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Abstract

Partial quasiary predicates are used in programming for rep-
resenting program semantics and in logic for formalizing predi-
cates over partial variable assignments. Such predicates do not
have fixed arity therefore they may be treated as mappings over
partial data. Obtained logics are not expressive enough to con-
struct sound axiomatic systems of Floyd–Hoare type. To increase
expressibility of such logics, oriented on quasiary predicates, we
extend their language with the complement operation (composi-
tion). In the paper we define one of such logics called first-order
logic of partial quasiary predicates with the complement com-
position. For this logic a special consequence relation called ir-
refutability consequence relation under undefinedness conditions
is introduced. We study its properties, construct a sequent calcu-
lus for it and prove soundness and completeness of this calculus.

Keywords: partial predicate, quasiary predicate, program
logic, predicate logic, soundness and completeness.

1 Introduction

Extensive usage of formal methods in Computer Science, Artificial In-
telligence, and Software Engineering [1] leads to new logics that al-
low more adequate investigation of applied domains. Logic of partial
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quasiary predicates is one of such logics oriented on software verifica-
tion. The class of partial quasiary predicates also appears in a natural
way in other domains, in particular, in logic where it can be used for
formalization of predicates defined over partial variable assignments.
Algebras of such predicates serve as semantic base of logics of applied
domains. An important question concerns expressibility of logic lan-
guages. It often happens that a chosen language is not expressive
enough for effective usage. This question also concerns logics of partial
quasiary predicates.

In our previous works [2]–[4] we studied logics with traditional com-
positions of disjunction, negation, renomination, and existential quan-
tification. Application of such logics to software verification, in partic-
ular, to Floyd-Hoare program logic [5],[6], demonstrated that the logics
are not expressive enough to construct a sound axiomatic system. This
problem appeared due to necessity of introducing partial pre- and post-
conditions into Floyd-Hoare logic. Initially, this logic treats pre- and
postconditions as total predicates, but being extended on class of par-
tial predicates the logic becomes unsound [7]. There are different meth-
ods to solve this problem, in particular, a sound axiomatic system can
be constructed for the logic language extended with the complement
composition (discussion of the topic is presented in [8]–[10]). Intro-
duction of this composition permits to modify rules of Floyd–Hoare
logic in such a way that they become sound, but a negative side of
this proposal is that the logic becomes more complicated. In this case,
undefinedness conditions for predicates should be taken into account.

In [11]–[13] we constructed sound and complete sequent calculi for
logics of propositional and renominative (quantifier-free) levels. Here
we generalize the obtained results for the first-order logic of partial
quasiary predicates extended with the complement composition. We
additionally study semantic properties of quantifier elimination, of vari-
able assignment composition (predicate), of a ternary consequence re-
lation with undefinedness conditions. We define a sequent calculus for
this logic and prove its soundness and completeness.

This paper is a refined and extended version of [14]. In particular,
new simpler system of sequent forms and simpler sequent closeness
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conditions are defined and investigated.

Obtained results can be applied for software verification.

We use the following notations: S
p

−→ S′ (S
t

−→ S′) is the class of
partial (total) mappings from S to S′; p(d)↓ (p(d)↑) means that p is
defined (undefined) on d. The terms and notations, not defined here,
are treated in the sense of [3], [4].

2 First-order Logic of Partial Quasiary Predi-
cates with the Complement Composition

We treat a logic L as a tuple (A, F r,I, |=,⊢) [2], where

– A is a class of algebras of some signature ΣA;

– Fr is a language (based on the algebra signature ΣA);

– I is a class of interpretations;

– |= is a consequence relation;

– ⊢ is an inference relation based on some calculus.

Here we define only pure (without functions) logic LQEC . This logic
is the next step of our construction of series of first-order logics of par-
tial quasiary predicates. Earlier, we started with a basic logic LQ with
compositions of disjunction ∨, negation ¬, renomination Rv̄

x̄, and exis-
tential quantification ∃x [2]–[4]. This logic was not expressive enough
to prove its completeness, therefore a logic LQE was constructed as an
extension of LQ with the null-ary parametric composition (predicate)
Ez of variable assignment [3]. (Also, variable unassignment predicate
εz can be used.) But again, logic LQE was not expressive enough to
construct sound program logics of Floyd–Hoare type, therefore LQE is
extended to a new logic LQEC by adding the composition of predicate
complement ∼ (discussion on the topic is presented in [9], [10]).

2.1 Predicate Algebras with the Complement Composi-
tion

Let V and A be sets of variables (names) and values respectively. The
class of nominative sets (partial assignments, partial data) is defined
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as the class of all partial mappings from V to A, thus, VA = V
p

−→ A.

The main operation for nominative sets is a total unary parametric

renomination rv1,..,vnx1,...,xn
: VA

t
−→ VA, where v1, ..., vn, x1, ..., xn are vari-

ables, and v1, ..., vn are distinct [2]–[4]. Intuitively, given a nominative
set d this operation yields a new nominative set changing the values of
v1, ..., vn to the values of x1, ..., xn respectively. For this operation we
also use simpler notation rv̄x̄; x∈v̄ means that x is a variable from v̄;
v̄ ∪ x̄ is the set of variables that occur in v̄ and x̄; asn(d) is the set of
assigned variables (names) in d.

Notation d∇x 7→a defines a nominative set obtained from d by
changing a value of x to a (or adding to d variable x with the value a).

The set PrVA = VA
p

−→ Bool is called the set of partial quasiary
predicates. For a partial quasiary predicate p∈PrVA its truth, falsity, and
undefinedness domains are denoted T (p), F (p), and ⊥(p) respectively.
These domains are formally defined by the following formulas:

T (p) = {d∈VA | p(d)↓ = T}, F (p) = {d∈VA | p(d)↓ = F},
⊥(p) = {d∈VA | p(d)↑}.

For a partial quasiary predicate p we have that T (p)∩F (p) = ∅ and
⊥(p) = VA \ (T (p) ∪ F (p)). Thus, p is defined only by T (p) and F (p).

A predicate p is

– irrefutable (partially valid) if F (p) = ∅;
– satisfiable if T (p) 6= ∅.
A name (variable) z is unessential for p∈PrVA , if for any d∈VA the

value of p does not depend on the value of z in d [3], [4].

Operations over PrVA are called compositions. Basic compositions of
first-order level of partial quasiary predicates are disjunction ∨, nega-
tion ¬, renomination Rv̄

x̄, and existential quantification ∃x.
We define them via their definedness domains (p, q∈PrVA ):

– T (p ∨ q) = T (p) ∪ T (q), F (p ∨ q) = F (p) ∩ F (q);

– T (¬p) = F (p), F (¬p) = T (p);

– T (Rv̄
x̄(p)) = {d∈VA | rv̄x̄(d)∈T (p)},

F (Rv̄
x̄(p)) = {d∈VA | rv̄x̄(d)∈F (p)};

– T (∃x p) = {d∈VA | d∇x 7→a∈T (p) for some a∈A} =
=

⋃
a∈A{d | d∇x 7→a∈T (p)} =

⋃
a∈A{d | p(d∇x 7→a)↓ = T},

F (∃x p) = {d∈VA | d∇x 7→a∈F (p) for all a∈A} =
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=
⋂

a∈A{d | d∇x 7→a∈F (p)} =
⋂

a∈A{d | p(d∇x 7→a)↓ = F}.

For underfinedness domains we have:

⊥(p ∨ q) = (⊥(p) ∩⊥(q)) ∪ (⊥(p) ∩ F (q)) ∪ ((F (p) ∩ ⊥(q));

⊥(¬p) = ⊥(p);

⊥(Rv̄
x̄(p)) = {d | rv̄x̄(d)∈⊥(p)};

⊥(∃x p) =
⋂

a∈A{d | p(d∇x 7→a) 6= T} ∩
⋃

a∈A{d | p(d∇x 7→a)↑}.

Lemma 1. (∃x p)(d)↑ ⇔ p(d∇x 7→b)↑ for some b∈A and it is not
possible (∃x p)(d)↓ = T .

Proof follows directly from composition definitions. ✷

Please note that definitions of disjunction and negation are similar
to strong Kleene’s connectives; their properties are described in [15].
Also we use variable assignment predicate Ez defined as follows:

T (Ez) = {d | d(z)↓} = {d∈VA | z∈asn(d)},

F (Ez) = {d | d(z)↑} = {d∈VA | z /∈asn(d)}.

Predicate Ez is total, thus ⊥(Ez) = ∅. For any x 6= z variable x is
unessential for Ez.

At last, the complement composition is defined in the following way:
T (∼ p) = ⊥(p), F (∼ p) = ∅.

From this follows that ⊥(∼ p) = T (p) ∪ F (p). Therefore

T (¬ ∼ p) = F (∼ p); F (¬ ∼ p) = T (∼ p); ⊥(¬ ∼ p) = ⊥(∼ p).

We consider ∼ as a composition of propositional level. This compo-
sition differs from traditional compositions. The main difference lies in
the fact that traditional compositions are applicative compositions [16].
Applicativity of composition C means that given predicates p1, ..., pn
the value of C(p1, ..., pn) on some data is evaluated upon values of
p1, ..., pn on data from their definedness domains. The complement
composition is not applicative because the value of ∼ p on some d may
depend upon undefinedness domain of p. This fact complicates logics
with such composition because the undefinedness domains should be
explicitly involved in the definitions of consequence relations. Note,
that applicative compositions are monotone with respect to predicate
graph inclusion; but composition ∼ is not.

A tuple AQEC(V,A) =< PrVA ;∨,¬, R
v̄
x̄,∃x,Ez,∼> is called a first-

order complemented algebra of partial quasiary predicates.
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A class of such algebras (with different A) forms a semantic base
for logic LQEC .

Now we describe the main properties of AQEC(V,A).
We are interested in properties of the following types:
– equivalent transformation and simplification;
– properties based on truth tables of composition evaluations.

Equivalence properties induce three similar sequent rules, describ-
ing cases when a formula is true, false, or undefined.

Properties based on evaluation cases induce special rule for each
case. For example, evaluation of ∼ Φ leads to three cases:

– ∼ Φ is true if Φ is undefined;
– ∼ Φ is false. This case is not possible;
– ∼ Φ is undefined if Φ is defined (Φ or ¬Φ is true).

The first and third cases lead to rules ⊢∼ and ⊥ ∼, the second rule
defines the closeness condition CL∼⊣ (Section 3).

For the renomination compositions we identify the following prop-
erties [2]–[4].

Lemma 2. For any p, q∈PrVA we have:
R∨) Rv̄

x̄(p ∨ q) = Rv̄
x̄(p) ∨Rv̄

x̄(q);

R¬) Rv̄
x̄(¬p) = ¬Rv̄

x̄(p);
RR) Rv̄

x̄(R
w̄
ȳ (p)) = Rv̄

x̄◦
w̄
ȳ (p);

R∃) Rv̄
x̄(∃yp) = ∃zRv̄

x̄(R
y
z(p)), z /∈v̄ ∪ {y}, z is unessential for p;

RE) Rv̄
x̄(Ez) = Ez, z /∈v̄;

REr) R
v̄,z
x̄,y(Ez) = Ey;

R) R(p) = p;
RI) Rz,v̄

z,x̄(p) = Rv̄
x̄(p);

RU) Rz,v̄
y,x̄(p) = Rv̄

x̄(p), z is unessential for p;
R∼) Rv̄

x̄(∼ p) =∼ Rv̄
x̄(p).

Proof. All properties are proved in the same manner, therefore we
restrict ourselves by the property R∼ only, which involves the comple-
ment composition.

To prove this property we should prove two equalities:
T (Rv̄

x̄(∼ p)) = T (∼ Rv̄
x̄(p)) and F (Rv̄

x̄(∼ p)) = F (∼ Rv̄
x̄(p)).

By the definitions of renomination and complement compositions
we get for the first equality that
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T (Rv̄
x̄(∼ p)) = {d∈VA | rv̄x̄(d)∈T (∼ p)} = {d∈VA | rv̄x̄(d)∈⊥(p)} =

= {d∈VA | d∈⊥(Rv̄
x̄(p)(d))} = {d∈VA | d∈T (∼ Rv̄

x̄(p)(d))} =

= T (∼ Rv̄
x̄(p)).

In the similar way the second equality is proved. ✷

For the complement composition we identify the following proper-
ties.

Lemma 3. For any p∈PrVA we have:

∼ ¬p =∼ p; ∼∼ p = p ∨ ¬p; ∼∼∼ p =∼ p; ∼∼∼∼ p =∼∼ p.

Proof follows directly from composition definitions.✷

In LQEC quantifier elimination is based on properties inherited from
basic logic LQ [3]:

T∃) T (Rx
y(P )) ∩ T (Ey) ⊆ T (∃x P );

F∃) F (∃x P ) ∩ T (Ey) ⊆ F (Rx
y(P )).

The properties presented in this subsection substantiate properties
of the consequence relation and sequent rules for our logic.

2.2 Language (signature and formulas) of LQEC

Let V be an infinite set of variables (names) and VU be an infinite
subset of V called a set of unessential variables [3], [4]. Let Ps be a set
of predicate symbols. A tuple ΣQEC = (V, VU ;∨,¬, R

v̄
x̄,∃x,Ez,∼;Ps)

is called the language signature.

For simplicity, we use the same notation for symbols of compositions
and compositions themselves.

Given ΣQEC , we define inductively the language of LQEC – the set
of formulas denoted Fr(LQEC) or simply Fr:

– if P∈Ps, then P∈Fr;

– Ez∈Fr;

– if Φ,Ψ∈Fr, then Φ ∨Ψ, ¬Φ, Rv̄
x̄(Φ), ∃xΦ, ∼ Φ∈Fr.

Formulas of the forms P and Ez are called atomic (P∈Ps, z∈V );
formulas of the form Rv̄

x̄(P ) are called primitive. Parentheses can be
used to clarify formula structure.

Note that properties presented by Lemma 2 allow transforming any
formula to special normal form in which renomination occurs only in
primitive formulas.
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2.3 L
QEC-interpretations

Let AQEC(V,A) =< PrVA ;∨,¬, R
v̄
x̄,∃x,Ez,∼> be a first-order comple-

mented algebra of partial quasiary predicates of a signature ΣQEC =

(V, VU ;∨,¬, R
v̄
x̄,∃x,Ez,∼;Ps); IPs

Q = Ps
t

−→ PrVA be an interpretation
mapping of predicate symbols that respects the set VU of unessen-
tial variables. Then a pair J(ΣQEC) = (AQEC(V,A), IPs

Q ) is called

an LQEC-interpretation. Note that this definition of interpretation is
quite natural because the algebra AQEC(V,A) defines interpretations of
composition symbols (logical symbols) and IPs

Q defines interpretations
of predicate symbols (descriptive symbols).

We simplify notation for LQEC-interpretation J(ΣQEC) omitting
LQEC and ΣQEC .

For a given interpretation J and a formula Φ, we can define by
induction on the structure of Φ its value in J . Obtained predicate is
denoted ΦJ .

Formula Φ is irrefutable in J (denoted J |= Φ), if predicate ΦJ is
irrefutable. Formula Φ is irrefutable (denoted |= Φ), if J |= Φ for any
interpretation J . Irrefutability may be treated as partial validity.

Formula Φ is satisfiable in J (denoted J |∼Φ), if predicate ΦJ is
satisfiable. Formula Φ is satisfiable (denoted |∼Φ), if J |∼Φ for some
interpretation J .

Variable x is unessential for Φ, if for any J variable x is unessential
for ΦJ . Variable x is unessential for Γ ⊆ Fr, if for any J variable x is
unessential for any formula Φ∈Γ.

The set of all variables (names) that occur in Φ is denoted nm(Φ).
The set fu(Φ) = VU \ nm(Φ) is called the set of fresh unessential
variables for Φ.

For any Γ ⊆ Fr we define
nm(Γ) =

⋃
Φ∈Γ nm(Φ) and fu(Γ) =

⋂
Φ∈Γ fu(Φ).

We generalize notation fu(Γ) on sequences of formulas and sets of
formulas.

Lemma 4. Let x∈V,Φ∈Fr,Γ ⊆ Fr. Then
1) x is unessential for Φ if x∈fu(Φ);
2) x is unessential for Γ if x∈fu(Γ).
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Proof. Induction on the structure of Φ.✷

2.4 Irrefutability Consequence Relation

Logic LQEC is a logic of partial predicates, therefore the most natural
consequence relation for this logic is the irrefutability relation, because
it reflects partial validity.

Let Σ ⊆ Fr and J be an interpretation. We denote:

⋂
Φ∈Σ

T (ΦJ) as T
∩(ΣJ) and

⋂
Φ∈Σ

F (ΦJ) as F
∩(ΣJ).

Let Γ, U,∆ ⊆ Fr. Then ∆ is called an irrefutable consequence of Γ
in interpretation J (denoted ΓJ |=IR ∆) if

T∩(ΓJ) ∩ F∩(∆J) = ∅.

∆ is logical irrefutable consequence of Γ (denoted Γ |=IR ∆), if
ΓJ |=IR ∆ for any interpretation J.

The basic properties of |=IR were presented in [3], [4]. They allow
decomposition of complex formulas up to atomic or primitive formulas.
In our case it is not always possible to make decomposition of formulas
with the complement composition, therefore we need to define a new
consequence relation |=⊥

IR which takes into consideration undefinedness
domains.

In the sequel Φ,Ψ∈Fr, U,Γ,∆,Σ ⊆ Fr, formulas may be signed or
unsigned; variables (maybe with indexes) v, y, z, t belong to V ; J is an
interpretation.

2.5 Irrefutability Consequence Relation under Condi-
tions of Undefinedness

Irrefutability consequence relation is a binary relation. In our case,
introduction of composition ∼ requires more complicated ternary con-
sequence relation, because formulas, treated as undefined, should be ex-
plicitly taken into consideration. Here we introduce such consequence
relation denoted |=⊥

IR between three sets of formulas. The first set is
called the set of underfinedness conditions (⊥-conditions, ⊥-formulas);
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the second set is called the set of truth formulas (⊢-formulas); and the
third set is called the set of falsity formulas (⊣-formulas).

Relation |=⊥
IR will generalize the binary irrefutability relation. To

define |=⊥
IR we additionally denote

⋂
Φ∈Σ⊥(ΦJ) as ⊥

∩(ΣJ).

Let U,Γ,∆ ⊆ Fr. Then ∆ is called an irrefutable consequence
of Γ under undefinedness conditions U in interpretation J (denoted
U/ΓJ |=⊥

IR ∆) if
T∩(ΓJ) ∩ ⊥∩(UJ ) ∩ F∩(∆J) = ∅.

∆ is logical irrefutable consequence of Γ under undefinedness conditions
U (denoted U/Γ |=⊥

IR ∆), if U/ΓJ |=⊥
IR ∆ for any interpretation J.

We get traditional logical irrefutability Γ |=IR ∆ when U = ∅.
Other consequence relations are studied in [4], [17], [18].

Relation |=⊥
IR is monotone in the following sense:

M) Let Γ ⊆ Λ, U ⊆ W, and ∆ ⊆ Σ; then
U/Γ |=⊥

IR ∆ ⇒ W/Λ |=⊥
IR Σ.

Let us introduce on Fr the binary relation ≃ of logical strong equal-
ity. Namely, Φ ≃ Ψ if ΦJ = ΨJ for any interpretation J.

Theorem 1. Let Φ ≃ Ψ, then:

U / Φ,Γ |=⊥
IR ∆ ⇔ U/Ψ,Γ |=⊥

IR ∆;

U / Γ |=⊥
IR ∆,Φ ⇔ U/Γ |=⊥

IR ∆,Ψ;

U, Φ/Γ |=⊥
IR ∆ ⇔ U,Ψ/Γ |=⊥

IR ∆.

Proof. Proof is based on the fact that Φ ≃ Ψ means ΦJ = ΨJ for
any J. ✷

Let us formulate the properties that guarantee validity of the con-
sequence relation |=⊥

IR .

Theorem 2. For any U, Γ,∆ ⊆ Fr,Φ∈Fr we have:

C⊢⊣) U/Φ,Γ |=⊥
IR ∆,Φ;

C⊥⊢) U,Φ/Φ,Γ |=⊥
IR ∆;

C⊥⊣) U,Φ/Γ |=⊥
IR ∆,Φ;

C∼⊣) U/Γ |=⊥
IR ∆,∼ Φ;

CE⊥) U,Ey/Γ |=⊥
IR ∆.

Proof. Property C⊢⊣ follows from equality T (ΦJ) ∩ F (ΦJ) = ∅.
Property C⊥⊢ follows from equality ⊥(ΦJ) ∩ T (ΦJ) = ∅.
Property C⊥⊣ follows from equality ⊥(ΦJ) ∩ F (ΦJ) = ∅.
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Property C∼⊣ holds because F (∼ ΦJ) = ∅.
Property CE⊥ holds because ⊥(Ey) = ∅. ✷

Let us consider properties of |=⊥
IR induced by propositional compo-

sitions ∨, ¬, and ∼:

Theorem 3. For any U, Γ,∆ ⊆ Fr,Φ,Ψ∈Fr the following prop-
erties of |=⊥

IR hold:

∨⊢) U/Φ ∨Ψ,Γ |=⊥
IR ∆ ⇔ U/Φ,Γ |=⊥

IR ∆ and U / Ψ,Γ |=⊥
IR ∆;

∨⊣) U/Γ |=⊥
IR ∆,Φ ∨Ψ ⇔ U/Γ |=⊥

IR ∆,Φ,Ψ;

∨⊥) U,Φ ∨Ψ/Γ |=⊥
IR ∆ ⇔ U,Φ,Ψ/Γ |=⊥

IR ∆ and
U,Φ/Γ |=⊥

IR Ψ,∆ and U,Ψ/Γ |=⊥
IR Φ,∆;

¬⊢) U/¬Φ,Γ |=⊥
IR ∆ ⇔ U/Γ |=⊥

IR ∆,Φ;

¬⊣) U/Γ |=⊥
IR ∆,¬Φ ⇔ U/Φ,Γ |=⊥

IR ∆;

¬⊥) U,¬Φ/Γ |=⊥
IR ∆ ⇔ U,Φ/Γ |=⊥

IR ∆;

∼⊢) U/ ∼ Φ,Γ |=⊥
IR ∆ ⇔ U,Φ/Γ |=⊥

IR ∆;

∼⊥) U,∼ Φ/Γ |=⊥
IR ∆ ⇔ U/Φ,Γ |=⊥

IR ∆ and U / Γ |=⊥
IR ∆,Φ.

Proof. The properties are proved in the same manner, therefore
we demonstrate it proving ∨⊥, ¬⊥, ∼⊥, and ∼⊢ only.

For property ∨⊥ we have that U,Φ ∨ Ψ/ΓJ |=⊥
IR ∆ means that

T∩(ΓJ) ∩ (⊥∩(UJ) ∩ ⊥(Φ ∨Ψ)) ∩ F∩(∆J) = ∅.
By definition of ∨ we get that

⊥(ΦJ ∨ΨJ) = (⊥(ΦJ)∩⊥(ΨJ))∪ (⊥(ΦJ )∩F (ΨJ )∪ (F (ΦJ )∩⊥(ΨJ )).

Substituting the right-hand side of this formula into the previous
one we obtain that T∩(ΓJ) ∩ ⊥∩(UJ) ∩ ((⊥(ΦJ) ∩ ⊥(ΨJ)) ∪ (⊥(ΦJ) ∩
F (ΨJ )) ∪ (F (ΦJ ) ∩ ⊥(ΨJ))) ∩ F∩(∆J) = ∅.

Transformation of this formula gives that

T∩(ΓJ) ∩ ⊥∩(UJ) ∩ (⊥(ΦJ ) ∩ ⊥(ΨJ)) ∩ F∩(∆J)∪
∪T∩(ΓJ) ∩⊥∩(UJ ) ∩ (⊥(ΦJ) ∩ F (ΨJ )) ∩ F∩(∆J)∪
∪T∩(ΓJ) ∩⊥∩(UJ ) ∩ (F (ΦJ) ∩ ⊥(ΨJ)) ∩ F∩(∆J) = ∅.

Union of sets is empty, therefore each set is empty too. Thus,

T∩(ΓJ) ∩ ⊥∩(UJ) ∩ (⊥(ΦJ ) ∩ ⊥(ΨJ)) ∩ F∩(∆J) = ∅;
∪T∩(ΓJ) ∩⊥∩(UJ ) ∩ (⊥(ΦJ) ∩ F (ΨJ )) ∩ F∩(∆J) = ∅;
∪T∩(ΓJ) ∩⊥∩(UJ ) ∩ (F (ΦJ) ∩ ⊥(ΨJ)) ∩ F∩(∆J) = ∅.

This means that

U,Φ,Ψ/ΓJ |=⊥
IR ∆ and U,Φ/ΓJ |=⊥

IR Ψ,∆ and U,Ψ/ΓJ |=⊥
IR Φ,∆.
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So, property ∨⊥ holds because it holds for any interpretation J .

Property ¬⊥ holds due to equality ⊥(¬ΦJ) = ⊥(ΦJ).

Property ∼⊥ holds due to equality ⊥(∼ ΦJ) = T (ΦJ) ∪ F (ΦJ).

Property ∼⊢ holds due to equality T (∼ ΦJ) = ⊥(ΦJ). ✷

Let us consider properties of relation |=⊥
IR for renomination com-

position. Each of the properties R∨, R¬, RR, R∃, R, RI, RU , R∼
(Lemma 2) induces three corresponding properties for |=⊥

IR, depending
on the position of a formula (in the left side of |=⊥

IR, in the right side of
|=⊥

IR, or in the undefinedness conditions of |=⊥
IR). Such properties are

formulated in a similar way. Properties RE and REr induce two cases
because predicate Ex is a total predicate.

Theorem 4. For any U, Γ,∆ ⊆ Fr,Φ,Ψ∈Fr renomination com-
position induces the following properties of |=⊥

IR:

R∨⊢) U/R
v̄
x̄(Φ ∨Ψ),Γ |=⊥

IR ∆ ⇔ U/Rv̄
x̄(Φ) ∨Rv̄

x̄(Ψ),Γ |=⊥
IR ∆;

R∨⊣) U/Γ |=⊥
IR Rv̄

x̄(Φ ∨Ψ),∆ ⇔ U/Γ |=⊥
IR Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ),∆;

R∨⊥) U,R
v̄
x̄(Φ ∨Ψ)/Γ |=⊥

IR ∆ ⇔ U,Rv̄
x̄(Φ) ∨Rv̄

x̄(Ψ)/Γ |=⊥
IR ∆;

R¬⊢) U/R
v̄
x̄(¬Φ),Γ |=⊥

IR ∆ ⇔ U/¬Rv̄
x̄(Φ),Γ |=⊥

IR ∆;

R¬⊣) U/Γ |=⊥
IR Rv̄

x̄(¬Φ),∆ ⇔ U/Γ |=⊥
IR ¬Rv̄

x̄(Φ),∆;

R¬⊥) U,R
v̄
x̄(¬Φ)/Γ |=⊥

IR ∆ ⇔ U,¬Rv̄
x̄(Φ)/Γ |=⊥

IR ∆;

RR⊢) U / Rv̄
x̄(R

w̄
ȳ (Φ))Γ |=⊥

IR ∆ ⇔ U/Rv̄
x̄ ◦

w̄
ȳ (Φ),Γ |=⊥

IR ∆;

RR⊣) U / Γ |=⊥
IR ∆, Rv̄

x̄(R
w̄
ȳ (Φ)) ⇔ U/Γ |=⊥

IR ∆, Rv̄
x̄ ◦

w̄
ȳ (Φ);

RR⊥) U, R
v̄
x̄(R

w̄
ȳ (Φ))/Γ |=⊥

IR ∆ ⇔ U,Rv̄
x̄ ◦

w̄
ȳ (Φ)/Γ |=⊥

IR ∆;

R∃⊢) if z∈fu(R
v̄
x̄(∃yΦ)) then

U/Rv̄
x̄(∃yΦ),Γ |=⊥

IR ∆ ⇔ U/∃zRv̄
x̄(R

y
z(Φ)),Γ |=⊥

IR ∆;

R∃⊣) if z∈fu(R
v̄
x̄(∃yΦ)) then

U/Γ |=⊥
IR Rv̄

x̄(∃yΦ),∆ ⇔ U/Γ |=⊥
IR ∃zRv̄

x̄(R
y
z(Φ)),∆;

R∃⊥) if z∈fu(R
v̄
x̄(∃yΦ)) then

U,Rv̄
x̄(∃yΦ)/Γ |=⊥

IR ∆ ⇔ U,∃zRv̄
x̄(R

y
z(Φ))/Γ |=⊥

IR ∆;

R⊢) U/R(Φ),Γ |=⊥
IR ∆ ⇔ U/Φ,Γ |=⊥

IR ∆;

R⊣) U/Γ |=⊥
IR R(Φ),∆ ⇔ U/Γ |=⊥

IR Φ,∆;

R⊥) U,R(Φ)/Γ |=⊥
IR ∆ ⇔ U,Φ/Γ |=⊥

IR ∆;

RI⊢) U/R
z,v̄
z,x̄(Φ),Γ |=⊥

IR ∆ ⇔ U/Rv̄
x̄(Φ),Γ |=⊥

IR ∆;

RI⊣) U/Γ |=⊥
IR Rz,v̄

z,x̄(Φ),∆ ⇔ U/Γ |=⊥
IR Rv̄

x̄(Φ),∆;

RI⊥) U,R
z,v̄
z,x̄(Φ)/Γ |=⊥

IR ∆ ⇔ U,Rv̄
x̄(Φ)/Γ |=⊥

IR ∆;
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RU⊢) if z∈fu(Φ) then
U/Rz,v̄

y,x̄(Φ),Γ |=⊥
IR ∆ ⇔ U/Rv̄

x̄(Φ),Γ |=⊥
IR ∆;

RU⊣) if z∈fu(Φ) then
U/Γ |=⊥

IR Rz,v̄
y,x̄(Φ),∆ ⇔ U/Γ |=⊥

IR Rv̄
x̄(Φ),∆;

RU⊥) if z∈fu(Φ) then
U,Rz,v̄

y,x̄(Φ)/Γ |=⊥
IR ∆ ⇔ U,Rv̄

x̄(Φ)/Γ |=⊥
IR ∆;

R∼
⊢
) U/Rv̄

x̄(∼ Φ),Γ |=⊥
IR ∆ ⇔ U/ ∼ Rv̄

x̄(Φ),Γ |=⊥
IR ∆;

R∼
⊣
) U/Γ |=⊥

IR ∆, Rv̄
x̄(∼ Φ) ⇔ U/Γ |=⊥

IR ∆,∼ Rv̄
x̄(Φ);

R∼
⊥
) U,Rv̄

x̄(∼ Φ)/Γ |=⊥
IR ∆ ⇔ U,∼ Rv̄

x̄(Φ)/Γ |=⊥
IR ∆;

RE⊢) if z /∈v̄ then U/Rv̄
x̄(Ez),Γ |=⊥

IR ∆ ⇔ U/Ez,Γ |=⊥
IR ∆;

RE⊣) if z /∈v̄ then U/Γ |=⊥
IR ∆, Rv̄

x̄(Ez) ⇔ U/Γ |=⊥
IR ∆, Ez;

REr⊢) U/R
v̄,z
x̄,y(Ez),Γ |=⊥

IR ∆ ⇔ U/Ey,Γ |=⊥
IR ∆;

REr⊣) U/Γ |=⊥
IR ∆, Rv̄,z

x̄,y(Ez) ⇔ U/Γ |=⊥
IR ∆, Ey.

Proof. All properties hold due to Lemma 2. ✷

We add one more property RN that permits to substitute one unas-
signed variable by another unassigned variable. This allows to establish
equivalence of formulas with unassigned variables.

Theorem 5. For any U, Γ,∆ ⊆ Fr,Φ∈Fr, y, t∈V the renomination
composition induces the following substitution properties of unassigned
variables:

RN⊢) U/R
y,v̄
z,x̄(Φ),Γ |=⊥

IR Ez,Et,∆ ⇔ U/Ry,v̄
t,x̄ (Φ),Γ |=⊥

IR Ez,Et,∆;

RN⊣) U/Γ |=⊥
IR Ry,v̄

z,x̄(Φ), Ez,Et,∆ ⇔ U/Γ |=⊥
IR Ry,v̄

t,x̄ (Φ), Ez,Et,∆;

RN⊥) U,R
y,v̄
z,x̄(Φ)/Γ |=⊥

IR Ez,Et,∆ ⇔ U,Ry,v̄
t,x̄ (Φ)/Γ |=⊥

IR Ez,Et,∆.

Proof is based on the fact that F (Ey) = F (Et) in the case when
both y and t are not assigned. ✷

The following theorem describes properties that will induce the
quantifier elimination rules.

Theorem 6. For any U, Γ,∆ ⊆ Fr and Φ∈Fr we have:

∃⊢) if z∈fu(U,Γ,∆,∃xΦ), then
U/∃xΦ,Γ |=⊥

IR ∆ ⇔ U/Rx
z (Φ), Ez,Γ |=⊥

IR ∆;

∃⊣) U/Γ, Ey |=⊥
IR ∃xΦ,∆ ⇔ U/Γ, Ey |=⊥

IR ∃xΦ, Rx
y(Φ),∆;

∃⊥) if z∈fu(U,Γ,∆,∃xΦ), then
U,∃xΦ/Γ |=⊥

IR ∆ ⇔ U,∃xΦ, Rx
z (Φ)/Ez,Γ |=⊥

IR ∆.
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Proof. We prove ∃⊥ only, because other properties can be proved
in the same manner.

By M we have U,∃xΦ/Γ |=⊥
IR ∆ ⇒ U,∃xΦ, Rx

z (Φ)/Ez,Γ |=⊥
IR ∆.

It is left to prove (R) ⇒ (L), where

(L) is ⊥∩(UJ) ∩⊥(∃xΦ)J ∩ T∩(ΓJ) ∩ F∩(∆J) = ∅ and (R) is
⊥∩(UJ) ∩ ⊥(∃xΦ)J ∩⊥(Rx

z (Φ)J) ∩ T (Ez) ∩ T∩(ΓJ) ∩ F∩(∆J) = ∅.
Assume that (R) holds, but (L) does not hold. From this follows

that there exists d∈VA such that d∈⊥∩(UJ) ∩ ⊥((∃xΦ)J) ∩ T∩(ΓJ) ∩
F∩(∆J), therefore d∈⊥((∃xΦ)J) and d ∈⊥∩(UJ) ∩ T∩(ΓJ) ∩ F∩(∆J).
From d∈⊥((∃xΦ)J) we have that for some a∈A there should be
d∇x 7→a∈⊥(ΦJ). But z∈fu(U,Γ,∆,∃xΦ), therefore d∇z 7→a∈⊥∩(UJ)∩
⊥((∃xΦ)J) ∩ T∩(ΓJ) ∩ F∩(∆J) and d∇x 7→a∇z 7→a∈⊥(ΦJ). From
this we obtain d∇z 7→a∈⊥(Rx

z (Φ)J ). By definition of Ez we have
d∇z 7→a∈T (Ez), therefore d∇z 7→a∈⊥∩(UJ)∩⊥((∃xΦ)J )∩⊥(Rx

z (Φ)J)∩
T (Ez) ∩ T∩(ΓJ ) ∩ F∩(∆J). But this contradicts (R).✷

Having ∃⊥ we obtain the special property that guarantees |=⊥
IR:

for any U, Γ,∆ ⊆ Fr and Φ∈Fr

C∃⊥) U,∃xΦ/R
x
y(Φ), Ey,Γ |=⊥

IR ∆.

So, we proved the following properties that guarantee |=⊥
IR :

C⊢⊣, C⊥⊢, C⊥⊣, C∼⊣, CE⊥, and C∃⊥.

Theorem 7. For any U, Γ,∆ ⊆ Fr, y∈V the variable assignment
predicate induces the following insertion property :

E⊢⊣) U/ Γ |=⊥
IR ∆ ⇔ U/Ey,Γ |=⊥

IR ∆ and U/Γ |=⊥
IR ∆, Ey.

Proof. Let J be an interpretation. Then U/ΓJ |=⊥
IR ∆ means

that T∩(ΓJ) ∩ ⊥∩(UJ) ∩ F∩(∆J) = ∅. Further, U/Ey,Γ |=⊥
IR ∆ and

U/Γ |=⊥
IR ∆, Ey means that (T∩(ΓJ )∩T (EyJ))∩⊥

∩(UJ)∩F
∩(∆J) = ∅

and T∩(ΓJ) ∩ ⊥∩(UJ) ∩ (F (EyJ ) ∩ F∩(∆J)) = ∅ respectively. Since
T (EyJ) ∪ F (EyJ) = VA, we obtain T∩(ΓJ) ∩ ⊥∩(UJ ) ∩ F∩(∆J) = ∅.
This proves the theorem because J was arbitrary interpretation.✷

3 Sequent Calculus for L
QEC

Usually, an inference relation ⊢ is defined by some axiomatic system
(calculus). We present here system CQEC that adequately formalizes

175



Mykola Nikitchenko, et al.

logical consequence relation |=⊥
IR between sets of formulas. Such sys-

tems are called sequent calculi.
The main objects of this calculus are sequents. Here we consider

only the case with finite sequents. We treat them as sets of formu-
las signed by symbols ⊢, ⊣, and ⊥. Sequents are denoted ⊢Γ⊥U⊣∆, in
abbreviated form Σ.

A sequent calculus is defined by sequent forms (sequent rules) and
closeness conditions of sequents.

Sequent forms are syntactical analogs of the semantic properties
of the logical consequence relation. Closed sequents are axioms of the
sequent calculus.

A closed sequent is specified in such a way that the following con-
dition should hold:

if sequent ⊢Γ⊥U⊣∆ is closed, then U / Γ |=⊥
IR ∆.

The following conditions are induced by the properties C⊢⊣, C⊥⊢,
C⊥⊣, C∼⊣, CE⊥, and C∃⊥ respectively:

CL⊢⊣) there is Φ such that Φ∈Γ and Φ∈∆;
CL⊥⊢) there is Φ such that Φ∈U and Φ∈Γ;
CL⊥⊣) there is Φ such that Φ∈U and Φ∈∆;
CL∼⊣) there is Φ such that ∼ Φ∈∆;
CLE⊥) there is Ey such that Ey∈U ;
CL∃⊥) there are ∃xΦ and y such that ∃xΦ∈U,Rx

y(Φ)∈Γ, Ey∈Γ.

For CQEC we take the following closeness condition: sequent

⊢Γ⊥U⊣∆ is closed if CL⊢⊣ ∨ CL⊥⊢ ∨ CL⊥⊣ ∨ CL∼⊣ ∨ CLE⊥ ∨ CL∃⊥

holds.

Theorem 8. If sequent ⊢Γ⊥U⊣∆ is closed, then U/Γ |=⊥
IR ∆.

Proof follows directly from Theorem 2.✷

Sequent forms are obtained directly from properties of |=⊥
IR pre-

sented by Theorems 3–7. The labels of the sequent forms are obtained
from the labels of the corresponding properties by putting formula signs
in front of the labels. Forms may have additional constraints.

Introduction of undefinedness conditions may lead to new sequent
forms with three premises (rule ⊥∨).

The sequent forms for propositional compositions ∨,¬,∼ are in-
duced by the properties ∨⊢,∨⊣,∨⊥,¬⊢,¬⊣,¬⊥,∼⊥,∼⊢:
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⊢∨
⊢Φ,Σ ⊢Ψ,Σ

⊢Φ ∨Ψ,Σ
;

⊣∨
⊣Φ, ⊣Ψ,Σ

⊣Φ ∨Ψ,Σ
;

⊥∨
⊥Φ,⊥Θ,Σ ⊥Φ, ⊣Θ,Σ ⊣Φ,⊥Θ,Σ

⊥Φ ∨Θ,Σ
;

⊢¬
⊣Φ,Σ

⊢¬Φ,Σ
;

⊣¬
⊢Φ,Σ

⊣¬Φ,Σ
;

⊥¬
⊥Φ,Σ

⊥¬Φ,Σ
;

⊢∼

⊥Φ,Σ

⊢ ∼ Φ,Σ
;

⊥∼

⊢Φ,Σ ⊣Φ,Σ

⊥ ∼ Φ,Σ
.

The sequent forms for renomination composition are induced by the
properties presented in Theorems 4 and 5:

⊢R∨

⊢R
v̄
x̄(Φ) ∨Rv̄

x̄(Ψ),Σ

⊢R
v̄
x̄(Φ ∨Ψ),Σ

;
⊣R∨

⊣R
v̄
x̄(Φ) ∨Rv̄

x̄(Ψ),Σ

⊣R
v̄
x̄(Φ ∨Ψ),Σ

;

⊥R∨

⊥R
v̄
x̄(Φ) ∨Rv̄

x̄(Ψ),Σ

⊥R
v̄
x̄(Φ ∨Ψ),Σ

;

⊢R¬

⊢¬R
v̄
x̄(Φ),Σ

⊢R
v̄
x̄(¬Φ),Σ

;
⊣R¬

⊣¬R
v̄
x̄(Φ),Σ

⊣R
v̄
x̄(¬Φ),Σ

;
⊥R¬

⊥¬R
v̄
x̄(Φ),Σ

⊥R
v̄
x̄(¬Φ),Σ

;

⊢RR
⊢R

v̄
x̄ ◦

w̄
ȳ (Φ),Σ

⊢R
v̄
x̄(R

w̄
ȳ (Φ)),Σ

;
⊣RR

⊣R
v̄
x̄ ◦

w̄
ȳ (Φ),Σ

⊣R
v̄
x̄(R

w̄
ȳ (Φ)),Σ

;
⊥RR

⊥R
v̄
x̄ ◦

w̄
ȳ (Φ),Σ

⊥R
v̄
x̄(R

w̄
ȳ (Φ)),Σ

;

⊢R∃
⊢∃zR

v̄
x̄(R

y
z(Φ)),Σ

⊢R
v̄
x̄(∃yΦ),Σ

, z∈fu(Rv̄
x̄(∃yΦ));

⊣R∃
⊣∃zR

v̄
x̄(R

y
z(Φ)),Σ

⊣R
v̄
x̄(∃yΦ),Σ

, z∈fu(Rv̄
x̄(∃yΦ));

⊥R∃
⊥∃zR

v̄
x̄(R

y
z(Φ)),Σ

⊥R
v̄
x̄(∃yΦ),Σ

, z∈fu(Rv̄
x̄(∃yΦ));

⊢R
⊢Φ,Σ

⊢R(Φ),Σ
;

⊣R
⊣Φ,Σ

⊣R(Φ),Σ
;

⊥R
⊥Φ,Σ

⊥R(Φ),Σ
;

⊢RI
⊢R

v̄
x̄(Φ),Σ

⊢R
z,v̄
z,x̄(Φ),Σ

;
⊣RI

⊣R
v̄
x̄(Φ),Σ

⊣R
z,v̄
z,x̄(Φ),Σ

;
⊥RI

⊥R
v̄
x̄(Φ),Σ

⊥R
z,v̄
z,x̄(Φ),Σ

;

177



Mykola Nikitchenko, et al.

⊢RU
⊢R

v̄
x̄(Φ),Σ

⊢R
y,v̄
z,x̄(Φ),Σ

, y∈fu(Φ);
⊣RU

⊣R
v̄
x̄(Φ),Σ

⊣R
y,v̄
z,x̄(Φ),Σ

, y∈fu(Φ);

⊥RU
⊥R

v̄
x̄(Φ),Σ

⊥R
z,v̄
y,x̄(Φ),Σ

, y∈fu(Φ);

⊢R
∼

⊢ ∼ Rv̄
x̄(Φ),Σ

⊢R
v̄
x̄(∼ Φ),Σ

;
⊣R

∼
⊣ ∼ Rv̄

x̄(Φ),Σ

⊣R
v̄
x̄(∼ Φ),Σ

;
⊥R

∼
⊥ ∼ Rv̄

x̄(Φ),Σ

⊥R
v̄
x̄(∼ Φ),Σ

;

⊢RE
⊢Ez,Σ

⊢R
v̄
x̄(Ez),Σ

, z /∈v̄;
⊣RE

⊣Ez,Σ

⊣R
v̄
x̄(Ez),Σ

, z /∈v̄;

⊢REr
⊢Ey,Σ

⊢R
v̄,z
x̄,y(Ez),Σ

;
⊣REr

⊣Ey,Σ

⊣R
v̄,z
x̄,y(Ez),Σ

;

⊢RN
⊢R

y,v̄
t,x̄ (Φ), ⊣E(z), ⊣E(t),Σ

⊢R
y,v̄
z,x̄(Φ), ⊣E(z), ⊣E(t),Σ

;
⊣RN

⊣R
y,v̄
t,x̄ (Φ), ⊣E(z), ⊣E(t),Σ

⊣R
y,v̄
z,x̄(Φ), ⊣E(z), ⊣E(t),Σ

;

⊥RN
⊥R

y,v̄
t,x̄ (Φ), ⊣E(z), ⊣E(t),Σ

⊥R
y,v̄
z,x̄(Φ), ⊣E(z), ⊣E(t),Σ

.

Sequent forms of quantifier elimination are induced by truth cases
for quantifiers:

⊢∃
⊢R

x
y(Φ), ⊢Ey,Σ

⊢∃xΦ,Σ
, y∈fu(Σ,∃xΦ);

⊣∃
⊣∃xΦ, ⊢Ey, ⊣R

x
y(Φ),Σ

⊣∃xΦ, ⊢Ey,Σ
;

⊥∃
⊥∃xΦ,⊥R

x
z (Φ), ⊢Ez,Σ

⊥∃xΦ,Σ
, z∈fu(Σ,∃xΦ).

Sequent form for insertion of variable assignment predicates per-
mits to specify a variable as assigned or unassigned:

E⊢⊣
⊢Ex,Σ ⊣Ex,Σ

Σ
.

The above-written sequent forms and closeness conditions define
calculus CQEC .
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For sequent rules of CQEC we have the following main properties.

Theorem 9. Let k∈{1, 2, 3} and ⊢Γ1⊥U1⊣∆1 ... ⊢Γk⊥Uk⊣∆k

⊢Γ⊥U⊣∆
be basic

sequent form. Then
U/Γ |=⊥

IR ∆ ⇔ U1/Γ1 |=
⊥
IR ∆1 and ... Uk/Γk |=⊥

IR ∆k.

Proof. For each form the proof follows directly from its corre-
sponding property formulated in Theorems 2–7. ✷

The derivation in CQEC has the form of a tree, the vertices of
which are sequents. Such trees are called sequent trees. A sequent tree
is closed, if every its leaf is a closed sequent. A sequent Σ is derivable,
if there is a closed sequent tree with the root Σ .

During construction of a sequent tree the following cases are possi-
ble:

– construction procedure is completed: all sequents on the leaves
are closed; we have a finite closed tree;

– construction procedure is not completed; we have a finite or infi-
nite unclosed tree. Such tree has at least one path called unclosed, all
vertices of which are unclosed sequents.

We meet the first case while proving soundness and the second one
while proving completeness of CQEC .

Theorem 10 (soundness). Let sequent ⊢Γ⊥U⊣∆ be derivable in
CQEC . Then U/Γ |=⊥

IR ∆.

Proof. Indeed, if ⊢Γ⊥U⊣∆ is derivable, then a finite closed tree was
constructed. Therefore, for any leaf of this tree its sequent ⊢Λ⊥Ω⊣K
is closed. Thus, by Theorem 8, Ω/Λ |=⊥

IR K holds. Therefore, by
Theorem 9 for the root of the tree (sequent ⊢Γ⊥U⊣∆) we have that
U/Γ |=⊥

IR ∆ holds. ✷

4 Completeness of CQEC

Completeness is proved on the basis of theorems of the existence of
a counter-model for the set of formulas of a non-closed path in the
sequent tree. To do this we first define the notion of Hintikka set for
LQEC , then we prove that a Hintikka set is satisfiable, and at last, we
prove that formulas from a non-closed path form a Hintikka set [19].
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A Hintikka set for LQEC is a set H of signed formulas satisfying
two types of conditions:

1) uncloseness conditions derived from closeness conditions for se-
quents;

2) decomposition conditions derived from decomposition sequent
forms.

Uncloseness conditions for H are the following conditions obtained
by negation of closeness conditions of sequents:
H
⊢⊣

CL) there is no formula Φ such that ⊢Φ∈H and ⊣Φ∈H;
H
⊥⊢

CL) there is no formula Φ such that ⊥Φ∈H and ⊢Φ∈H;
H
⊥⊣

CL) there is no formula Φ such that ⊥Φ∈H and ⊣Φ∈H;
H
∼⊣

CL) there is no formula Φ : ⊣ ∼ Φ∈H;
H
E⊥

CL) there is no formula Ey such that ⊥Ey∈H;
H
∃⊥

CL) it is not possible that ⊥∃xΦ∈H
and ⊢R

x
y(Φ)∈H for some y∈V such that ⊢Ey∈H.

Decomposition conditions for H are the following conditions:
H
⊢
∨) ⊢Φ∨Ψ∈H ⇒ ⊢Φ∈H or ⊢Ψ∈H;

H
⊣
∨) ⊣Φ∨Ψ∈H ⇒ ⊣Φ∈H and ⊣Ψ∈H;

H
⊥
∨) ⊥Φ∨Ψ∈H ⇒ ⊥Φ∈H and ⊥Ψ∈H or ⊥Φ∈H and ⊣Ψ∈H or

⊣Φ∈H and ⊥Ψ∈H;
H
⊢
¬) ⊢¬Φ∈H ⇒ ⊣Φ∈H;

H
⊣
¬) ⊣¬Φ∈H ⇒ ⊢Φ∈H;

H
⊥
¬) ⊥¬Φ∈H ⇒ ⊥Φ∈H;

H
⊢
∼) ⊢ ∼ Φ∈H ⇒ ⊥Φ∈H;

H
⊥
∼) ⊥ ∼ Φ∈H ⇒ ⊢Φ∈H or ⊣Φ∈H.

H
⊢
RR) ⊢R

v̄
x̄(R

w̄
ȳ (Φ))∈H ⇒ ⊢R

v̄
x̄ ◦

w̄
ȳ (Φ)∈H;

H
⊣
RR) ⊣R

v̄
x̄(R

w̄
ȳ (Φ))∈H ⇒ ⊣R

v̄
x̄ ◦

w̄
ȳ (Φ)∈H;

H
⊥
RR) ⊥R

v̄
x̄(R

w̄
ȳ (Φ))∈H ⇒ ⊥R

v̄
x̄ ◦

w̄
ȳ (Φ)∈H;

H
⊢
R∃) ⊢R

v̄
x̄(∃yΦ)∈H ⇒ ⊢∃zR

v̄
x̄(R

y
z(Φ))∈H for some z∈fu(Rv̄

x̄(∃yΦ));
H
⊣
R∃) ⊣R

v̄
x̄(∃yΦ)∈H ⇒ ⊣∃zR

v̄
x̄(R

y
z(Φ))∈H for some z∈fu(Rv̄

x̄(∃yΦ));
H
⊥
R∃) ⊥R

v̄
x̄(∃yΦ)∈H ⇒ ⊥∃zR

v̄
x̄(R

y
z(Φ))∈H for some z∈fu(Rv̄

x̄(∃yΦ));
H
⊢
R) ⊢R(Φ)∈H ⇒ ⊢Φ∈H;

H
⊣
R) ⊣R(Φ)∈H ⇒ ⊣Φ∈H;

H
⊥
R) ⊥R(Φ))∈H ⇒ ⊥Φ∈H;

180



Completeness of the First-Order Logic ...

H
⊢
RI) ⊢R

z,v̄
z,x̄(Φ)∈H ⇒ ⊢R

v̄
x̄(Φ)∈H;

H
⊣
RI) ⊣R

z,v̄
z,x̄(Φ)∈H ⇒ ⊣R

v̄
x̄(Φ)∈H;

H
⊥
RI) ⊥R

z,v̄
z,x̄(Φ))∈H ⇒ ⊥R

v̄
x̄(Φ)∈H;

H
⊢
RU) if z∈fu(Φ) then ⊢R

z,v̄
y,x̄(Φ)∈H ⇒ ⊢R

v̄
x̄(Φ)∈H;

H
⊣
RU) if z∈fu(Φ) then ⊣R

z,v̄
y,x̄(Φ)∈H ⇒ ⊣R

v̄
x̄(Φ)∈H;

H
⊥
RU) if z∈fu(Φ) then ⊥R

z,v̄
y,x̄(Φ)∈H ⇒ ⊥R

v̄
x̄(Φ)∈H;

H
⊢
R ∼) ⊢R

x̄
x̄(∼ Φ)∈H ⇒ ⊢ ∼ Rx̄

x̄(Φ)∈H;
H
⊣
R ∼) ⊣R

x̄
x̄(∼ Φ)∈H ⇒ ⊣ ∼ Rx̄

x̄(Φ)∈H;
H
⊥
R ∼) ⊥R

x̄
x̄(∼ Φ)∈H ⇒ ⊥ ∼ Rx̄

x̄(Φ)∈H;
H
⊢
RE) if z /∈v̄ then ⊢R

v̄
x̄(Ez) ⇒ ⊢Ez;

H
⊣
RE) if z /∈v̄ then ⊣R

v̄
x̄(Ez) ⇒ ⊣Ez;

H
⊢
REr) ⊢R

v̄,z
x̄,y(Ez) ⇒ ⊢Ey;

H
⊣
REr) ⊣R

v̄,z
x̄,y(Ez) ⇒ ⊣Ey;

H
⊢
RN) ⊢R

y,v̄
z,x̄(Φ), ⊣Ez, ⊣Et∈H ⇒ ⊢R

y,v̄
t,x̄ (Φ)∈H;

H
⊣
RN) ⊣R

y,v̄
z,x̄(Φ), ⊣Ez, ⊣Et∈H ⇒ ⊣R

y,v̄
t,x̄ (Φ)∈H;

H
⊥
RN) ⊥R

y,v̄
z,x̄(Φ), ⊣Ez, ⊣Et∈H ⇒ ⊥R

y,v̄
t,x̄ (Φ)∈H.

Let W be the set of all assigned variables in H. Now we can define
the following conditions of quantifier elimination:
H
⊢
∃) ⊢∃xΦ∈H ⇒ exists y∈W such that ⊢Ey∈H and ⊢R

x
y(Φ)∈H;

H
⊣
∃) ⊣∃xΦ∈H ⇒ ⊢Ey∈H and ⊣R

x
y(Φ)∈H for all y∈W ;

H
⊥
∃) ⊥∃xΦ∈H ⇒ exists z∈W such that ⊢Ez∈H and ⊥R

x
z (Φ)∈H and

there is no y∈W such that ⊢Ey∈H and ⊢R
x
y(Φ)∈H.

Sequent form for insertion of variable assignment predicates induces
the following condition:
HE⊢⊣) if x∈nm(H), then ⊢Ex∈H or ⊣Ex∈H.

A set H of signed formulas is called satisfiable, if there exists an
interpretation J = (AQEC(V,A), IPs

Q ) and δ∈VA such that for any for-
mula Φ:

⊢Φ∈H ⇒ ΦJ(δ)↓ = T ;

⊣Φ∈H ⇒ ΦJ(δ)↓ = F ;

⊥Φ∈H ⇒ ΦJ(δ)↑.

Theorem 11. Let H be a Hintikka set for LQEC . Then H is
satisfiable.
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Proof. First we define a set A that gives us an algebra AQEC(V,A);
then we construct δ∈VA. At last, we specify an interpretation of pred-
icate symbols IPs

Q that gives us an interpretation J .

Let W = { x | ⊢Ex∈H} be the set of all assigned variables in H.
Let a set A be such that |A| = |W |, i.e. A is a copy of W . Elements of
A are denoted aw, where w∈W .

Nominative set δ∈VA is constructed in the following way:

– if x∈W , then a value of x in δ is defined and equal to ax;

– if x/∈W , then a value of x is not defined.

Let us admit that any variable x from nm(H) \W is unassigned in
H, i.e. ⊣Ex∈H by HE⊢⊣.

Let us specify values of basic predicate P∈Ps on δ and on the
nominative sets of the form rv̄x̄(δ) :

– ⊢P∈H ⇒ PJ(δ)↓ = T ;

– ⊣P∈H ⇒ PJ(δ)↓ = F ;

– ⊥P∈H ⇒ PJ (δ)↑;

– ⊢R
v̄
x̄(P )∈H ⇒ PJ(r

v̄
x̄(δ))↓ = T ;

– ⊣R
v̄
x̄(P )∈H ⇒ PJ(r

v̄
x̄(δ))↓ = F ;

– ⊥R
v̄
x̄(P )∈H ⇒ PJ(r

v̄
x̄(δ))↑.

Values of P on other data can be chosen in arbitrary way with
respect to unessential variables from VU .

No ambiguity arises in these definitions due to uncloseness condi-
tions for H.

Let us note that formulas of the forms Ry,v̄
z,x̄Φ and Ry,v̄

t,x̄Φ with

⊣Ez, ⊣Et∈H cannot lead to ambiguity either, because RN -rules specify
for them equal values.

For atomic formulas and formulas of the form Rv̄
x̄(p) the statement

of the theorem follows from the definitions of the basic predicates and
variable assignment predicates. The proof of the theorem is then done
by induction on the formula structure.

Let us consider the cases with the complement and quantification
compositions only. Other cases are proved in a similar manner.

Let ⊢ ∼ Φ∈H. From H
⊢
∼ we have ⊥Φ∈H. In accordance with the

induction hypothesis ΦJ(δ)↑, so, ∼ ΦJ(δ)↓ = T.
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Let ⊥ ∼ Φ∈H. From H
⊥
∼ we have ⊢Φ∈H or ⊣Φ∈H. In accordance

with the induction hypothesis we have ΦJ(δ)↓ = T or ΦJ(δ)↓ = F,
therefore ΦJ(δ)↓, and ∼ ΦJ(d)↑.

Let ⊢∃xΦ∈H. By H
⊢
∃ there exists y∈W such that ⊢R

x
y(Φ)∈H.

In accordance with the induction hypothesis we have Rx
y(Φ)J (δ)↓ =

T, whence ΦJ(δ∇x 7→δ(y))↓ = T. So, for ay = δ(y) we have
ΦJ(δ∇x 7→ay)↓ = T, whence ∃xΦJ(δ)↓ = T.

Let ⊣∃xΦ∈H. By H
⊣
∃ for all y∈W ⊣R

x
y(Φ)∈H. In accordance with

the induction hypothesis we have Rx
y(Φ)J(δ)↓ = F for all y∈W, whence

ΦJ(δ∇x 7→δ(y))↓ = F for all y∈W. So, ΦJ(δ∇x 7→ay)↓ = F for all ay∈A,
whence ∃xΦJ(δ)↓ = F .

Let ⊥∃xΦ∈H. By H
⊥
∃ there exists z∈W such that ⊥R

x
z (Φ)∈H and

there is no y∈W such that ⊢Ey∈H and ⊢R
x
y(Φ)∈H. In accordance with

the induction hypothesis for δ we have Rx
z (Φ)J(δ)↑ for some z∈W and

Rx
y(Φ)J(δ) 6= T for all y∈W, whence ΦJ(δ∇x 7→δ(z))↑ for some z∈W

and ΦJ(δ∇x 7→δ(y))6=T for all y∈W . Therefore ΦJ(δ∇x 7→ay)6=T for
all ay∈A. Thus, ∃xΦJ(δ)↑.✷

Theorem 12. For CQEC there exists a sequent tree construction
procedure such that unclosed paths form Hintikka sets.

Proof. Such procedure for constructing a sequent tree in CQEC is
defined in the same way as for other sequent calculi for finite sequents
[20], therefore we will not go into details. In our case of logic of partial
quasiary predicates with the complement composition, this procedure
is more complicated. The reason is that we should take into account 1)
the undefinedness conditions; 2) the assigned and unassigned variables.
These features manifest themselves in various sequent forms, especially
in quantifier elimination forms.✷

Theorem 13 (completeness). Let U/Γ |=⊥
IR ∆ holds. Then

sequent ⊢Γ⊥U⊣∆ is derivable in CQEC.

Proof. Let U/Γ |=⊥
IR ∆ and ⊢Γ⊥U⊣∆ be not derivable. Then a

sequent tree for ⊢Γ⊥U⊣∆ is not closed. Thus, an unclosed path exists
in this tree. Let H be the set of all formulas of this path. By Theorem
12, H is a Hintikka set. By Theorem 11, H is satisfiable. It means
that there are an algebra AQEC(V,A), nominative set δ∈VA, and an
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interpretation J such that for any formula Φ: ⊢Φ∈H ⇒ ΦJ(δ)↓ = T ;

⊣Φ∈H ⇒ ΦJ(δ)↓ = F ;⊥Φ∈H ⇒ ΦJ(δ)↑. Since ⊢Γ⊥U⊣∆ ⊆ H, this
holds for formulas of the sequent ⊢Γ⊥U⊣∆. Thus, for all Φ∈Γ we have
ΦJ(δ)↓ = T ; for all Φ∈U we have ΦJ(δ)↑, for all Φ∈∆ we have ΦJ(δ)↓ =
F. This contradicts U/ΓA |=⊥

IR ∆.✷

5 Conclusion

Extensive usage of logic in Computer Science leads to new logics that
more adequately represent applied domains. Logic of partial quasiary
predicates is one of such logics oriented on proving properties of pro-
grams. In our previous papers we studied logics of propositional and
renominative (quantifier-free) levels. In this paper we have generalized
the obtained results for the first-order logic of partial quasiary pred-
icates extended with the complement composition. For this logic a
special consequence relation called irrefutability consequence relation
under undefinedness conditions has been introduced. We have studied
its properties, constructed a sequent calculus for it and proved sound-
ness and completeness of this calculus.

The obtained results can be useful for software verification; some
steps were made in [21].
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