
Computer Science Journal of Moldova, vol.27, no.2(80), 2019

Quantitative Expressiveness of Instruction

Sequence Classes for Computation on Single Bit

Registers

Jan A. Bergstra

Abstract

The number of instructions of an instruction sequence is taken
for its logical SLOC, and is abbreviated with LLOC. A notion of
quantitative expressiveness is based on LLOC and in the special
case of operation over a family of single bit registers a collection
of elementary properties is established. A dedicated notion of
interface is developed and used for stating relevant properties of
classes of instruction sequences.

ACM classes: F.1.1; F.2.1.

1 Introduction

This paper makes use of the theory and notation regarding instruction
sequences for operation on Boolean registers as surveyed in [11] for the
special case of operations on Boolean registers, thereby following the
notation of [9] and simplifying the general presentation of [3] and [12].

Existing notations and results regarding instruction sequences will
be used mostly without further reference or technical introduction
because such expositions having amply been published. We men-
tion [2]–[4], [6], [7], [9] and [11]), and further references listed in these
papers. For the following notions, terms and phrases, we refer to the
papers just mentioned and the references contained in those: basic
instruction (a ∈ A), focus, method, focus method notation for basic
instructions (a = f.m with focus f and method m), yield (also called

©2019 by CSJM; Jan A. Bergstra

131

Jan A. Bergstra

reply) of a basic instruction(a), positive test instruction (+a), nega-
tive test instruction (−a), termination instruction (!), (forward) jump
instruction (#k), backward jump instruction (\#k), in direct jump in-
struction, finite PGA instruction sequence, (alternatively: single pass
instruction sequence or PGA instruction sequence without iteration),
PGLB program (PGA instruction sequence with backward jumps in-
stead of iteration), generalised semi-colon (text sequential composi-
tion), thread, terminated thread (stopped thread S), diverging thread
(D), thread extraction from an instruction sequence (|X| for an in-
struction sequence X), service, service family, empty service family,
service family composition operator, service family algebra, apply op-
erator (− • −), the method interface M16 consisting of 16 methods of
the form y/e for Boolean registers with y, e ∈ {0, 1, i, c} (y for yield, e
for effect).

1.1 Logical lines of code for an instruction sequence

Because the identification of Booleans and bits may lead to confusion,
Boolean registers will be referred to as single bit registers below.

The number of instructions of an instruction sequence is referred to
as its length in e.g. [7], [8]. However, in order to develop a terminology
which is more similar to the classical notion of LOC (lines of code, also
referred to as SLOC for source lines of code) we will make use of the
following terminology:

Definition 1.1. LLOC (logical lines of code): for an instruction se-
quence X, written in any PGA-style instruction sequence notation,
LLOC(X) denotes the number of instructions of X.

Conventions for the notation of instructions are such that LLOC(X)
equals the number of semi-colons in X plus one.

Definition 1.2. An instruction sequence has low register indices if
for each kind of register the collection of register numbers of registers
involved in one or more of its basic instructions constitute an initial
segment of the positive natural numbers.

132

Quantitative Expressiveness of Instruction Sequence Classes for . . .

LLOC(X) is not a precise measure of the size of X in terms of bytes.
A reasonable estimate is that for the instruction sequence notations
used below, and assuming that the instruction sequence has low register
indices, the size of X as measured in bytes will not exceed say 200 ·
LLOC(X) · 10 log LLOC(X).

We refer to [19] for an exposition on various forms of LOC and
SLOC in software engineering practice. In the setting of PGA style
instruction sequences no distinction between a statement and an in-
struction is made and LLOC according to Definition 1.1 is a plausible
interpretation of logical SLOC which is characterised in [19] as a met-
ric, or rather a family of metrics, based on counting the number of
statements in a source code. LLOC as in Defnition 1.1 comes close to
the metric used implicitly in [16].

1.2 Existing approaches to program size

Work on program size has been carried out in the setting of computabil-
ity theory, for instance [14], [18], and [15] in relation to Kolmogorov
complexity. In [17] program size is defined as the set of characters of a
program and it is related with practical computational tasks, while [13]
links program size with information theory. Unlike these approaches
we use a rather fixed family of program notations, viewing a program
as a sequence of instructions. By taking the number of instructions as
a metric, full precision is obtained, while at the same time abstraction
from the ad hoc syntax of instructions is achieved.

1.3 Objectives of the paper

The objective of this paper is to describe some elementary quantita-
tive observations pertaining to instruction sequences and LLOC metric
under the simplifying assumption that basic actions operate on a fam-
ily of single bit registers, which arguably are the simplest conceivable
datastructures. We will assume that the semantics of an instruction
sequence, i.e. what it computes, is a partial function from tuples of
bits to tuples of bits, thereby excluding instruction sequences meant
for computing interactive systems.

133

Jan A. Bergstra

We will demonstrate that for very simple tasks determination of the
lowest LLOC of an implementation for that task is possible, and we will
show by means of examples that theoretical work on LLOC minimisa-
tion is greatly facilitated by being explicit about the precise method
interfaces of various single bit registers. For each bit there are 216 pos-
sible interfaces and therefore when designing an instruction sequence
for a task F involving n input registers, and m output registers, while
allowing the use of an arbitrary number of auxiliary registers, each with
the same method interface, a total of 216·n·m different combinations of
method interfaces each constitute potentially different versions of the
problem to implement F and to do so with a minimal (or relatively
small) LLOC count. Many questions are stated and left unanswered.

A single bit register is a service (program algebra terminology for
a system component able to execute the actions of an instruction se-
quence) which is accessed by a calling instruction via its focus. A focus
plays the role of the name of a service, and at the same time it is infor-
mative about the role of the service. Below we will mainly consider the
following foci: in:i and out0:i for i ∈ N. The inputs for a computation
are placed in the registers in:i (so-called input registers), the outputs
of a computation are found in the registers out0:i (0 initialised output
registers). At the end of a computation the final value of the input
registers is forgotten. The focus prefixes in and out0, are referred to
as register roles. Other register roles exist, for instance out1 for output
registers which have initial value 1, inout for a register which serves
both as an input and as an output, aux0 for an auxiliary register with
initial value 0, and aux1 for an auxiliary register with initial value 1.

1.4 Quantitative expressiveness versus qualitative ex-

pressiveness

Expressiveness of a formalism for denoting instruction sequences may
be measured in many ways. We will mainly consider the following idea:
given a task, computing a total or partial function F of type Bn → B

m

we are interested in the shortest instruction sequence(s), taken from
some class K of instruction sequences, that is instruction sequences

134

Quantitative Expressiveness of Instruction Sequence Classes for . . .

with a minimal number of instructions, which compute F . Clearly if
K1 ⊆ K2 are two classes of instruction sequences, then K2 may be
considered more expressive (more expressive w.r.t. LLOC) than K1 if
for some task F all instruction sequences in K1 that compute F are
longer than n with n the minimal LLOC for an instruction sequence in
K2 that implements task F .

Definition 1.3. Let K1 ⊆ K2 be classes of instruction sequences. K2

is more expressive (more expressive w.r.t. LLOC) than K1 if for some
task F there is an instruction sequence X ∈ K2 which computes F
while there is no instruction sequence Y ∈ K1 which also computes F
such that LLOC(Y) ≤ LLOC(X).

In some cases the smaller class of instruction sequences does not
provide any implementation for a task which is implementable with
the larger class. Then I will speak of differentiation of qualitative ex-
pressiveness.

Definition 1.4. Let K1 ⊆ K2 be classes of instruction sequences. K2

is qualitatively more expressive than K1 if for some task F there is
an instruction sequence X ∈ K2 which computes F while there is no
instruction sequence Y ∈ K1 which also computes F .

1.5 Rationale of designing additional forms of instruc-

tions

Below several types of instructions outside the core syntax of PGA
will be discussed: instructions for structured programming, backward
jumps, indirect jumps, and generalised semi-colon instructions. These
constitute merely a fraction of the options for extension of the syntax
of instruction sequences that have been explored in recent years.

We will assume that the rationale of the introduction of additional
kinds of instructions is to achieve one or more of four potential advan-
tages, upon making use of the “new” instructions:

Fewer instructions. Some tasks may be implemented with a shorter
instruction sequence, that is with fewer instructions. (This cri-

135

Jan A. Bergstra

terion, when applied in practice, amounts to the optimisation of
program size or achieving good code compactness.)

Fewer steps. A given task may be implemented by an instruction
sequence which produces faster runs, i.e. fewer steps are taken
till termination, either in the worst case or in average or according
to some other efficiency criterion.

Fewer mistakes. Correct or ‘high quality” instruction sequences can
be produced either more quickly, or in a more readable form or,
in such a manner that some given form of analysis or verification
is more easily applied, or can be applied with a higher rate of
success.

Fewer compiler optimisations. A given task may be implemented
by an instruction sequence which allows the production of efficient
compiled version with fewer optimisation steps.

Below we will focus exclusively on the first two advantages. Undoubt-
edly the third advantage may become harder to achieve when optimis-
ing either code compactness or execution speed or both.

1.6 Generalised semi-colon and a non-expanding LLOC

metric

We will use the generalised semi-colon notation: ;nk=1
(Xk) = X1; . . . ;Xn.

In order to apply the LLOC metric the generalised semi-colons must
be expanded first.

An alternative presentational metric LLOCgsc, called the generalised
semi-colon non-expanding LLOC metric, works as follows: (i) for X not
containing any occurrence of the generalised sequential composition
construct: LLOCgsc(X) = LLOC(X), LLOCgsc(X : Y) = LLOCgsc(X) +
LLOCgsc(Y), and (iii) LLOCgsc(;nk=1

(Yk)) = LLOC(Yk) + 2 + ⌊2log n⌋.
The idea is to count “;nk=1

(” as well as the corresponding closing bracket
“)” as if these were instructions, and to add a logarithmic increment
taking account for the size of n.

136

Quantitative Expressiveness of Instruction Sequence Classes for . . .

When writing an instruction sequence the use of generalised semi-
colon notation may improve readability. It may also be easier to write
a compiler for instruction sequence expressions involving generalised
semi-colons than for expanded versions thereof.

1.7 Terminology and notation for roles

The strings in, out, inout, and aux serve as role headers which prefix
the role base, whereas 0 and 1 are role postfixes which may be appended
to the role base. A role comes about given a role base from prefixing
the role base with the header and in addition, in case the header is
either out or aux, postfixing the result with a postfix.

For single bit registers the preferred role base is the empty string
and the respective roles are in, inout, out0, out1, aux0, aux1. Corre-
sponding foci include a further number so that different copies of ser-
vices for the role at hand can be distinguished. Examples of foci for the
various roles for single bit registers are e.g. in:7, inout:13, out0:3. Be-
low we will introduce instructions with role base 1D for 1 dimensional
single bit arrays, and we will use additional role bases a and b (with
foci e.g. in a:2m, in b:5, inout a:1) in order to enhance readability.

2 Expressiveness of single pass instruction se-

quences

All functions from bit vectors of length n to bit vectors of length m
can be computed without the use of backward jumps, that is without
the use of any form of iteration or looping. Proposition 2.2 was shown
for m = 1 in taken from [7], the extension to m > 1 is straightforward.
The following function l will be used.

Definition 2.1. l : N×N → N is given by l(0,m) = m+1, l(n+1,m) =
2 · l(n,m) + 2.

Proposition 2.1. l(n,m) = 2n · (m+ 3)− 2.

137

Jan A. Bergstra

Proof. Induction on n. The case n = 0 is immediate. Step: l(n +
1,m) = 2·l(n,m)+2 = 2·(2n ·(m+3)−2)+2 = (2n+1 ·(m+3)−4)+2 =
2n+1 · (m+ 3)− 2.

Proposition 2.2. Let n,m ∈ N, with m > 0. For each total
F : Bn → B

m there is a finite PGA instruction sequence (i.e. a
single pass instruction sequence, or instruction sequence without it-
eration) XF , with basic instructions of the form f.y/e with focus
f ∈ {in:1, . . . , in:n}∪{out0:1, . . . , out0:m} and method y/e ∈ M16

which computes F . Moreover the XF ’s can be chosen such that
LLOC(XF) = l(n,m).

Proof. We will use induction on n. If n = 0, F produces a sequence of
constants (d1, . . . ,dm) which is computed byXF = ;mk=1

(out0:1.1/dk); !.
We notice that LLOC(XF) = m+ 1 = l(0,m).

Now consider the case n + 1. We split F into F0 and F1 such
that for all ~b, F (~b, 0) = F0(~b) and F (~b, 1) = F1(~b). Using the induc-
tion hypothesis one may finc X0 and X1 with l(n,m) instructions each
and which compute F0 and F1 respectively. Now the instruction se-
quence X = +in:(n+1).i/i;#(l(n)+1);X0 ;X1 computes F , moreover,
LLOC(X) = l(n+ 1,m).

The design of X has many alternatives. For instance setting X =
+in:(n+1).i/0;#(l(n)+1);X0 ;X1 works as well, while its basic actions
are less amenable to reading input from the input registers as the value
of input registers is set to 0 at the first method call to it.

2.1 Computational metrics: NOS

With NOS(X,H) (number of steps) I will indicate the number of in-
structions that is processed during the (unique) run of the instruction
sequence X on service family H. If divergence occurs, a jump with
counter 0, or a jump outside the range of instructions, NOS takes the
value∞. Equally if an error occurs, i.e. the occurrence of a method call
outside the interface provided by H, NOS takes the value ∞. Interfaces
are discussed in detail in Section 5.

138

Quantitative Expressiveness of Instruction Sequence Classes for . . .

Some examples of NOS: NOS(!,H) = 1,NOS(#1;#1; !,H) = 3,
NOS(#1;#0; !; !,H) = ∞, NOS(+out0:1.1/1; !, out0:1.br(1)) = 2,
NOS(+out0:1.1/1; \#2; !, out0:1.br(1)) = 2 NOS(#2; !,H) = ∞,
and NOS(+in:3.i/i; !, out0:1.br(0)) = ∞.

The instruction sequenceX which has been constructed in the proof
of Proposition 2.2 computes F in such a manner that each result is
found in precisely 2·(m+3)−2 steps. For this algorithm an NOS equal
to 2·(m+3)−2 is average and worst case at the same time. This figure
for NOS is fairly low as, except from producing outputs, it provides
just one instruction on average to process each bit of input after it has
been read.

2.2 Tradeoff between LLOC and NOS: an open question

The implication of this observation is that it is easy to write an in-
struction sequence X which produces fast computations, i.e. a low
worst case NOS(X,H) for relevant H, while it may be hard to ensure
in addition that LLOC(X) is kept reasonably small. If LLOC(X) entails
a combinatorial explosion, then so does the activity of designing and
constructing X.

In other words: given a task F (with n inputs and m outputs,
both fixed numbers) the programming problem to write an instruction
sequence implementing the task primarily constitutes a challenge to
find an implementation with low LLOC, a state of affairs which brings
LLOC to prominence. It is unclear to what extent minimising LLOC
stands in the way of obtaining a low worst case or average NOS in
practice, that is for meaningful tasks F . The following question, for
which we have no answer, constitutes one of many ways to formalise
this matter.

Problem 2.1. Is there a family of functions Fn : Bn → B for which
LLOC minimal implementing instruction sequences (admitting auxil-
iary registers) have superpolynomial worst case NOS performance?

However, as minimising LLOC is in most cases an unfeasible chal-
lenge, it is reasonable to look for a combined metric. We are unaware

139

Jan A. Bergstra

of a plausible candidate for a combined metric, however, which leads
us to stating the following conceptual question.

Problem 2.2. Find a plausible metric for instruction sequences (which
measures the success of a design) and combines LLOC and NOS by
capturing a useful tradeoff between these.

In [11] we have presented various designs of single pass instruction
sequences for multiplication of natural numbers in binary notation. As
it stands we have no systematic method to assess the success of these
designs in quantitative terms. The processing speed (low worst case
NOS) which is achieved by way of a divide and conquer approach is
relevant only if the cost in terms of LLOC is not too high, and we have
no obvious way to assess that matter.

A way out of this matter is to insist that implementing a family
of functionalities Fn,m : Bn → Bm by means of single pass instruction
sequences Xn,m must be done under the additional requirement that
LLOC(Xn,m) ∈ O((n +m) · log n · logm). That requirement, however,
rules out the instruction sequences found in [11].

2.3 Backward jumps and LLOC, an open problem

One may incorporate iteration by allowing backward jump instructions
(written \#k). PGLB is the instruction sequence notation which ad-
mits the instructions from PGLA (without iteration) as well as back-
ward jump instructions. Thus PGLB instructions are !,#k, \#k, a,+a,
and −a with a a basic action, i.e. an action of the form f.m with f a
focus and m a method.

Proposition 2.3. There is a computable translation Ψ which trans-
forms PGLB instruction sequences for single bit registers into finite
PGA instruction sequences working on the same single bit registers in
such a manner that for each X, Ψ(X) computes the same function as
X on the single bit registers which it makes use of.

Proof. Given PGLB instruction sequence X working on n inputs, all 2n

input vectors are presented to X and the results are computed and col-

140

Quantitative Expressiveness of Instruction Sequence Classes for . . .

lected in an appropriate finite datastructure. Now the proof of Propo-
sition 2.2 is understood as the description of an algorithm by means of
which the required instruction sequence is created.

Proposition 2.4. If there exists a translation Ψ which transforms each
PGLB instruction sequence for single bit registers with low register in-
dices into a finite PGA instruction sequence with low register indices
working on the same single bit registers, perhaps making use of addi-
tional auxiliary registers, in such a manner that (i) for each X, Ψ(X)
computes the same function as X, and (ii) for each X, LLOC(Ψ(X)) is
bounded by a fixed polynomial p(−) in LLOC(X), then NP ∈ P/Poly,
and in fact NP ∈ P/O(n log n)

Proof. The connection between instruction sequences and complexity
theory with advice functions has been explored in detail in [7]. The
idea is that one may understand the instruction sequence itself as an
advice function. The proof is an elementary application of the results
in the mentioned paper. As a bit sequence the instruction sequence is
of polynomial length in its number of instructions. The mechanism to
compute the result of the execution of a single pass instruction sequence
with low register indices on given inputs is O(n log n) with n the LLOC
of X.

It follows from these observations that it is implausible that for
each PGLB instruction sequence a finite PGA instruction sequence of
equal LLOC size can be found which computes the same function.

Upon taking into account the presence of more powerful services
it is easily possible to demonstrate that backward jumps allow writing
shorter programs for certain tasks. This idea is pursued in detail for
certain services that represent an array of bits, i.e. indirect addressing
of single bit registers.

2.4 The simplest array: using a single bit as an index

The simplest Boolean array has two single bit registers. Its role base
is 1Da (for 1 dimensional array), role headers are in, inout, out, aux.

141

Jan A. Bergstra

The method interface is as follows: (i) methods a1:y/m for y/m ∈ M16

apply y/m to the index bit a1, and (ii) methods y/m for y/m ∈ M16

can be used and will apply to the register indexed by the current value
of a1.

The initial value of both registers, when of relevance, is given by
the role postfix. The access bit is in fact also a part of this service
kernel which has 8 states for that reason,

For instance out1D0:3 is the focus for the 3rd output service of this
kind for which it is required that the registers are initially set to 1. (By
consequence out1D1:3 is a different focus.)

Copying say in1D:3 to say out1D0:7 can be done as follows with
LLOC = 6,
Copy1D = +in1D:3.i/i; out1D0:7.1/1; out1D:7.1/c; +in1D:3.a1:i/c; !;

\5.

A lower bound on LLOC for array copying in dimension 1, for a
single pass instruction sequence, however, is 7: an access method for
each of both arrays must appear twice (4), a method application on the
index bits of both arrays is necessary (2) and at least one termination
instruction (1) is required. We find:

Proposition 2.5. In the presence of 1D single bit addressed single bit
arrays the use of backward jumps increases the expressive power of the
instruction sequence notation.

The following question is open:

Problem 2.3. Is it the case that the introduction of backward jumps
in addition to PGA instructions renders the instruction sequence no-
tation more expressive in terms of allowing to compute some functions
with smaller LLOC size, and for the purpose of computing Boolean
functions.

The stated question is not very specific for the precise syntax that
allows for repetition. As an alternative to backward relative jumps one
might consider: absolute jumps (see [1]), goto’s with label instructions
(see [1]) and indirect jumps (see [2]).

142

Quantitative Expressiveness of Instruction Sequence Classes for . . .

We expect that multiplication of two n-bits natural numbers
thereby producing 2n output values constitutes a task for which the
availability of backward jumps provides a provable advantage in terms
of the minimisation of the LLOC metric. This phenomenon may well
appear for fairly low n, say n = 5 or below.

2.5 Unfolding an instruction sequence with backward

jumps

Given an instruction sequence X in PGLB notation, i.e. with backward
jumps, one obtains Y which computes the same function as follows. Let
X = u1; . . . ;un. From X obtain Z by replacing each jump ui by u′i as
follows:

� if ui ≡ #k and i+ k ≤ n then u′i ≡ ui,

� if ui ≡ #k and i+ k > n then u′i ≡ #0,

� if ui ≡ \#k and k ≥ i then u′i ≡ #0,

� if ui ≡ \#k and k < i then u′i ≡ #(n− k).

Then take Y ≡ Zω. Assuming that X works on a finite domain, for
some p > 0, Zp (Z; . . . ;Z, p consecutive copies of Z) is a finite PGA
instruction sequence which computes the same function asX. Moreover
the computations take precisely as many steps as for X. In Section 2.1
above we discussed the computational metric NOS for which X and Zp

are equivalent, assuming that p is taken sufficiently large. We notice:
LLOC(Zp) = p · LLOC(X).

3 Proper subclasses of single pass instruction

sequences

In this section we consider two restrictions on the design of instruction
sequences in relation to expressiveness. The first restriction is that no
register is acted upon more than once. The second restriction imposes
an upper bound on the size of jumps. In Paragraph 5.4 below we will

143

Jan A. Bergstra

consider a third proper subclass of instruction sequences, by disallowing
intermediate termination.

3.1 Single visit single pass instruction sequences

A useful subclass of finite PGA instruction sequences consists of those
instruction sequences which contain at most one method call for each
register. We will refer to these instruction sequences as single visit
instruction sequences.

The single visit restriction comes with consequences for qualitative
expressiveness. Consider the instruction sequence X with two inputs
and one output.
X = +in:1.i/i;#3;−in:2.i/i;#2;+in:2.i/i; out0:1.1/1; !.
X computes the function F (in:1, in:2) = in:2 ⊳ in:1 ⊲ (¬ in:2). As
it turns out, imposing the requirement that single pass instruction se-
quences are also single visit instructions reduces the qualitative expres-
siveness of the system.

Proposition 3.1. The function F (in:1, in:2), as mentioned above,
cannot be computed by a single visit single pass PGA instruction se-
quence.

Proof. For single visit instruction sequences the use of auxiliary regis-
ters is not relevant as the first and last method call to it, if any call is
made. It will only return the known initial value of an auxiliary reg-
ister. Assume that (i) Y is a single visit single pass PGA instruction
sequence which has the required functionality, (ii) Y contains at most
one call to each of the three single bit registers involved, and (iii) the
first method call to a register in Y is for in:1. Now notice that after
reading in:1 for both replies the intended output still depends on the
content of in:2. Thus in both cases at some stage (i.e. after 0 or more
jumps) some test instruction takes input from in:2. As there is only a
single test instruction for in:2 in Y it follows that irrespective of the
outcome of the test in in:1 that test on in:2 is performed. As a conse-
quence the result of the computation of Y cannot depend on the initial
content of in:1, which is wrong. So one may assume that the first call

144

Quantitative Expressiveness of Instruction Sequence Classes for . . .

is to register in:2. Now the output still depends on the value of in:1
and therefore in both cases the unique call to in:1 is reached and the
output must be determined after processing that instruction so that it
will not depend on the value read from in:2.

3.2 Single pass instruction sequences with bounded

jumps

Another plausible restriction on single pass PGA instruction sequences
results from imposing an upper bound to the size of jumps. At the mo-
ment of writing we have no answer concerning the following question.

Proposition 3.2. Each Boolean function with finite range and domain
be computed by a single pass PGA instruction sequence that involves
jumps of size at most 2.

Proof. We consider a function F (−,−,−) taking its arguments from
registers in:1, in:2, in:3 and producing results F1(−,−,−), F2(−,−,−)
and F3(−,−,−) in registers out0:1, out0:2 and out0:3. The construction
is done in such a manner that it generalises to all cases.

Let α1, . . . , α23 be an enumeration of the arguments of F . We write
αi = (αi

1, α
i
2, α

i
3). An instruction sequence XF computing F is found

as follows:
XF =

;2
3

k=1
(testα

k

F ; +out0:1.0/F1(α);#2;+out0:2.F2(α);#2;
+ out0:3.F3(α)); !

with
testαF = −in:1.(i⊳ α1 ⊲ c)/i;#2;−in:2.(i ⊳ α2 ⊲ c)/i;#2;

− in:3.(i⊳ α3 ⊲ c)/i;#2.

Following [3] an instruction sequence with jumps of size 1 only
can be transformed into an equivalent instruction sequence without
jumps. Thus the use of jumps of size 1 does not increase expressiveness.
Moreover, in the presence of auxiliary registers, it can be avoided.

Proposition 3.3. With the use of arbitrarily many auxiliary registers
(say aux0:1, . . . , aux0:k) each function on single bit registers can be
computed by a single pass PGA instruction sequence without jumps.

145

Jan A. Bergstra

Proof. Using Proposition 2.2, given F , some single pass PGA instruc-
tion sequence X over registers used by F may be chosen such that X
computes F . Using the main result of [3], with the help of sufficiently
many auxiliary registers aux0:1, . . . , aux0:k a single pass instruction se-
quence Y is found such that X/

⊕k
l=1

aux0:l.br(0) = |Y | (after abstrac-

tion from internal steps). It follows that |X| •H⊕
⊕k

l=1
aux0:l.br(0) =

|X| •H which implies that X computes F .

Although large jumps are not required for the computing any
Boolean function, it still may be the case that imposing a restriction
to small jumps leads to the need for longer instruction sequences, or it
may imply the need for the use of more auxiliary registers.

Example 3.1. Consider the function Gk with one input in:1 and 2k
outputs out0:1, . . . , out0:k,
out0:k + 1, . . . , out:k + k.
Gk(0) returns with out0:1, . . . , out0:k each set to 1 while Gk(1) returns
with out0:k + 1, . . . , out0:k + k set to 1. Gk is computed by:

Xk
G = −in:1.i/i;#k + 2;;kl=1

(out0:l.1/1); !;;kl=1
(out0:(k + l).1/1); !

LLOC(Xk
G) = 2k + 3, but in this case the jump instruction can be

avoided, thereby achieving LLOC = 2k + 2, as follows:

Y k
G = +in:1.i/i;;k−1

l=1
(−out0:l.1/1;−out0:(k + l).1/1);

−out0:k.1/1; out0:(2k).1/1; !

None of the instructions of Y k
G can be avoided for any instruction se-

quence able to compute Xk
G. It follows that Y k

G is demonstrably a
shortest instruction sequence able to compute Gk.

Example 3.2. Now the example is modified by having additional in-
puts which govern whether or not the outputs are to be set to 1. More-
over, these additional inputs serve also as outputs and are comple-
mented with each call. For focus naming non-empty role bases (see
Paragraph 1.7) a and b are used and the function Ek is computed by
Xk

E with LLOC(Xk
E) = 4k + 4:

146

Quantitative Expressiveness of Instruction Sequence Classes for . . .

Xk
E = +inout:1.i/c;#2k + 2;;kl=1

(+inout a:l.i/c; out0 a:l.1/1); !;

;kl=1
(+inout b:l.i/c; out0 b:l.1/1); !

It is easy to see that for k ≥ 1 no instruction sequence with fewer
than 4k + 2 instructions can compute Ek. From Proposition 3.3 we
know that Ek can be computed by an instruction sequence without
jumps with the use of auxiliary registers, and from Proposition 3.2 we
know that it can be computed by means of an instruction sequence
involving jumps with length 2 or less. The latter instruction sequence
may be quite long, however. By admitting jumps of size 3, the LLOC
equal to 5k + 4 can be achieved:

Y k
E = +inout:1.i/c;;kl=1

(#3;+inout a:l.i/c;−out0 a:l.1/1);#2; !;

;kl=1
(+inout b:l.i/c; out0 b:l.1/1); !

It is plausible that for increasing k the shortest single pass PGA in-
struction sequences for computing Ek must involve increasingly large
jumps, as Xk

E does. Proving that to be the case, however, we were
unable to do. We will provide a partial result on that matter in Propo-
sition 5.3 below, making use of interfaces in order to restrict the scope
of the assertion and thereby to allow for its proof.

4 Interfaces

The setting of instruction sequences acting on service presents an in-
centive for the introduction and application of various forms of inter-
faces. Interfaces may be classified and qualified in different ways. To
begin with, we distinguish required interfaces and provided interfaces.
A thread or an instruction sequence comes with a required interface,
whereas services and service families come with a provided interface.1

If a component is placed in a context, it is plausible to assume that
the component comes with a required interface and that the context has

1Mathematically speaking, required interfaces and provided interfaces are the
same, though when working with interface groups required interfaces and provided
interfaces may be thought of as inverses w.r.t. composition.

147

Jan A. Bergstra

a provided interface and to require for a good fit that the component’s
required interface is a subinterface of the context’s provided interface.2

4.1 Service kernels and method interfaces

A method interface is a finite set of methods (i.e. method names). A
service kernel U is a state dependent partial function from methods to
Booleans. The domain of that function is called the method interface of
the service kernel, and it is denoted with Im(U). The method interface
of U is supposed to be independent of the state of U . Applying method
m ∈ Im(U) to U produces a yield y(m,U) ∈ B and an effect e(m,U)
which technically is another service kernel with Im(e(m,U)) = Im(U).
It is a useful convention to write U = U(s) thereby making a state s
explicit.

Using notation with an explicit state we may write y(m,U(s)) =
ym(s) and e(m,U(s)) = U(em(s)). A service kernel with an empty
method interface is called degenerate or inactive. We will equate all
inactive kernels denoting these with the constant 0 which satisfies:
Im(0) = ∅.

4.2 Method interface of a single bit register service ker-

nel

There are 16 methods for single bit registers, written y/e (yield / ef-
fect), with y, e ∈ {0, 1, i, c}. These are the methods applicable to any
single bit register kernel br(b) (i.e. br(−) with content b ∈ B). We
write M16 for the collection of these.

Each subset Jm of M16 constitutes a method interface. Conse-
quently there are 216 method interfaces for single bit registers.

2The roles of component and context are not set in stone: if an instruction
sequence X computes over a service family H , the thread |X| is placed in a context
made up of H (denoted |X| • H), whereas if the instruction sequence X uses the
service family H by way of the use operator −/− (denoted |X|/H), it is less plausible
to take this view as the use operator is not based on the assumption that H provides
a way of processing for each request (method call) that is required (issued) by |X|.

148

Quantitative Expressiveness of Instruction Sequence Classes for . . .

For Jm ⊆ M16, ∂Jm(br(b)) denotes the service kernel which admits
precisely the methods of M16 − Im on the single bit register br(b). It
follows that for b ∈ {0, 1}, br(b) = ∂∅(br(b)), so that Im(br(b)) = M16,
and Im(∂Jm(br(b))) = Jm.

4.3 Focus kernel linking and service family composition

A service kernel U may be linked to (or: prefixed by, or: positioned
under, or: combined with) a focus f whereby a new service f.U is
obtained. If f 6= g, then g.U is a different service starting out as a
copy of U .

Service families are combinations of services created from the empty
service family and services f.U by way of service family composition
(denoted −⊕−) which is commutative and associative, and for which
the empty service is a unit element. Service family composition is not
idempotent, however, as f.U ⊕ f.V = f.0 (with 0 as in Paragraph 4.1
above), thereby indicating that ambiguity in the service provided by
a context is considered problematic, rather than it is resolved in a
non-deterministic manner. Indeed if services with the same focus are
combined an ambiguity arises as to which service kernel is to process
m, and for this dilemma no simple solution exists. For that reason
the combination g.U ⊕ g.W is understood as an error in the algebra of
service families.

When combining services f.U and g.W the service family f.U⊕g.W
is obtained. If a basic action h.m is applied to a service family H =⊕n

l=1
fl.Ul then two cases are distinguished: (i) h equals one of the fl in

which case the method m is applied to Ul, so that either if m ∈ Im(U),
a reply is obtained and the state of Ul is updated, or otherwise an error
occurs, or (ii) none of the fl equals h in which case an error occurs.

When computing the application of an instruction sequence to a
service family (i.e. computing X •H) an error is represented by having
the empty service family as the result: X •H = ∅. Evaluation of h.m
over H =

⊕n
l=1

fl.Ul(si) works fine as long as there is at most a single
l, for which h = fl and moreover for that l, m ∈ IM (U). In that
case performing basic action h.m yields reply ylm(sl) while changing

149

Jan A. Bergstra

the state sl of Ul to elm(sl), leaving the states of the other services in
the service family unmodified. In other cases the empty service family
is produced.

In the case of single bit services the inactive service kernel is de-
noted with br(⋆) rather than with 0, i.e. a register containing an error
value, so that: g.br(b) ⊕ g.br(c) = g.br(⋆). Applying any method to
a register containing ⋆ is considered a run time error, the handling of
which depends on the context in principle. In the setting of this paper
an error leads to the production of the empty service family.

4.4 Service family restriction

Let V be a set of foci and H a service family. Then ∂V (H), the V -
restriction of H, results from H by removing (i.e. replacing by ∅) each
service f.U in H with f ∈ V . For the special case that V = {f} we
find that each H can be written in one of two forms: H = ∂{f}(K)
or H = ∂{f}(K) ⊕ f.U . Service family restriction satisfies some useful
equations: ∂V (H ⊕K) = ∂V (H) ⊕ ∂V (K), ∂V ∪W (H) = ∂V ◦ ∂W (H),
f ∈ V → ∂V (f.U) = ∅, f /∈ V → ∂V (f.U) = f.U .

4.5 Basic action interfaces

A basic action (name) is a pair f.m with f a focus and m a method
(name). A basic action interface is a finite collection of pairs f.V , where
f is a focus and V is a method interface. The notation is simplified by
writing f.V for the basic action interface {f.V }, and by writing −+−
for union. Both instruction sequences and service families come with
a basic action interface. We write I(H) for the basic action interface
of a service family H and I(X) for the basic action interface of an
instruction sequence X.

For instruction sequences the interface I(X) collects all focus
method pairs that occur in instructions in X. I(X) is a required
interface, as it collects requests (method calls) which an environ-
ment is supposed to respond to. Defining equations for I(−) are:
I(!) = I(#k) = ∅, I(g.m) = I(+g.m) = I(−g.m) = g.{m}, and
I(X;Y) = I(X) + I(Y), in combination with g.V + g.W = g.(V ∪W).

150

Quantitative Expressiveness of Instruction Sequence Classes for . . .

For a service family H, I(H) collects the method calls to which
H is able to respond. For service families the interface definition
is less straightforward than for instruction sequences: I(∅) = ∅,
I(g.U) = g.Im(U), I(∂{g}(H) ⊕ g.U) = I(∂{g}(H)) + I(g.U). From
these equations it follows that I(g.U ⊕ g.V) = g.∅, and therefore dis-
tribution of I over U , i.e. I(g.U ⊕ g.V) = I(g.U) + I(g.V), fails if
Im(U) 6= ∅ and if Im(V) 6= ∅.

5 Interfaces as constraints on instruction se-

quences

Given a basic action interface I the collection of PGA instruction se-
quences for acting on single bit registers X such that I(X) ⊆ I is
denoted ISbr(I). Membership of ISbr(I) for an appropriate basic ac-
tion interface I is a useful constraint on an instruction sequence. We
will provide several examples of such constraints in the following Para-
graphs of this Section.

Interfaces are partially ordered by inclusion (I ⊆ J , I is a subinter-
face of J , I is contained in J , J includes I). An interface I may serve
as a constraint on instruction sequences, in particular the requirement
that the required interface of the instruction sequence X is not too
large: I(X) ⊆ I.

At the same time a basic action interface I may serve as a constraint
on a service family H on which X is supposed to operate: I ⊆ I(H),
that is the requirement that the provided interface of H is not too
small. We will provide four examples of the use of interfaces in the
following Paragraphs.

5.1 Alternative initialisation of output registers

An obvious extension of the instruction set outlined in Paragraph 1.3
above is to allow making use of registers out1:k which have 1 as the
initial content. Allowing 1-initialised output registers extends the class
of instruction sequences in such a manner that there is a gain of ex-
pressiveness.

151

Jan A. Bergstra

To see this improvement consider the function F (−) with a single
input in:1 which takes constant value 0. Working with interface J =
in:1.i/i + out0:1/1 the mere termination instruction ! constitutes an
instruction sequence that computes F with LLOC 1. Alternatively if
an instruction sequences is sought for in J ′ = in:1.i/i + out1:0/0, a
longer instruction sequence (LLOC 2) such as out1:1.0/0; !, is required.

5.2 Bit complementation

We will consider the function F : {0, 1} → {0, 1} given by F (x) = 1−x.
F represents complementation (negation).

Below seven instruction sequences each of which compute F are
listed. By imposing restrictions on the basic action interface serving
as a constraint the differences between these options for implementing
complementation of a single bit can be made explicit.

The role out stands for a register which serves as an output as it
won’t be read, but which may have initial value 0 or 1. Thus a single
bit register with focus say out:1 may have arbitrary initialisation.

� I1 = inout:1.M16. Both inputs and outputs reside in inout:1.
The instruction sequence X1 = inout:1.1/c; ! computes F and
is a shortest possible program because at least one basic action
needs to be applied to the input and a termination instruction
must be included.

� I2 = in:1.M16 + out0:1.M16. In this case output is placed in
a different register serving as an output register only. X2 =
+in:1.i/i; out0:1.1/1; ! computes F . Moreover a shorter imple-
mentation cannot be found: the input needs to be read and some
writing of outputs is unavoidable as well as a termination instruc-
tion.

� I3 = in:1.M16 + out:1.M16.

The instruction sequence X3 = +in:1.i/i; +out:1.0/1; out:1.0/0; !
computes F . A shorter instruction sequence for computing F
when implemented under the constraints of basic action interface

152

Quantitative Expressiveness of Instruction Sequence Classes for . . .

I3 does not exist. An input instruction is necessary, and both
values must be written by some output instruction because both
outputs can arise while the initial content of the output register
is not known in advance.

� I4 = inout:1.{i/i, 1/1, 1/0}. Now the instruction sequence
X4 = +inout:1.i/i;−inout:1.1/1; inout:1.1/0; ! is in ISbr(I4) and
computes F and it is easy to see that it constitutes a shortest
possible program in ISbr(I4) for that task.

� I5 = in:1:.{c/0}+out0:1.{1/c}. NowX5 = +in:1.c/0; out0:1.0/c; !
is in ISbr(I5), computes F , and as such has minimal LLOC for
that task.

� I6 = in:1.{i/i}+out:1.{i/0, i/1}. A shortest implementation of F
under these constraints is: X6 = out:1.i/0;−in:1.i/i; out:1.i/1; !.

� I7 = in:1.{i/i} + out:1.{i/c}. F is computed by
X7 = −out:1.i/c; out:1.i/c;−in:1.i/i; out:1.i/c; !.

Proposition 5.1. As a single pass instruction sequence computing F
under the constraint that I(X) ⊆ in:1.{i/i}+out:1.{i/c} X7 minimises
LLOC.

Proof. LLOC(X7) = 5 and therefore consider an implementation Y of
F which has 4 instructions, say Y = u1;u2;u3;u4. We may assume
that u4 =! because otherwise u4 cannot be performed unless a faulty
termination takes place with the effect that Ymay be simplified to three
or even fewer instructions while still computing F . That is impossible
because at least one read instruction on in:1 and two different write
instructions on out:1 (for 0 and for 1) must appear in Y . This obser-
vation also implies that the LLOC(Y) is at least 4. So Y = u1;u2;u3; !.
If u3 were an input instruction, the output of Y is independent of the
input, which is not the case.

Thus u3 ∈ {out1:1.i/c,+out1:1.i/c,−out:.i/c}. Now a case dis-
tinction on u1 reveals that u1 = −out1:1.i/c fails because starting
with out:1 = 1 the second instruction is skipped and no input action

153

Jan A. Bergstra

is performed. Similarly u1 = +out1:1.i/c fails because starting with
out:1 = 0 the second instruction is skipped and no input action will
be performed. If u1 = out1:1.i/c, then the collection of results for
out1:1 = 0 and for out1:1 = 1 is left unchanged when deleting u1 so
that a shorter instruction sequence u2;u3; ! also implements F which
has been ruled out already.

Thus u1 is an input instruction. It must be a test instruction
because otherwise the output will not depend on the input. Let
u1 = +in:1.i/i, the symmetric case u1 = −in:1.i/i can be dealt with
similarly.

Upon input in:1 = 0 the computation of Y proceeds with u3; !
with u3 ∈ {out1:1.i/c,+out1:1.i/c,−out:.i/c}. Consider the case with
initial value 1 for out:1, then for each option for u3 the resulting value
for out:1 is out:1 = 0 instead of the required output out:1 = 1. In
all cases a contradiction has been derived thus contradicting the initial
assumption that Y with LLOC equal to 4 computes F .

The following fact admits an easy but tedious proof, the details of
which are left aside.

Proposition 5.2. For each basic action interface I ⊆ in:1.M16 +
out:1.M16 the following holds: if F (complementation) can be com-
puted by a finite single pass instruction sequence in ISba(I), then F
can be computed by an instruction sequence with LLOC at most 5.

5.3 Parity checking

The second example of the use of interfaces as constraints concerns
the role of auxiliary registers in single pass instruction sequences for
computing multivariate functions on Booleans. We will survey the
results of [8] while reformulating these in terms of interfaces.

Let In =
∑n

l=1
in:l.{i/i} + out0:1.{1/1}. The function P on bit

sequences is given by: P (0) = 0, P (1) = 1, P (0, α) = P (α), P (1, α) =
1 − P (α). P (−) determines the parity of a sequence of bits. We are
interested in instruction sequences for computing P (−) from inputs
stored in input registers with focus in:1, . . . , in:n.

154

Quantitative Expressiveness of Instruction Sequence Classes for . . .

From [8] we take that the instruction sequence PARIS0n computes
parity for n bits:

PARIS00 = !

PARIS01 = +in:1.i/i; out0:1.1/1; !

and for n > 1:

PARIS0n = +in:1.i/i : ;nl=2
(#4;+in:l.i/i;#3;#3;−in:l.i/i); out0:1.1/1; !

Formalisation of the fact that these instruction sequences perform
parity checking looks as follows in the notation of [4] and [11]. For all
n ≥ 1 and for all bit sequences (b1, . . . bn):

∂{in:1,...,in:n}(|PARIS
0
n| • (out0:1.br(0) ⊕

n⊕

k=1

in:k.br(bn)) =

out:1.br(P (b1, . . . bn))

For n > 0 we find that LLOC(PARIS0n) = 5(n− 1) + 3 = 5.n− 2.

Next consider the interface Ina = In + aux:1.{i/c, i/i} and the in-
struction sequences PARIS1n with I(PARIS1n) ⊆ Ia.

PARIS10 =!

PARIS11 = PARIS01

and for n > 1:

PARIS1n = ;nl=1
(+in:l.i/i; aux0:1.i/c);+aux0:1.i/i; out0:1.1/1; !

In [8] it is shown that PARIS1n computes P (−) on n inputs. In
formal notation this reads, with V = {in:1, . . . , in:n, aux0:1},

∂V (|PARIS
1
n| • (out0:1.br(0) ⊕ aux0:1.br(0) ⊕

n⊕

k=1

in:k.br(bn)) =

out:1.br(P (b1, . . . bn)).

155

Jan A. Bergstra

For n > 1 LLOC(PARIS1n) = 2n + 3. Moreover it was shown in [8]
that from n = 7 upwards, each instruction sequence in ISba(I

n
a) which

computes P (−) has more instructions than 2n+3, thereby establishing
that the availability of an initialised auxiliary register in this particular
case enables to write a shorter instruction sequence. We are unaware,
however, of conclusive answers to the following questions.

Problem 5.1. What is the lowest LLOC size of a single pass instruc-
tion sequence in ISbr(I

n) which computes P (−) on n single bit regis-
ters?

Problem 5.2. What is the lowest LLOC size of a single pass instruc-
tion sequence in ISbr(I

n
a) which computes P (−) on n single bit regis-

ters?

5.4 Proving the expressive power of large jumps

We return to Example 3.2 and prove a partial result the proof of
which becomes manageable by imposing significant constraints on the
required interface of instruction sequences involved. The interface con-
straint excludes the use of auxiliary registers and imposes that in-
put actions complement the input at the same time. We recall from
Example 3.2 the instruction sequences Xk

E = +inout:1.i/c;#2k +
2;kl=1

(+inout a:l.i/c; out0 a:l.1/1); !;
;kl=1

(+inout b:l.i/c; out0 b:l.1/1); !.

Proposition 5.3. Let k > 3 and suppose that X is a finite single pass
instruction sequence such that the following four conditions are met:

1. I(X) ⊆ I(Xk
E),

2. X computes the same function as Xk
E ,

3. LLOC(X) ≤ LLOC(Xk
E), and

4. the only termination instruction in X is its final instruction,

then X contains at least one jump instruction of length k/2 or more.

156

Quantitative Expressiveness of Instruction Sequence Classes for . . .

Proof. X For X to compute the same transformation as Xk
E it must

contain at least 4k + 1 instructions with precisely that number of dif-
ferent foci as occur in the basic instructions of Xk

E . X may in addition
contain at most two more instructions each of which are either a basic
instructions or a jump, or a termination instruction.

The number of basic instructions that must be performed in order
to compute the required transformation ranges between a minimum of
k + 1, reading in:1 and either reading all inputs inout a:l or reading
all inputs inout b:l while not writing any outputs, which comes about
upon taking all inputs equal to 0, and a maximum of 2k+1, involving
the maximum most k updates of output registers, a maximum which
is reached only when all inputs that are read have value 1. The total
number of instructions that are performed during a run is between k+2
(the minimal number of basic instructions and a termination instruc-
tion) and 2k +4 (the maximally required number of basic instructions
plus termination plus two more instructions as mentioned).

If X only contains a termination at the final position and at most
two jumps #l1 and #l2 with l1 + l2 ≤ k, or a single jump #l with
l ≤ k, then at least (4k + 2 − l)/2 ≥ 3/2 · k + 1 > k + 2 instructions
are performed during each run of X, as each basic instruction can at
best have its successor skipped, and the jump instruction(s) skips at
most k − 1 of its (both) successors, and importantly no intermediate
termination can take place. Now consider a run where no non-zero
inputs have been observed and hence no output was written. It follows
that because this run is performing more basic instructions than k+1,
and because it cannot perform any output actions, as setting an output
to 1 cannot be undone, said run must perform a read from the same
input more than once, and in fact that input must be read three times
at least because its content needs to be set to 1 at the end.

We find that for some focus with role in or inout three basic in-
structions are present in X so that no room is left for the jump in-
struction(s) which we assumed to be present. We find a contradiction
which concludes the proof.

157

Jan A. Bergstra

6 Addition of natural numbers

Addition of natural numbers in binary notation and with equal numbers
of bits takes 2n inputs and produces n+1 outputs. I will present some
instruction sequences for addition relative to different interfaces.

Let In =
∑n

l=1
(in a:l.{i/i}+in b:l.{i/i}) and consider the interface

I ′n = In+
∑n

l=1
(out0:l.{1/1})+ out0:(n+1).{1/1}+aux0:1.{i/0, 1/1}.

The following single pass instruction sequences Addn for this task, rela-
tive to I ′n achieve LLOC(Addn) = 14n+3. The auxiliary register aux:1
is used as a carry.

Addn = ;nk=1
(

+ in a:k.i/i;−in b:k.i/i;#4;+aux0:1.i/1;#9;#9;
− in a:k.i/i; +in b:k.i/i;#4;+aux0:1.i/0;#3;#3;
− aux0:1.i/i; out0:k.1/1;
); +aux0:1.i/0; out0:(n+ 1).1/1; !

Working over I ′′n = In+
∑n

l=1
(out0:l.{1/1})+out0:(n+1).{i/i, i/1, i/0}

the carry can be identified with out0:(n+1), thereby reducing the num-
ber of instructions to 14n+ 1.
Add′n = ;nk=1

(
+ in a:k.i/i;−in b:k.i/i;#4;+out0:(n+ 1).i/1;#9;#9;
− in a:k.i/i; +in b:k.i/i;#4;+out0:(n+ 1).i/0;#3;#3;
− out0:(n+ 1).i/i; out0:k.1/1;
); !

Making use of the fact that for k = 1 the check on out0:n+1 is redun-
dant because no assignment to it has yet been made, we find, again
working relative to I ′′n, while assuming n > 0, that Add′′n with LLOC
14n − 5:

Add′′n = +in a:1.i/i;−in b:1.i/i;#3; out0:(n+ 1).i/1;#4;
− in a:1.i/i; +in b:1.i/i; out0:1.1/1;
;nk=2

(
+ in a:k.i/i;−in b:k.i/i;#4;+out0:(n+ 1).i/1;#9;#9;
− in a:k.i/i; +in b:k.i/i;#4;+out0:(n+ 1).i/0;#3;#3;

158

Quantitative Expressiveness of Instruction Sequence Classes for . . .

− out0:(n+ 1).i/i; out0:k.1/1;
); !

A remaining question is this:

Problem 6.1. Are there for any n > 0 single pass instruction se-
quences Add⋆n for addition over interface I ′′n with LLOC(Add⋆n) <
14n − 5? If so, what are the shortest single pass instruction sequences
for addition for this interface?

6.1 Allowing bit complementation

Now let I ′′′n = In +
∑n+1

l=1
out0:l.{i/c} + out0:(n + 1).{i/0}. W.r.t. I ′′′n

the following instruction sequences Add′′′ with LLOC(Add′′′) = 8n im-
plement addition. Here we do without a carry bit.

Add′′′n = +in a:1.i/i; out0:1/c;−in b:1.i/i;#3;+out0:i/c; out0:2.i/c;
;nk=2

(
− in a:k.i/i;#3;+out0:i/c; out0:(n + 1).i/c;
− in b:k.i/i;#3;+out0:i/c; out0:(n + 1).i/c;
); !

Problem 6.2. For each n > 0: is there a single pass PGA instruction
X implementing addition of two n bit naturals over the interface I ′′′n
with LLOC(X) < 8n? And more generally what is the lowest LLOC
that can be achieved for this task?

6.2 Concluding remarks

Finding shortest possible instruction sequences for addition is a pre-
requisite for similar work on multiplication which is a viable topic of
future research. LLOC in combination with the notion of quantitative
expressiveness presents a promising approach to complexity theory for
instruction sequences and allows for investigation which is not primar-
ily focused on asymptotics but is rather more of a combinatorial nature.

159

Jan A. Bergstra

The use of interfaces allows essential flexibility concerning matters of
quantitative expressiveness.

References

[1] J.A. Bergstra and M.E. Loots, “Program algebra for sequential
code,” Journal of Logic and Algebraic Programming, vol. 50, no.
2, pp. 125–156, 2002.

[2] J.A. Bergstra and C.A. Middelburg, “Instruction sequences with
indirect jumps,” Scientific Annals of Computer Science, vol.17,
pp. 19–46, 2007.

[3] J.A. Bergstra and C.A. Middelburg, “On the expressiveness of
single pass instruction sequences,” Theory of Computing Systems,
vol. 50, no. 2, pp. 313–328, 2012.

[4] J.A. Bergstra and C.A. Middelburg, “Instruction sequence pro-
cessing operators,” Acta Informatica, vol. 49, no. 3, pp. 139–172,
2012.

[5] J.A. Bergstra and C.A. Middelburg, “Indirect jumps improve in-
struction sequence performance,” Scientific Annals of Computer

Science, vol. 22, no. 2, pp. 253–265, 2012.

[6] J.A. Bergstra and C.A. Middelburg, Instruction Sequences for

Computer Science (ser. Atlantis Studies in Computing, vol. 2),
Amsterdam: Atlantis Press, 2012.

[7] J.A. Bergstra and C.A. Middelburg, “Instruction sequence based
non-uniform complexity classes,” Scientific Annals of Computer

Science, vol. 24, no. 1, pp. 47–89, 2014.

[8] J.A. Bergstra and C.A. Middelburg, “Instruction sequence com-
plexity of parity,” Fundamenta Informaticae, vol. 149, no. 3, pp.
297–309, 2016.

[9] J.A. Bergstra and C.A. Middelburg, Instruction sets for Boolean
registers in program algebra. Scientific Annals of Computer Sci-

ence, vol. 26, no. 1, pp. 1–26, 2016.

160

Quantitative Expressiveness of Instruction Sequence Classes for . . .

[10] J.A. Bergstra and C.A. Middelburg, “Instruction sequences ex-
pressing multiplication algorithms,” Scientific Annals of Com-

puter Science, vol. 28, no. 1, pp. 39–66, 2018. (also: http:

//arxiv.org/abs/1312.1529v4).

[11] J.A. Bergstra and C.A. Middelburg, “A short introduction to pro-
gram algebra with instructions for Boolean registers,” Computer

Science Journal of Moldovia, vol. 26, no. 3, pp. 199–232, 2018.

[12] J.A. Bergstra and A. Ponse, “Execution architectures for program
algebra,” Journal of Applied Logic, vol. 5, no. 1, pp. 175–192, 2007.

[13] G. Chaitin, From philosophy to program size. Key Ideas and Meth-

ods. Lecture Notes on Algorithmic Information Theory, Estonian
Winter School in Computer Science, March 2003. [Online]. Avail-
able: arXiv:math/0303352.

[14] R.L. Constable, “Subrecursive programming languages II, On pro-
gram size,” J. of Computer and System Sciences, vol. 5, pp. 315–
334, 1971.

[15] H.P. Katseff and M. Sipser, “Several results in program size com-
plexity,” Theoretical Computer Science, vol. 15, pp. 291–309, 1981.

[16] H. Massalin, “Superoptimizer: a look at the smallest program,”
in Proc. 2th ASPLOS, pp. 122–127, 1987.

[17] K. Mehlhorn, “On the program size of perfect and universal hash
functions,” in Proc. 23th FOCS, ACM, pp. 170–175, 1982.

[18] A.R. Meyer, “Program size in restricted programming languages,”
Information and Control, vol. 21, no. 4, pp. 382–394, 1972.

[19] V. Ngyyen, S. Deeds-Rubin, T. Tan, and B. Boehm, A SLOC

counting standard. Center for Systems and Software Engineering,
University of Southern California, 2007.

Jan A. Bergstra, Received April 18, 2019
Accepted May 17, 2019

Jan A. Bergstra
Informatics Institute, Faculty of Science, University of Amsterdam
Science Park 904, 1098 XH, Amsterdam, The Netherlands
E–mail: j.a.bergstra@uva.nl, janaldertb@gmail.com

161

