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Abstract

Let G = (V,E) be a simple graph with n vertices, m edges,
and vertex degrees d1, d2, ..., dn. Let d1, dn be the maximum and
and minimum degree of vertices. In this paper, we present lower
and upper bounds for

∑

n

i=1
d2
i
and

∑

n

i=1
d3
i
and relations between

them. Also, we improve the bounds given in (2) and (3).
Keywords: Degree sequence of graph, Maximum degree,

Minimum degree.
MSC 2010: 68R10, 68Q25, 05C35, 05C05.

1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V =
V (G) = {v1, v2, . . . . , vn} and edge set E(G), | E(G) |= m. The order
and size of G are n = |V | and m = |E|, respectively. For a vertex
vi ∈ V , the degree of vi, denoted by deg(vi) (or just di), is the number
of edges incident to v. We denote by ∆(G) = d1, the maximum degree
among the vertices of G, and by δ(G) = dn, the minimum degree among
the vertices of G. Let mi be the average degree of the vertices adjacent
to vertex vi in G. A graph G is regular of degree r if all the vertices
of G have the same degree r. A complete graph is a graph in which
every two distinct vertices are joined by exactly one edge. A walk
from a vertex u to a vertex v is a finite alternating sequence v0(=
u)e1v1e2 . . . vk−1ekvk(= v) of vertices and edges such that ei = vi−1vi
for i = 1, 2, . . . , k. The number k is the length of the walk. In particular,
if the vertexes vi, i = 0, 1, ..., k in the walk are all distinct, then the walk
is called a path. A path of order n is denoted by Pn. A closed path or
cycle, is obtained from a path v1, . . . , vk (where k > 3) by adding the
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edge v1vk. A cycle of order n is denoted by Cn. A graph is unicyclic
if it contains precisely one cycle. A graph is connected if each pair of
vertices in a graph is joined by a walk. For other graph theory notation
and terminology we refer to [21].

The adjacency matrix A(G) of a graph G is defined by its entries as
aij = 1 if vivj ∈ E(G) and 0 otherwise. Let λ1 > λ2 > · · · > λn−1 > λn

denote the eigenvalues of A(G). Then λ1 is called the spectral radius
of G.

The degree sequence of a graph G is denoted by d1, d2, ..., dn and
assumed to be labelled in a non-increasing manner:

d1 > d2 > ... > dn.

We denote by d1 the highest and dn the lowest degree of vertices of G.
The inverse degree first attracted attention through conjectures of

the computer program Graffti [13]. This vertex-degree-based graph
invariant is defined as follows:

ID = ID(G) =
n
∑

vi∈V

1

di
. (1)

The first Zagreb indices of a graph G are defined as M1(G) =
∑

u∈V d2u. For further study on the Zagreb indices and their properties,
we refer to [23]. We recall two upper bounds for

∑n
i=1

d2i :
In [8], [17], [18]: Let G be a connected graph with n vertices, m

edges. Then

M1(G) 6
2m2

n
+

(

d1

dn
+

dn

d1

)

2m2

n
. (2)

In [17], [18]: Let G be a connected graph with n vertices and m

edges. If δ = 1, then

M1(G) 6
nm2

n− 1
. (3)

Since then, numerous other bounds for degree sequence of a graph
were found (see, [2], [7], [9], [10], [20]).
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The organization of the paper is as follows. In Section 2, we give
a list of some previously known results. In Section 3, we present our
upper and lower bounds for the

∑n
i=1

d2i of a graph G and improve
the bounds given in (2) and (3). In Section 4, we present our bounds
for the

∑n
i=1

d3i of a graph G. In Section 5, we investigate relations
between

∑n
i=1

d2i and
∑n

i=1
d3i .

2 Preliminaries and known results

In this section, we list some previously known results that will be
needed in the next sections. We recall some known bounds for
d21 + ...+ d2n. The Cauchy-Schwarz inequality yields a lower bound

4m2

n
=

1

n
(d1 + ...+ dn)

2
6 d21 + ...+ d2n.

It is known by D. de Caen [10] that d21 + ...+ d2n 6 m
(

2m
n−1

+ n− 2
)

.

In 2004, K. Das [7] obtained equivalent conditions to be

d21 + ...+ d2n = mmax{dj +mj|vj ∈ V }.

In 2004, K. C. Das [7] obtained an upper bound of the sum of squares
of degrees of a graph, which is less then equal to Caen’s upper bound
as follows;

1. d21 + ...+ d2n 6 mmax{dj +mj|vj ∈ V },

2. mmax{dj +mj |vj ∈ V } 6
2m

n− 1
+ n− 2.

We begin with the following lemma for the connected graphs.

Lemma 1. (Collatz and Sinogowitz [5]). If G is a connected graph
with n vertices, then

λ1(G) 6
√
n− 1.
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Lemma 2. [14] If G is a connected unicyclic graph, then

λ1(G) 6 λ1(S
3
n),

where S3
n denotes the graph obtained by joining any two vertices of

degree one of the star K1,n−1 by an edge.

Lemma 3. (Hong [15]). If G is a connected graph, then

λ1(G) 6
√
2m− n+ 1.

Lemma 4. (Berman and Zhang [3]). If G is a connected graph, then

λ1(G) 6 max{
√

didj : 1 6 i, j 6 n, vivj ∈ E}.

Lemma 5. (Favaron et al. [12]). For any graph without isolated ver-
tices,

λ1(G) 6 max{mi : vi ∈ V }.

Lemma 6. (Favaron et al. [12]) For any simple graph

λ1(G) >
√

d1.

Lemma 7. [6] For a connected non-regular graph G with diameter D

λ1(G) < d1 −
1

nD
.

Lemma 8. [22] For a connected non-regular graph G with diameter
D

λ1(G) < d1 −
(√

d1 −
√
dn
)2

nDd1
.

3 Lower and upper bounds for
∑n

i=1 d
2
i

In this section, we obtain some new upper and lower bounds for
∑n

i=1
d2i

in terms of graph invariants such as the number of vertices, the number
of edges, the highest and the lowest degree of vertices.

The following lemma is a well-known result called the handshaking
lemma.
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Lemma 9. (The Handshaking Lemma) Let G be a graph with n ver-
tices, m edges and the degree sequence of d1, d2, ..., dn. Then

d1 + ...+ dn = 2m.

We begin with the following upper bound in terms of vertices, edges,
the highest and the lowest degree of vertices.

Theorem 1. Let G be a connected graph with n vertices and m edges,
then

n
∑

i=1

d2i 6
m2

n

(

√

d1

dn
+

√

dn

d1

)2

, (4)

equality holds if and only if G is a regular graph.

Proof. Let ai be positive numbers for i = 1, 2, ..., n, such that there
exist positive numbers A, a satisfying:

0 < a ≤ ai ≤ A. (5)

Then the following inequality is valid (see [19] p. 71–72):

n
∑n

i=1
a2i

(
∑n

i=1
ai)

2
≤ 1

4

(

√

A

a
+

√

a

A

)2

. (6)

The inequality becomes an equality if and only if a = A.
For ai := di, i = 1, 2, ..., n, inequality (6) becomes

n
∑n

i=1
d2i

(
∑n

i=1
di)

2
≤ 1

4

(

√

d1

dn
+

√

dn

d1

)2

.

By Lemma 9, we have,
∑n

i=1
di = 2m, from the above inequality it

follows directly the assertion of Theorem 1, i.e. inequality (4).
Let us consider the case when G is a regular graph of degree r. Since

m = 1

2
nr and di = r, we know that d21 + ... + d2n = nr2. Therefore, for

a regular graph of degree r we have,

m2

n

(

√

d1

dn
+

√

dn

d1

)2

=
4m2

n
.
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Thus we have d21 + ...+ d2n = 4m2

n
.

Now, suppose that the equality holds in (4). Then the equality
holds in (6). From the equality in (6), we get d1 = dn and by (5), we
have d1 = d2 = ... = dn, then G is a regular graph.

Note that since

m2

n

(

√

d1

dn
+

√

dn

d1

)2

6
2m2

n
+

(

d1

dn
+

dn

d1

)

2m2

n
.

The bound of Theorem 1 is another improvement of the bound given
in (2 ) for connected graphs.

Theorem 2. Let G be a connected graph with n > 4 vertices, then

n
∑

i=1

d2i 6
4m2

n− 1
+ d2n. (7)

Proof. Let ai be real numbers, for i = 1, 2, ..., n. Then the following
inequality is valid (see [4]):

√

(n− 1)(a2
1
+ a2

2
+ ...+ a2n−1

) 6 a1 + a2 + ...+ an. (8)

For ai := di, inequality (8) becomes

√

(n− 1)(d2
1
+ d2

2
+ ...+ d2n−1

) 6 d1 + d2 + ...+ dn
√

√

√

√(n− 1)(
n−1
∑

i=1

d2i − dn) 6
n
∑

i=1

di

n
∑

i=1

d2i 6
4m2

n− 1
+ d2n.
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Note that for n > 4 we have:

4m2

n− 1
+ d2n 6

nm2

n− 1
.

The bound of Theorem 2 is another improvement of the bound given
in (3 ) for connected graphs.

Remark 1. Let G be a regular graph with n vertices and m edges, then

m2

n

(

√

d1

dn
+

√

dn

d1

)2

=
4m2

n
6

4m2

n− 1
+ d2n.

Therefore, the bound of Theorem 1 is another improvement of the bound
in Theorem 2 for regular graphs.

Theorem 3. Let G be a connected graph with n vertices and m edges,
then

n
∑

i=1

d2i 6 2md1, (9)

equality holds if and only if G is a regular graph.

Proof. Let ai, bi are decreasing non-negative sequences with a1, b1 6= 0
for i = 1, 2, ..., n. Then the following inequality is valid (see [1]):

n
∑

i=1

a2i

n
∑

i=1

b2i 6 max

{

b1

n
∑

i=1

ai, a1

n
∑

i=1

bi

}

n
∑

i=1

aibi. (10)

Equality holds in (10) if and only if a1 = a2 = ... = an, and b1 = b2 =
... = bn.

For ai, bi := di and wi := 1, i = 1, 2, ..., n, inequality (10) becomes

n
∑

i=1

d2i

n
∑

i=1

d2i 6 max

{

d1

n
∑

i=1

di, d1

n
∑

i=1

di

}

n
∑

i=1

d2i . (11)

By Lemma 9 and the equality
∑n

i=1
1 = n, it follows directly the

assertion of Theorem 3, i.e. inequality (9).
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If G is a regular graph of degree r, then we know that d21+ ...+d2n =
nr2 and d1 = d2 = ... = dn = r. Hence

2md1 = 2(
1

2
nr)d1 = nr2.

Thus we have d21 + ...+ d2n = 2md1.

Now, suppose that the equality holds in (9). Then the equality
holds in (10). From the equality in (10), we get d1 = d2 = ... = dn = d,
then G is a regular graph.

The Theorem 4 is a Consequence of Theorem 3, by Lemmas 1 and
6.

Theorem 4. Let G be a connected graph with n vertices and m edges,
then

n
∑

i=1

d2i 6 2m(n − 1).

Similarly to the theorem above and by lemma 2, we can obtain
upper bound for the unicyclic graphs as follows.

Lemma 10. Let G be a connected unicyclic graph with n vertices, then

n
∑

i=1

d2i 6 2m
(

λ1(S
3
n)
)2

.

Also, by lemmas 7 and 8, we can obtain two upper bounds for the
non-regular graphs.

Lemma 11. Let G be a connected non-regular graph with diameter D,
then

1)

n
∑

i=1

d2i < 2m

(

d1 −
1

nD

)2

,

2)
n
∑

i=1

d2i < 2m

(

d1 −
(√

d1 −
√
dn
)2

nDd1

)2

.
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Now, by lemma 5, we obtain upper bound for the graphs without
isolated vertices.

Lemma 12. Let G be a graph without isolated vertices, then

n
∑

i=1

d2i 6 2m (max{mi : vi ∈ V })2 .

Again, by lemmas 3 and 4, we obtain two upper bounds for the
connected graphs.

Lemma 13. Let G be a connected graph with n vertices, then

1)

n
∑

i=1

d2i 6 2m(2m− n+ 1),

2)
n
∑

i=1

d2i 6 2m
(

max{
√

didj : 1 6 i, j 6 n, vivj ∈ E}
)2

.

Theorem 5. Let G be a connected graph with n vertices and m edges,
then

n
∑

i=1

d2i > 4m− n. (12)

Proof. Let ai, bi, ci and ei be real numbers and pi, qi be nonnegative
numbers for i = 1, 2, ..., n. Then the following inequality is valid (see
[11] p. 7)

n
∑

i=1

pia
2
i

n
∑

i=1

qib
2
i +

n
∑

i=1

pic
2
i

n
∑

i=1

qie
2
i > 2

n
∑

i=1

piaici

n
∑

i=1

qibiei. (13)

For ai := di and bi = ci = ei := 1, i = 1, 2, ..., n, inequality (13)
becomes

n
∑

i=1

d2i

n
∑

i=1

1 +

n
∑

i=1

1

n
∑

i=1

1 > 2

n
∑

i=1

di

n
∑

i=1

1.

By Lemma 9 and the equality
∑n

i=1
1 = n, it follows directly the

assertion of Theorem 5, i.e. inequality (12).
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4 Lower bounds for
∑n

i=1 d
3
i

In this section, we obtain some new lower bounds for
∑n

i=1
d3i in terms

of graph invariants such as the number of vertices, the number of edges.

Theorem 6. Let G be a connected graph with n vertices and m edges,
then

n
∑

i=1

d3i > 6m− 2n. (14)

Proof. Let ai, bi, ci and ei be nonnegative numbers for i = 1, 2, ..., n.
Then the following inequality is valid (see [11] p. 7):

1

2

[

n
∑

i=1

a3i ci

n
∑

i=1

b3i ei +
n
∑

i=1

aic
3
i

n
∑

i=1

bie
3
i

]

>

n
∑

i=1

a2i c
2
i

n
∑

i=1

b2i e
2
i . (15)

For ai := di and bi = ci = ei := 1, i = 1, 2, ..., n, inequality (15)
becomes

1

2

[

n
∑

i=1

d3i

n
∑

i=1

1 +

n
∑

i=1

di

n
∑

i=1

1

]

>

n
∑

i=1

d2i

n
∑

i=1

1. (16)

By Lemma 9 and the equality
∑n

i=1
1 = n, also from the Inequality

(16), we have

n

n
∑

i=1

d3i + 2mn >

n
∑

i=1

d2in.

Now by Theorem 5, the proof is completed.

Theorem 7. Let G be a connected graph with n vertices and m edges,
then

n
∑

i=1

d3i >
8m2 − 2mn

n
. (17)
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Proof. Let ai and bi be sequences of nonnegative real numbers and
α, β > 1 with 1

α
+ 1

β
= 1. Then the following inequality is valid (see [11]

p. 11):

1

α

n
∑

i=1

bi

n
∑

i=1

aα+1

i +
1

β

n
∑

i=1

ai

n
∑

i=1

b
β+1

i >

n
∑

i=1

a2i

n
∑

i=1

b2i . (18)

For ai := di, bi := 1 and α, β := 2 for i = 1, 2, ..., n, inequality (18)
becomes

1

2

n
∑

i=1

1

n
∑

i=1

d3i +
1

2

n
∑

i=1

di

n
∑

i=1

1 >

n
∑

i=1

d2i

n
∑

i=1

1. (19)

By Lemma 9 and the equality
∑n

i=1
1 = n, it follows directly the

assertion of Theorem 7, i.e. inequality (17).

Theorem 8. Let G be a connected graph with n vertices and m edges,
then

n
∑

i=1

d3i >
8m3

n2
, (20)

equality holds if and only if G is a regular graph.

Proof. Let ai, bi and ci be positive real numbers, i = 1, 2, ..., n. Then
the following inequality is valid (see [16] p.137):

(

n
∑

i=1

aibici

)3

6

[

n
∑

i=1

a3i

][

n
∑

i=1

b3i

][

n
∑

i=1

c3i

]

, (21)

where equality holds if and only if ai = bi = ci, i = 1, 2, ..., n.
For ai := di and bi = ci := 1, i = 1, 2, ..., n, inequality (20) becomes

(

n
∑

i=1

di

)3

6

[

n
∑

i=1

d3i

][

n
∑

i=1

1

] [

n
∑

i=1

1

]

.

By Lemma 9 and the equality
∑n

i=1
1 = n, it follows directly the

assertion of Theorem 8, i.e. inequality (20).
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If G is a regular graph of degree r, then we know that d31+ ...+d3n =
nr3. Moreover, for a regular graph of degree r we have , d1 = d2 =
... = dn = r. Hence

8m3

n2
=

8(1
2
nr)3

n2
= nr3.

Thus we have d31 + ...+ d3n = 8m3

n2 .

Now, suppose that the equality holds in (20). Then the equality
holds in (21). From the equality in (21), we get d1 = d2 = ... = dn = d,
then G is a regular graph.

Theorem 9. Let G be a connected graph with n vertices and m edges,
then

n
∑

i=1

d3i >
8mn− 2n2 − 4m2

ID(G)
. (22)

Proof. Let ai and bi be real numbers, i = 1, 2, ..., n. Then the following
inequality is valid (see [11] p.8):

n
∑

i=1

a3i
bi

n
∑

i=1

b3i
ai

−
(

n
∑

i=1

aibi

)2

> 2





n
∑

i=1

a2i

n
∑

i=1

b2i −
(

n
∑

i=1

aibi

)2


 . (23)

For ai := di and bi := 1, i = 1, 2, ..., n, inequality (23) becomes

n
∑

i=1

d3i

n
∑

i=1

1

di
−
(

n
∑

i=1

ai

)2

> 2





n
∑

i=1

d2i

n
∑

i=1

1−
(

n
∑

i=1

di

)2


 . (24)

By Lemma 9, the equality
∑n

i=1
1 = n, from Equality (1) and

Theorem 5 it follows directly the assertion of Theorem 9, i.e. inequality
(22).

199



A. Jahanbani

5 Bounds for
∑n

i=1 d
3
i involving

∑n
i=1 d

2
i

In this section, we investigate the relations between
∑n

i=1
d3i and

∑n
i=1

d2i .

Theorem 10. Let G be a connected graph with m edges, then

n
∑

i=1

d3i > 2

n
∑

i=1

d2i − 2m. (25)

Proof. Let ai, bi, ci and ei be nonnegative numbers, i = 1, 2, ..., n. Then
the following inequality is valid (see [11] p.7):

n
∑

i=1

a3i ci

n
∑

i=1

b3i ei +
n
∑

i=1

c3i ai

n
∑

i=1

e3i bi > 2
n
∑

i=1

a2i c
2
i

n
∑

i=1

b2i e
2
i . (26)

For ai := di and bi = ci = ei := 1, i = 1, 2, ..., n, inequality (26)
becomes

n
∑

i=1

d3i

n
∑

i=1

1 +

n
∑

i=1

di

n
∑

i=1

1 >

n
∑

i=1

d2i

n
∑

i=1

1. (27)

By Lemma 9 and the equality
∑n

i=1
1 = n, it follows directly the

assertion of Theorem 10, i.e. inequality (25).

Theorem 11. Let G be a connected graph with m edges, then

n
∑

i=1

d3i >

(
∑n

i=1
d2i
)2

2m
− 2m. (28)

Proof. Let ai, bi, ci and ei be real numbers, i = 1, 2, ..., n. Then the
following inequality is valid (see [11] p.7):

n
∑

i=1

a2i biei

n
∑

i=1

b2i aici +
n
∑

i=1

c2i biei

n
∑

i=1

e2i aici >

(

n
∑

i=1

aibiciei

)2

. (29)
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For ai = ei := di and bi = ci := 1, i = 1, 2, ..., n, inequality (29)
becomes

n
∑

i=1

d3i

n
∑

i=1

di +

n
∑

i=1

di

n
∑

i=1

di >

(

n
∑

i=1

d2i

)2

. (30)

By Lemma 9 and the equality
∑n

i=1
1 = n, it follows directly the

assertion of Theorem 11, i.e. inequality (28).

Theorem 12. Let G be a connected graph with m edges, then

n
∑

i=1

d3i >
2n
∑n

i=1
d2i

ID(G)
− 4m2

ID(G)
. (31)

Proof. Let ai, bi, ci and ei be real numbers, i = 1, 2, ..., n. Then the
following inequality is valid (see [11] p.8):

n
∑

i=1

a3i
ci

n
∑

i=1

b3i
ei

+

n
∑

i=1

aici

n
∑

i=1

biei > 2

n
∑

i=1

a2i

n
∑

i=1

a2i . (32)

For ai = ei := di and bi = ci := 1, i = 1, 2, ..., n, inequality (32)
becomes

n
∑

i=1

d3i

n
∑

i=1

1

di
+

n
∑

i=1

di

n
∑

i=1

di > 2

n
∑

i=1

d2i

n
∑

i=1

1. (33)

By Lemma 9, the equality
∑n

i=1
1 = n and from Equality (1) it

follows directly the assertion of Theorem 12, i.e. inequality (31).
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