =

{

1 if n is even,

2 if n is odd.

Proposition 5. For 2 ≤ m ≤ n,

γsI(Km,n) =







2 if m = 2 and n ≥ 2,
3 if m = 3 and n ≥ 3,
4 if n,m ≥ 4.

Proof. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be the bi-
partite sets of Km,n.

First assume that m = 2. For n = 2, 3 the result is obvious. Assume
that n ≥ 4. Let f be a γsI -function on K2,n. If f(x1) = −1, then
f(yi) > 0 for any yi ∈ Y . In addition f(x2) > 0. Hence w(f) =
f [x1] + f(x2) ≥ 2. Now assume that f(x1), f(x2) > 0. If f(x1) = 2,
then

∑n
i=1 f(yi) ≥ −1 and hence w(f) = f [x1] + f(x2) ≥ 2. If f(x1) =

f(x2) = 1, then
∑n

i=1 f(yi) ≥ 0, and so w(f) = f [x1] + f(x2) ≥ 2.
Since we have discussed all possible cases, we obtain γsI(K2,n) ≥ 2.

To prove γsI(K2,n) ≤ 2, define the function f : V (K2,n) →
{−1, 1, 2} by f(x1) = f(x2) = 1 and f(yi) = (−1)i for 1 ≤ i ≤ n when
n is even, and by f(x1) = f(x2) = 1, f(y1) = 2, f(y2) = f(y3) = −1
and f(yi) = (−1)i+1 for 4 ≤ i ≤ n when n is odd. It is clear that
f is a SIDF on K2,n of weight 2, and so γsI(K2,n) ≤ 2. Therefore
γsI(K2,n) = 2.

Now assume that m = 3. Let f be a γsI -function on K3,n. If for
any xi ∈ X, f(xi) > 0, then we have w(f) =

∑m−1
i=1 f(xi) + f [xm] ≥

(m−1)+1 ≥ 3. Hence we assume that there are xi ∈ X and yi ∈ Y such
that f(xi) = f(yi) = −1. It follows from f [xi] ≥ 1 and f [yi] ≥ 1 that
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∑m
i=1 f(xi) ≥ 2 and

∑n
i=1 f(yi) ≥ 2. Therefore w(f) =

∑m
i=1 f(xi) +

∑n
i=1 f(yi) ≥ 4. In any case, γsI(K3,n) ≥ 3.

To prove γsI(K3,n) ≤ 3, define the function f : V (K3,n) →
{−1, 1, 2} as follows:
If n = 3, then let f(x1) = f(x2) = f(x3) = 1, f(y1) = 2 and
f(y2) = f(y3) = −1. If n > 3 is odd, then f(x1) = f(x2) = f(x3) = 1,
f(y1) = 2, f(y2) = f(y3) = −1 and f(yi) = (−1)i+1 for 4 ≤ i ≤ n. If
n > 3 is even, then f(x1) = f(x2) = f(x3) = 1 and f(yi) = (−1)i for
1 ≤ i ≤ n. It is clear that f is a SIDF on K3,n of weight 3, and so
γsI(K3,n) ≤ 3. Therefore γsI(K3,n) = 3.

Finally, assume that m ≥ 4. Let f be a γsI -function on Km,n. If for
any xi ∈ X, f(xi) > 0 (the case f(yi) > 0, for any yi ∈ Y is similar),
then we have w(f) =

∑m−1
i=1 f(xi)+f [xm] ≥ (m−1)+1 ≥ 4. Hence we

assume that there are xi ∈ X and yi ∈ Y such that f(xi) = f(yi) = −1.
It follows from f [xi] ≥ 1 and f [yi] ≥ 1 that

∑m
i=1 f(xi) ≥ 2 and

∑n
i=1 f(yi) ≥ 2. Therefore w(f) =

∑m
i=1 f(xi) +

∑n
i=1 f(yi) ≥ 4. In

any case, γsI(Km,n) ≥ 4 when m ≥ 4.

To prove the inverse inequality, define the function f : V (Km,n) →
{−1, 1, 2} as follows:
If n = m and n is even, then let f(xi) = f(yi) = 1 for 1 ≤ i ≤ n

2 + 1
and f(xi) = f(yi) = −1 for n

2 + 2 ≤ i ≤ n. If n = m and n is odd,
then let f(x1) = f(y1) = 2, f(xi) = f(yi) = 1 for 2 ≤ i ≤ n−1

2 + 1
and f(xi) = f(yi) = −1 for n−1

2 + 2 ≤ i ≤ n. If m 6= n and m,n are
odd, then let f(x1) = f(y1) = 2, f(xi) = (−1)i+1 for 2 ≤ i ≤ m and
f(yi) = (−1)i+1 for 2 ≤ i ≤ n. If m 6= n and m,n are even, then let
f(x1) = f(x2) = 2, f(y1) = f(y2) = 2, f(x3) = f(x4) = −1, f(y3) =
f(y4) = −1, f(xi) = (−1)i+1 for 5 ≤ i ≤ m and f(yi) = (−1)i+1 for
5 ≤ i ≤ n. If m 6= n, m is even and n is odd (the case when m is
odd and n is even is similar), then let f(x1) = f(x2) = f(y1) = 2,
f(yi) = (−1)i+1, f(x3) = f(x4) = −1 and f(xi) = (−1)i+1 for 5 ≤
i ≤ n. It is clear that in any case we have defined a SIDF of weight
4, and thus γsI(Km,n) ≤ 4. Therefore γsI(Km,n) = 4 and the proof is
complete.
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3 Preliminary Results And Some Bounds

In this section we present basic properties of the signed Italian dom-
inating functions, the signed Italian domination numbers and bounds
on the signed Italian domination number.

In Proposition 6 we show that some bounds for SIDF are based on
∆ and δ.

Proposition 6. Let f = (V−1, V1, V2) be a SIDF on a graph G of order

n, then

(i) (2∆ + 1)|V2|+∆|V1| ≥ (δ + 2)|V−1|,
(ii) (2∆ + δ + 3)|V2|+ (∆ + δ + 2)|V1| ≥ (δ + 2)n,
(iii) (∆ + δ + 2)w(f) ≥ (δ −∆+ 2)n+ (δ −∆)|V2|,

(iv) w(f) ≥ (δ−2∆+1)n
(2∆+δ+3) + |V2|.

In addition all inequalities are sharp.

Proof. (i) We have that

n =|V−1|+ |V1|+ |V2| ≤
∑

v∈V

f [v] =
∑

v∈V

(d(v) + 1)f(v)

=
∑

v∈V2

2(d(v) + 1) +
∑

v∈V1

(d(v) + 1)−
∑

v∈V−1

(d(v) + 1)

≤2(∆ + 1)|V2|+ (∆ + 1)|V1| − (δ + 1)|V−1|.

and the desired result follows.
(ii) This follows immediately from Part (i) by substituting |V−1| =
n− |V1| − |V2|.
(iii) Since w(f) = |V1| + 2|V2| − |V−1| and |V−1| + |V1| + |V2| = n, we
have that

(∆ + δ + 2)w(f) = (∆ + δ + 2)(2(|V1|+ |V2|)− n+ |V2|)

≥ 2(δ + 2)n− 2(∆ + 1)|V2|+ (∆ + δ + 2)(|V2| − n)

= (δ −∆+ 2)n + (δ −∆)|V2|.

(iv) From the proof of Part (i) we have

n ≤ 2(∆ + 1)|V1 ∪ V2| − (δ + 1)|V−1|

= (2∆ + δ + 3)|V1 ∪ V2| − (δ + 1)n,
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and so

|V1 ∪ V2| ≥
n(δ + 2)

(2∆ + δ + 3)
.

Therefore

w(f) = 2|V1 ∪ V2| − n+ |V2| ≥
(δ − 2∆ + 1)n

(2∆ + δ + 3)
+ |V2|.

If G = Kn or G = C3t, where t ≥ 1, then Parts (i), (ii) and (iii) are
sharp and also if G = nK2, where n ≥ 1, then Part (iv) is sharp.

As an immediate consequence of Proposition 6, we obtain a lower
bound on the signed Italian domination number of graphs.

Corollary 1. If G is a graph of order n such that δ < ∆, then

γsI(G) ≥

(

−2∆2 + 2∆δ +∆+ 2δ + 3

(∆ + 1)(2∆ + δ + 3)

)

n.

Proof. Multiplying both sides of the inequality in Proposition 6 (iv),
by ∆−δ and adding the resulting inequality to the inequality in Propo-
sition 6 (iii), we yield the desired result.

Proposition 7. For r ≥ 1, if G is an r-regular graph of order n, then

γsI(G) ≥
n

(r + 1)
.

Proof. Let f = (V−1, V1, V2) be a SIDF on G. We have that

n ≤
∑

v∈V

f [v] = (r + 1)
∑

v∈V

f(v) = (r + 1)w(f).

Hence γsI(G) ≥ n
(r+1) .

If G = (Kn), then γsI(Kn) = 1 and the equality holds.

Theorem 1. If G is a graph of order n such that δ ≥ 1, then

γsI(G) ≥ 2 + ∆− n.

213



A. Karamzadeh, H. R. Maimani, A. Zaeembashi

Proof. Let u ∈ V (G) be a vertex of degree ∆ and let f be a γsI(G)-
function. Then the definitions imply that

γsI(G) =
∑

x∈V (G)

f(x) =
∑

x∈N [u]

f(x) +
∑

x∈V (G)−N [u]

f(x)

≥ 1 +
∑

x∈V (G)−N [u]

f(x) ≥ 1− (n− (∆ + 1))

= 2 +∆− n.

Note that the inequality of Theorem 1, is sharp for G = Kn.

In the following result we present a relation between Chromatic
number and signed Italian domination.

Corollary 2. Let G be a connected graph. If G is not an odd cycle

or a complete graph, then γsI(G) ≥ 2 + χ(G) − n, otherwise γsI(G) ≥
1 + χ(G)− n.

Proof. Since G is a connected graph, then by Brooks’ Theorem [3]
χ(G) ≤ ∆(G) if G is not an odd cycle or a complete graph. Now
by applying Theorem 3.4, we conclude that γsI(G) ≥ 2 + χ(G) − n,
otherwise γsI(G) ≥ 1 + χ(G)− n.

A set S ⊂ V (G) is a 2-packing of the graph G if N [u] ∩ N [v] = ∅
for any two distinct vertices u, v ∈ S. The 2-packing number ρ(G) of
G is defined by

ρ(G) = max{|S| : S is a 2− packing of G}.

Clearly, for all graphs G, ρ(G) ≤ γ(G).

Theorem 2. Let G be a graph of order n such that δ ≥ 1. Then

γsI(G) ≥ ρ(G)(2 + δ) − n.
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Proof. Let {v1, v2, . . . , vρ(G)} be a 2-packing of G and let f be a γsI -

function on G. If we define the set A = ∪
ρ(G)
i=1 N [vi], then since

{v1, v2, . . . , vρ(G)} is a 2-packing, we have that

|A| =

ρ(G)
∑

i=1

(d(vi) + 1) ≥ ρ(G)(δ(G) + 1).

Now we have

γsI(G) =
∑

x∈V (G)

f(x) =

ρ(G)
∑

i=1

f [vi] +
∑

x∈V (G)−A

f(x)

≥ ρ(G) − (n − |A|) ≥ ρ(G)− n+ ρ(G)(δ(G) + 1)

= ρ(G)(2 + δ) − n.

Example 1. Now we show that the bound in Theorem 2, is sharp. Let

F be an arbitrary graph of order t ≥ 1. Let G be a graph of order st,

where s ≥ 2 is obtained as follows:

For every vertex v ∈ V (F ) add a vertex-disjoint copy of a complete

graph Ks and identify the vertex v with one vertex of added complete

graph. Let G1, G2, . . . , Gt be the added copies of Ks and let vi be the

vertex of Gi for 1 ≤ i ≤ t that is identified with a vertex of F . Let

fi : V (Gi) → {−1, 1, 2} be the SIDF on the complete graph Gi
∼= Ks

defined as in Proposition 1. We note that the function fi assigns to

at least one vertex of Gi the value 2 or 1 respectively when |Gi| is

even or |Gi| is odd. We choose vi be one such vertex of Gi, and so

if |Gi| is even, then f(vi) = 2, otherwise f(vi) = 1. As shown in

Proposition 1, we have w(fi) = 1. Now we define the function f :
V (G) → {−1, 1, 2} by f(v) = fi(v) for each vertex v ∈ V (Gi). If

v = vi for 1 ≤ i ≤ t, then f [v] ≥ fi[v] with strict inequality if the

vertex corresponding to vi is not isolated in F . If v 6= vi for 1 ≤ i ≤ t,

then f [v] = fi[v]. Therefore the function f = ∪t
i=1fi is a SIDF on G,

and so γsI(G) ≤ w(f) =
∑t

i=1 fi = t. On the other hand, by Theorem

2, and noting that here δ(G) = s − 1, ρ(G) = t and n(G) = st we
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have γsI(G) ≥ ρ(G)(2 + δ(G)) − n(G) = t. Consequently, γsI(G) =
ρ(G)(2 + δ(G)) − n(G) = t.

Corollary 3. Let G be a graph of order n such that δ ≥ 1. Then

γsI(G) ≥

(

1 + ⌊
diam(G)

3
⌋

)

(2 + δ)− n.

Proof. We assume that diam(G) = 3t + r is such that t ≥ 0 and
0 ≤ r ≤ 2. Let x0x1 . . . xn be a diametral path and define the set
A = {x0, x3, . . . , x3t}. Then A is a 2-packing set of G such that |A| =

1 + ⌊diam(G)
3 ⌋. Since ρ(G) ≥ |A|, by Theorem 2, we have

γsI(G) ≥ ρ(G)(2 + δ)− n ≥

(

1 + ⌊
diam(G)

3
⌋

)

(2 + δ)− n.

Now in the following we find bounds for signed Italian domination
for cubic graph.

Theorem 3. Let G be a connected cubic graph of order n. Then

n

4
≤ γsI(G) ≤

3n

4
.

Proof. The lower bound follows from Proposition 7. Now we prove the
theorem for the upper bound. Let G be the Petersen graph. Consider
the labeling of the Petersen graph in Figure 1. Then f is a SIDF on
G of weight w(f) = 5 = 4n

8 which implies that γsI(G) ≤ n
2 < 3n

4 . Now
assume that G is not a Petersen graph. Since every signed dominating
function is a signed Italian dominating function, then by Theorem 2 [5]
the proof is complete.

Example 2. To see that the lower bound presented in Theorem 3 is

sharp, consider a cycle C3t : v1v2 . . . v3tv1, where t ≥ 1, add t new

vertices x1, x2, . . . , xt and join xi to the v3i−2, v3i−1, v3i for 1 ≤ i ≤ t.

Let G denote the resulting cubic graph of order n = 4t. Define the
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Figure 1. A labeling of the Petersen graph

function f : V (G) → {−1, 1, 2} by f(xi) = 1 for 1 ≤ i ≤ t, f(v3i−2) =
f(v3i) = −1 for 1 ≤ i ≤ t and f(v3i−1) = 2 for 1 ≤ i ≤ t. Then f is a

SIDF on G of weight t, and so γsI(G) ≤ t. By Proposition 7, we have

that γsI(G) ≥ t. Consequently, γsI(G) = t = n
4 .

Remark 1. If f is a signed Italian dominating function on G and

u ∈ V (G), then there exists a signed Italian dominating function g on

G, with g(u) > 0 and w(g) − w(f) ≤ 2.

Lemma 2. Let G be a graph of order n. If uv ∈ E(G), then

γsI(G \ uv)− 4 ≤ γsI(G) ≤ γsI(G \ uv) + 2.

Proof. For the upper bound we assume that f is a γsI-function on
(G \ uv). It follows from Remark 1, that there exists a signed Italian
dominating function g on (G\uv), with g(u) > 0 and w(g)−w(f) ≤ 2.
Now we define the function h : V (G) → {−1, 1, 2} such that h(x) =
g(x) for each x ∈ V (G).

Now assume that f is a γsI -function on G. For the lower bound
we define the function g : V (G \ uv) → {−1, 1, 2} and consider the
following cases:

Case 1. Assume that f(u) = −1 and f(v) = 2 such that f [u] = 1 and
f [v] ≥ 1. If there is no vertex with value -1 under f such x ∈ N [v]
where x 6= u and f [x] = 1, then g(u) = 1, g(v) = 1 and g(y) = f(y) for
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any y ∈ V (G\uv). Thus g is a SIDF on (G\uv), and so γsI(G\uv) ≤
w(g) ≤ γsI(G) + 1, which implies that γsI(G \ uv)− 1 ≤ γsI(G).

Case 2. Assume that f(u) = f(v) = 1. If f [u], f [v] ≥ 2, then g = f .
If f [u] ≥ 1 and f [v] ≥ 2, then g(u) = 2 and g(x) = f(x) for any
x ∈ V (G \ uv), where x 6= u. If f [u], f [v] ≥ 1, then g(u) = g(v) = 2
and g(x) = f(x) for any x ∈ V (G \ uv), where x 6= u, v. Thus g is
a SIDF on (G \ uv), and so γsI(G \ uv) ≤ w(g) ≤ γsI(G) + 2, which
implies that γsI(G \ uv)− 2 ≤ γsI(G).

Case 3. Assume that f(u) = 1 and f(v) = 2. If f [u] = 2 and f [v] = 1,
then g(u) = 2, g(x) = 1, where x ∈ N [v] assigned a -1 under f and
g(y) = f(y) for any y ∈ V (G \ uv), where y 6= u, x. Thus g is a SIDF
on (G \ uv), and so γsI(G \ uv) ≤ w(g) ≤ γsI(G) + 3, which implies
that γsI(G \ uv)− 3 ≤ γsI(G).

Case 4. Assume that f(u) = f(v) = 2. If f [u] = f [v] = 1 or f [u] =
f [v] = 2, then g(x) = g(y) = 1, where x ∈ N [u], y ∈ N [v] assigned a
-1 under f respectively and g(z) = f(z) for any z ∈ V (G \ uv), where
z 6= x, y. Thus g is a SIDF on (G \ uv), and so γsI(G \ uv) ≤ w(g) ≤
γsI(G) + 4, which implies that γsI(G \ uv)− 4 ≤ γsI(G).

Remark 2. We present several examples of graphs that satisfy the

bounds in Lemma 2. Notice that the edge uv is denoted by −−−−.

Figure 2. γsI(G) = γsI(G \ uv) Figure 3. γsI(G) = γsI(G \ uv)− 1

Proposition 8. For every graph G of order n, 2γ(G)− n ≤ γsI(G) ≤
γsR(G).
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Figure 4. γsI(G) = γsI(G \ uv)− 2
Figure 5. γsI(G) = γsI(G \ uv)− 3

Figure 6. γsI(G) = γsI(G \ uv)− 4

Figure 7. γsI(G) = γsI(G \ uv) + 1 Figure 8. γsI(G) = γsI(G \ uv) + 2

Proof. Every signed Roman dominating function is a signed Italian
dominating function, so the upper bound holds. For the lower bound,
assume that f is a γsI-function of G. Since V1 ∪ V2 is a dominating set
for G, then

γsI(G) = w(f) = |V1|+ 2|V2| − |V−1| = 2|V1|+ 3|V2| − n

≥ 2|V1 ∪ V2| − n ≥ 2γ(G) − n.

Proposition 9. For each graph G of order n, γI(G)−γsI(G)+γ(G) ≤
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n.

Proof. Let f = (V−1, V1, V2) be a γsI-function on G. We have γsI(G) =
w(f) = |V1| + 2|V2| − |V−1| and γ(G) ≤ |V12| since V12 dominates G.
Define the function g : V (G) → {0, 1, 2} as g(v) = 0 for any v ∈ V−1

and g(v) = f(v) for any v ∈ V \ V−1. It is straightforward to check
that g is a IDF on G and hence

γI(G) ≤ |V1|+ 2|V2| = γsI(G) + |V−1|.

This implies that

γI(G) ≤ γsI(G) + (n− |V12|) ≤ γsI(G) + n− γ(G).

Proposition 10. For any graph G, γsdR(G) ≤ 2γsI(G) + n− γ(G).

Proof. Let f = (V f
−1, V

f
1 , V

f
2 ) be an arbitrary γsI -function on G. Then

the function g = (V f
−1, ∅, V

f
1 , V

f
2 ) is a SDRDF for G. Hence

γsdR(G) ≤ 3|V f
2 |+ 2|V f

1 | − |V f
−1| ≤ 4|V f

2 |+ 2|V f
1 | − 2|V f

−1|+ V
f
−1

= 2γsI(G) + |V f
−1| ≤ 2γsI(G) + n− γ(G).

Now we present two sharp bounds on the signed Italian domination
number graphs. We introduce some notation for convenience. Let
V

′

−1 = {v ∈ V−1 | N(v) ∩ V2 6= ∅} and V
′′

−1 = V−1 − V
′

−1. For disjoint
subsets U and W of vertices, let [U,W ] denote the set of edges between
U and W . Also let V12 = V1 ∪ V2, |V12| = n12, |V1| = n1 and |V2| = n2.
Then n12 = n1 + n2. In addition set n−1 = |V−1|, and so n−1 =
n − n12. Let G12 = G[V12] be the subgraph induced by the set V12,
and G12 have size m12. For i = 1, 2, if Vi 6= ∅, then Gi = G[Vi]
be the subgraph induced by the set Vi, and Gi have size mi. Hence
m12 = m1 +m2 + |[V1, V2]|.

For k ≥ 1, let Lk be a graph obtained from a graph H of order k

by adding 2dH(v) + 1 pendant edges to each vertex v of H. Note that
L1 = K2. Let H = {Lk | k ≥ 1}.

220



On the signed Italian domination of graphs

Theorem 4. Let G be a graph of order n and size m without isolated

vertex. Then γsI(G) ≥ 3n−4m
2 , with equality holds if and only if G ∈ H.

Proof. The proof is by induction on n. The result is obvious for n =
2, 3. Suppose that n ≥ 4 and assume that the statement is true for
all graphs of order less than n having no isolated vertices. Let G be
a graph of order n with no isolated vertex and let f = (V−1, V1, V2)
be a γsI -function. If V−1 = ∅, then γsI(G) ≥ n > 3n−4m

2 , since G has
no isolated vertex. Suppose that V−1 6= ∅. We consider the following
cases:

Case 1. V2 6= ∅.
Now, we consider the following subcases:

Subcase 1. V1 6= ∅.
By the definition of a SIDF, each vertex in V−1 is adjacent to at least
one vertex in V2 or at least two vertices in V1, and so

|[V−1, V12]| = |[V−1, V2]|+ |[V−1, V1]| ≥ |V
′

−1|+ 2|V
′′

−1| ≥ |V−1| = n−1.

Furthermore we have

2n−1 ≤ 2|[V−1, V2]|+ |[V−1, V1]| = 2
∑

v∈V2

dV−1(v) +
∑

v∈V1

dV−1(v).

For each vertex v ∈ V2, we have

1 ≤ f [v] = f(v) + 2dV2(v) + dV1(v)− dV−1(v), (*)

and so dV−1(v) ≤ 2dV2(v) + dV1(v) + f(v) − 1 = 2dV2(v) + dV1(v) + 1.
Similarly for each vertex v ∈ V1, we have that dV−1(v) ≤ 2dV2(v) +
dV1(v). Hence

2n−1 ≤ 2
∑

v∈V2

(2dV2(v) + dV1(v) + 1) +
∑

v∈V1

(2dV2(v) + dV1(v))

= (8m2 + 2|[V1, V2]|+ 2n2) + (2|[V1, V2]|+ 2m1)

= 8m2 + 2m1 + 4|[V1, V2]|+ 2n2.
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Since m12 = m1 +m2 + |[V1, V2]|, we have

2n−1 ≤ 8m12 − 8m1 − 8|[V1, V2]|+ 2m1 + 4|[V1, V2]|+ 2n2

= 8m12 − 6m1 − 4|[V1, V2]|+ 2n2.

Therefore

m12 ≥
1

8
(2n−1 + 6m1 + 4|[V1, V2]| − 2n2).

We have m ≥ m12 + |[V−1, V12]|. Then

m ≥
1

8
(2n−1 + 6m1 + 4|[V1, V2]| − 2n2) + n−1

=
1

8
(10n−1 + 6m1 + 4|[V1, V2]|+ 2(n1 − n12))

=
1

8
(10n − 10n12 − 2n12 + 2n1 + 6m1 + 4|[V1, V2]|)

=
1

8
(10n − 12n12 + 2n1 + 6m1 + 4|[V1, V2]|)

or equivalently,

n12 ≥
1

12
(10n − 8m+ 2n1 + 6m1 + 4|[V1, V2]|).

In addition

γsI(G) = 2n2 + n1 − n−1 = 3n2 + 2n1 − n = 3n12 − n− n1

≥
1

4
(10n − 8m+ 2n1 + 6m1 + 4|[V1, V2]|)− n− n1 (1)

=
1

4
(6n− 8m) +

1

4
(6m1 + 4|[V1, V2]| − 2n1).

If (3m1 + 2|[V1, V2]| − n1) ≥ 0, then the result is obtained. Suppose
that φ(n1) = 1

2(3m1 + 2|[V1, V2]| − n1). If n1 = 0, then φ(n1) = 0,
and we are done. Hence we may suppose that n1 ≥ 1. Let v ∈ V1.
If dV12(v) = 0, then f [v] ≤ 0, since by assumption the graph G has
not isolated vertex. But this is a contradiction, and we conclude that
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dV12(v) > 0. Therefore

φ(n1) =
1

2
(3m1 + 2|[V1, V2]| − n1)

=
3

4

∑

v∈V1

dV1(v) +
∑

v∈V1

dV2(v)−
n1

2

≥
3

4

(

∑

v∈V1

dV12(v)

)

−
n1

2
≥

3n1

4
−

n1

2
=

n1

4
> 0. (2)

And so γsI(G) > 3n−4m
2 .

Subcase 2. V1 = ∅.
Since V−1 6= ∅, we conclude that V2 6= ∅. By definition of a SIDF, each
vertex in V−1 is adjacent to at least one vertex in V2, and so

|[V−1, V2]| ≥ |V−1| = n−1.

Therefore we have

n−1 ≤ |[V−1, V2]| =
∑

v∈V2

dV−1(v).

For each vertex v ∈ V2, we have f(v) + 2dV2(v) − dV−1(v) = f [v] ≥ 1,
and so dV−1(v) ≤ 2dV2(v) + 1. It follows that

n−1 ≤
∑

v∈V2

dV−1(v) ≤
∑

v∈V2

(2dV2(v) + 1) = 4m2 + n2

which implies that

m2 ≥
1

4
(n−1 − n2).

Hence

m ≥ m2 + |[V−1, V2]| ≥
1

4
(n−1 − n2) + n−1

=
1

4
(5n−1 − n2) =

1

4
(5n − 5n2 − n2) =

1

4
(5n − 6n2),
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and so

n2 ≥
1

6
(5n − 4m).

Now we have

γsI(G) = 2n2 − n−1 = 3n2 − n

≥
1

2
(5n − 4m)− n =

1

2
(3n− 4m). (3)

Therefore γsI(G) ≥ 3n−4m
2 .

Case 2. V2 = ∅.
Since V−1 6= ∅, we conclude that V1 6= ∅. By definition of a SIDF, each
vertex in V−1 is adjacent to at least two vertices in V1, and so

|[V−1, V1]| ≥ 2|V−1| = 2n−1.

Therefore we have

2n−1 ≤ |[V−1, V1]| =
∑

v∈V1

dV−1(v).

For each vertex v ∈ V1, we have f(v) + dV1(v) − dV−1(v) = f [v] ≥ 1,
and so dV−1(v) ≤ dV1(v). It follows that

2n−1 ≤
∑

v∈V1

dV−1(v) ≤
∑

v∈V1

dV1(v) = 2m1.

We have m ≥ m1 + |[V−1, V1]|+m−1, then

m ≥ m1 + |[V−1, V1]| ≥ n−1 + 2n−1

= 3n−1 = 3n− 3n1,

and so

n1 ≥
1

3
(3n −m).

Now we have

γsI(G) = n1 − n−1 = 2n1 − n

≥
1

3
(6n − 2m)− n =

1

3
(3n− 2m). (4)
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Therefore γsI(G) ≥ 1
3(3n − 2m) implies that γsI(G) ≥ 1

3(3n − 2m) >
1
2 (3n− 4m), which completes the proof of the lower bound.

Now if γsI(G) = 3n−4m
2 , then all the inequalities (1), (2), (3) and (4)

must be equalities. Hence n1 = 0 and n2 = n12, and so V12 = V2 and
V = V−1∪V2. Furthermore m = m2+ |[V−1, V2]|+m−1, m2 =

(n−1−n2)
4

and n−1 = |[V−1, V2]|. This implies that for each vertex v ∈ V−1 we
have dV−1(v) = 0 and dV2(v) = 1, and hence every vertex of V−1 is a
leaf in G. Also for every vertex v ∈ V2 we have dV−1(v) = 2dV2(v) + 1.
Therefore G ∈ H.

On the other hand, suppose that G ∈ H. Then G = Lk for some
k ≥ 1. Thus G is obtained from a graph H of order k by adding
2dH(v) + 1 pendant edges to each vertex v of H. Let G have order n
and size m. Then

n =
∑

v∈V (H)

(2dH (v) + 2) = 4m(H) + 2n(H)

and
m = m(H) +

∑

v∈V (H)

(2dH (v) + 1) = 5m(H) + n(H).

Assigning to every vertex of H the weight 2 and to each vertex in
V (G)�V (H) the weight -1 produces a SIDF f of weight w(f) =
2n(H)− (4m(H) +n(H)) = n(H)− 4m(H) = 3n−4m

2 . Hence γsI(G) ≤
w(f) = 3n−4m

2 . Consequently, γsI(G) = 3n−4m
2 .

Theorem 5. Let G be a graph of order n ≥ 2. Then

γsI(G) ≥ 3

√

n

2
− n.

Proof. Let f = (V−1, V1, V2) be a γsI -function on G. If V−1 = ∅, then
γsI(G) ≥ n ≥ 3

√

n
2 − n for n ≥ 2. Hence suppose that |V−1| ≥ 1. We

consider the following cases:

Case 1. V2 6= ∅.
Since each vertex of V

′

−1 is adjacent to at least one vertex in V2. Hence
by the Pigeonhole Principle, we conclude that at least one vertex v of
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V2 is adjacent to at least
n
′

−1

n2
vertices of V

′

−1. It follows that 1 ≤ f [v] ≤

2n2 + n1 −
n
′

−1

n2
and thus

0 ≤ 2n2
2 + n1n2 − n

′

−1 − n2. (1)

Likewise, since each vertex in V
′′

−1 is adjacent to at least two vertices
in V1, we deduce that at least one vertex u of V1 is adjacent to at least
2n

′′

−1

n1
vertices of V

′′

−1. As above we have 1 ≤ f [u] ≤ 2n2 + n1 −
2n

′′

−1

n1
,

and thus

0 ≤ 2n2n1 + n2
1 − 2n

′′

−1 − n1. (2)

Now by multiplying the inequality (1) by 2 and summing it with the
inequality (2) we obtain

0 ≤ 4n2
2 + 2n1n2 − 2n

′

−1 − 2n2 + 2n1n2 + n2
1 − 2n

′′

−1 − n1.

Since n = n2 + n1 + n−1, we have

0 ≤ 4n2
2 + 4n1n2 − 2n + n2

1 + n1.

Equivalently

0 ≤ 9n2
2 + 9n1n2 −

9

2
n+

9

4
n2
1 +

9

4
n1

≤ 9n2
2 + 12n1n2 + 4n2

1 −
9

2
n

= (3n2 + 2n1)
2 −

9

2
n

which implies that 3
√

n
2 ≤ (3n2 + 2n1). Therefore

γsI(G) = 2n2 + n1 − n−1

= 3n2 + 2n1 − n

≥ 3

√

n

2
− n.
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Case 2. V2 = ∅.
Since V−1 6= ∅, we conclude that V1 6= ∅. As in Case 1, at least
one vertex u of V1 is adjacent to at least 2n−1

n1
vertices of V−1. Then

1 ≤ f [u] ≤ n1 −
2n−1

n1
which implies that

0 ≤ n2
1 − n1 − 2n−1.

Since n = n1 + n−1, we have

0 ≤ n2
1 + n1 − 2n.

We have 7
9n

2
1 − n1 ≥ 0, since n1 ≥ 2. Therefore

16

9
n2
1 − 2n = (n2

1 + n1 − 2n) + (
7

9
n2
1 − n1) ≥ 0,

Equivalently

0 ≤
16

9
n2
1 − 2n,

which implies that 3
√

n
8 ≤ n1. Therefore

γsI(G) = n1 − n−1

= 2n1 − n

≥ 3

√

n

2
− n.

The following example demonstrates that the lower bound in The-
orem 5, is sharp.

Example 3. Let k ≥ 1 be an integer and Fk be the graph obtained from

the corona product of two graphs Kk+1 and K2k+1. Assigning to the all

vertices of Kk+1 the weight 2 and to the remaining vertices the weight

-1, produces a SIDF of weight 2(k+1)−(k+1)(2k+1) = (k+1)(1−2k)
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on Fk. Since n(Fk) = (k + 1)(2k + 2), Theorem 5 implies that

γsI(Fk) ≥ 3

√

n(Fk)

2
− n(Fk)

= 3

√

(k + 1)(2k + 2)

2
− (k + 1)(2k + 2)

= 3(k + 1)− (k + 1)(2k + 2) = (k + 1)(1 − 2k).

Therefore γsI(Fk) = 3

√

n(Fk)
2 − n(Fk) = (k + 1)(1 − 2k).

References

[1] H. Abdollahzadeh Ahangar, Michael A. Henning, Christian
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