
Computer Science Journal of Moldova, vol.27, no.1(79), 2019

The impact of parameter optimization of

ensemble learning on defect prediction

Muhammed Maruf Öztürk

Abstract

Machine learning algorithms have configurable parameters
which are generally used with default settings by practitioners.
Making modifications on the parameters of machine learning al-
gorithm is called hyperparameter optimization (HO) performed
to find out the most suitable parameter setting in classification
experiments. Such studies propose either using default classi-
fication model or optimal parameter configuration. This work
investigates the effects of applying HO on ensemble learning al-
gorithms in terms of defect prediction performance. Further, this
paper presents a new ensemble learning algorithm called novel-
Ensemble for defect prediction data sets. The method has been
tested on 27 data sets. Proposed method is then compared with
three alternatives. Welch’s Heteroscedastic F Test is used to ex-
amine the difference between performance parameters. To con-
trol the magnitude of the difference, Cliff’s Delta is applied on
the results of comparison algorithms. According to the results
of the experiment: 1) Ensemble methods featuring HO performs
better than a single predictor; 2) Despite the error of triTrain-
ing decreases linearly, it produces errors at an unacceptable level;
3) novelEnsemble yields promising results especially in terms of
area under the curve (AUC) and Matthews Correlation Coeffi-
cient (MCC); 4) HO is not stagnant depending on the scale of
the data set; 5) Each ensemble learning approach may not create
a favorable effect on HO. To demonstrate the prominence of hy-
perparameter selection process, the experiment is validated with
suitable statistical analyzes. The study revealed that the suc-
cess of HO which is, contrary to expectations, not depended on

c©2019 by Muhammed Maruf Öztürk

85

M. Maruf Öztürk

the type of the classifiers but rather on the design of ensemble
learners.

Keywords: Defect prediction, parameter optimization, en-
semble learning.

1 Introduction

An intensive effort is devoted to defect prediction which helps practi-
tioners to plan the budget of a software engineering project [1]. Due to
the advance in software systems, including limited budgets, much works
are required in this domain. Defect prediction works are generally fo-
cused on software metrics [2], predictors [3], pre-processing methods [4],
and prediction models [5]. However, the works that explore which type
of classifiers should be used in data sets having a broad scale of range
are intriguing for researchers [6]. In addition to this, in recent years,
predictor configuration studies, which aim to find appropriate settings
of the predictors, have emerged [7]–[10]. They open new horizons for
the development of enhanced prediction models.

Defect prediction is a process which aims to predict future defects
of a software project by using historical metrics of related data sets
along with defectiveness information. It is generally considered as a
binary classification problem. In defect prediction, high error rates
are decreased by combining more than one classifier. Predictors could
make different decisions about the label of an instance depending on
its structural properties. Thus, each predictor yields the best results
in different data sets. Regarding this case, various ensemble learning
approaches have been developed. Combining more than one classifier
to solve a computational problem is generally named ensemble learn-
ing [11]. It is employed for improving the performance of a model
such as clustering, classification, and approximation. Ensemble learn-
ing methods generally adopt three techniques. These are stacking [11],
bagging [12], and boosting [13]. Figure 1 demonstrates how an instance
is labeled through ensemble learning techniques.

Generally, an ensemble learning method first selects the classifiers
to be employed in the method. To this end, the number of the clas-

86

optimization of ensemble learning . . .

Figure 1. Three different approaches for ensemble learning. (a) Stack-
ing: Uses a meta-learner to decide the label of instance, (b) Bagging:
Gives equal weights to the classifiers, (c) Boosting: Utilizes the same
mechanism with Bagging but it gives different weights to the classifiers.

sifiers should be determined in the beginning. The performance of a
classifier strongly depends on the type of the data sets. Enormous
software systems give large-scale defect prediction data sets to practi-
tioners. Therefore, practitioners should work with the classifiers that
are suitable for large-scale data sets. Thereafter, a design is established
depending on the error rates and performance parameters. In this de-
sign, the number of the classifiers and the settings of hyperparameters
are determined in accordance with experimental knowledge.

One of the important points that have long intrigued experts in
ensemble learning is how to select hyperparameter settings [14]. De-
fault settings of hyperparameters may not produce consistent results
depending on the used data sets. Rather, employing ensemble mod-
els generated with various hyperparameters which are determined ac-
cording to the classifier and the data sets may be a better choice. In
the meantime, tuning hyperparameters is relatively time-consuming
and effort-intensive process comparing to the traditional defect predic-
tion [7].

87

M. Maruf Öztürk

With respect to the ensemble learning approaches, the number of
classifiers is not entirely standard in the existing methods [15], [16].
Further, it is also ambiguous that which types are to be selected from
a great number of predictors. To make a good selection, each predictor
should be evaluated for a general hyperparameter configuration.

Various challenges are encountered while using an ensemble learn-
ing method. The most notable of them is whether default settings of
the classifiers are adopted or not [17]–[19]. Generally, default configura-
tion of the classifiers is used in an ensemble learning method. Preferring
such a way degrades the reliability of an experiment. Conversely, ex-
ploring hyperparameter settings by testing previous assumptions may
yield better results with regard to the proposed method.

HO was examined in terms of defect prediction in a few works
[7], [8], [10]. However, the effects of HO on ensemble methods have not
been investigated yet. This case can be considered as an obstacle that
should be removed to fully comprehend HO. Moreover, whether HO
improves overall performance of advanced classifiers is an open issue.

Cross-project defect prediction (CPDP) is one of the main long-
standing problems of defect prediction [20], [21]. In this type, training
and testing data are taken from different software projects. On the
other hand, within-project defect prediction (WPDP) aims to perform
prediction by taking different data sets of the same project so that
there is not any metric contradiction problem thanks to the use of
same metric sets.

In our preceding work, the effects of HO were investigated in CPDP
andWPDP [22]. It was intended to provide valuable findings to find out
whether HO increases the success of the prediction when heterogeneous
metrics are employed. The method was tested on 20 data sets with
heterogeneous experimental setting. As a result, it was detected that
performance values of WPDP tend to be in a wide range. With respect
to AUC and F-measure parameters, if the classifiers working with tree-
structured data are employed, CPDP is capable of yielding feasible
performance values in which the depth of trees is high.

Main objectives of the paper are as follows: 1) Investigate the effects
of applying HO on three ensemble learning methods; 2) Develop a

88

optimization of ensemble learning . . .

robust ensemble learning method that results in performance increase
when HO is utilized; 3) Provide a new insight into defect prediction
in terms of HO. In addition, this paper aims at developing a novel
ensemble learning method called novelEnsemble which is expected to
produce promising results when HO is employed.

To achieve those goals, open-source data sets are collected in the
beginning of the experiment. In the second step, some ensemble learn-
ing and HO methods are selected. Third step encompasses developing
novelEnsemble in accordance with constructive methods. In the last
step, performance results obtained from both applying HO and without
HO on ensemble learning methods are recorded. Meanwhile, the most
known ensemble learning methods are tried to be evaluated with gen-
eral hyperparameters. Main steps of the experiment are demonstrated
in Figure 2. As known from the figure, data sets are initially divided
into two parts. Subsequently, data sets are exposed to normalization
and exploited by the algorithms in which default and optimized pa-
rameters are used. Last, some performance parameters are yielded and
evaluated in the test process.

The contributions of the paper can be summarized as follows:
1) A novel ensemble learning method namely novelEnsemble, which
uses mean classification error and total number of defects for instance
labeling, is proposed.
(2) This paper reveals which properties should an ensemble learning
method have when HO is applied
(3) Obtained findings of the experiment shows that the type of the
parameter search is negligible in HO performance.

The remainder of the paper is organized as follows: In Section 2,
the motivation and the shortcomings of previous works are elaborated.
Section 3 refers to ensemble learning and HO along with formal defini-
tions. Related works and ensemble learning methods associated with
the paper are also in Section 3. Section 4 presents the proposed method.
Section 5 describes the data sets and experimental environment. Ex-
perimental results are given in Section 6. Threats for the validity are
given in Section 7. Last, the findings and the outcomes of the paper
are presented in Section 8.

89

M. Maruf Öztürk

Defect
datasets

NormalizationTraining set

Testing set

Optimize parameters

Default parameters

Measure AUC,
Error, and MCC

200 itrerations

Train models

Compare
performance

Figure 2. Main steps of the study.

2 Motivation

This section provides four motivations for the experiment. Motivations
of the paper are elaborated by giving some references to draw a clear
outline.

HO studies in machine learning algorithms are not new in defect
prediction [23]–[25]. Their main objective is to find optimal param-
eters of learning algorithms rather than using default configuration.
They were able to produce promising results in terms of HO. However,
due to a great number of hyperparameters and classifiers, practitioners
who perform hyperparameter selection feel confused [10]. Therefore,
bringing a new perspective to HO in terms of classifiers constructing
ensemble learner is the first motivation.

Defect prediction is generally a binary classification problem.
Therefore, it has configurable settings. HO can be considered as a
new research field in terms of defect prediction. Preceding works have
investigated hyperparameter search method [10], automated hyperpa-
rameter optimization [8], and the effects of HO on defect prediction [7].
However, with respect to the defectiveness indicators of defect predic-
tion data sets, the effects of HO in the classification comprising more
than one classifier have not been fully investigated up to this study.
Second motivation is to find optimal design of an ensemble learner to
yield high classification performance.

On the other hand, ensemble learning methods are preferable to

90

optimization of ensemble learning . . .

increase the success of defect prediction [26], [27]. Note that an en-
semble learner cannot be devised arbitrarily. The number of classifiers
and used approach including bagging, boosting, and stacking do affect
the results of ensemble learning method. In addition, configuration
of hyperparameters plays an important role in the performance of the
prediction. Previous works have pointed out that each classifier may
not be compatible with ensemble learning. Further, some classifiers
such as C5.0 and neural network tend to produce high performance [8].
Comparing classifiers in contributing the performance of an ensemble
learner is the third motivation.

Ensemble learning methods were developed on the basis of pioneer
methods such as triTraining [28]. However, in such methods, instance
labeling is focused on classification error and the number of classi-
fiers is constant. Instead, practitioners need a novel ensemble learning
method which does not depend on the number of classifiers and can
be devised by considering the properties of defect prediction data sets.
Constructing an ensemble learner by regarding common properties of
defect prediction data sets is the fourth motivation.

3 Background and related works

3.1 Preliminaries

If a software is represented with various modules s1, s2, s3, ..., sn, a
set of modules are labeled with l1, l2, l3, ..., ln. These labels are either
”defective” or ”not-defective”. A classifier is trained on some parts of
labeled instances to predict unlabeled testing instances. This operation
is done with a classifier c. In some cases, the number of classifiers may
be higher than one c1, c2, c3, ..., cm. In such experiments, classifiers
are unified by ensemble techniques for deciding the labels of testing
instances.

To perform ensemble learning, a classifier c is weighted according
to the type of learning. One could assume that w1, w2, w3, ..., wm are
the weights of c1, c2, c3, ..., cm. To decide a label l of s, classifiers make
a bias set such as 1, 0, 1, 1, 1, That set is combined with the weights

91

M. Maruf Öztürk

w1, w2, w3, ..., wm. For a binary classification problem, an ensemble
learner produces an output y as 1 or 0 in compliance with the type
of learners. In this process, the classifiers used in constructing the
ensemble learner and the type or the data sets are of great importance.
An underlying deciding mechanism of an ensemble learner is given in
Figure 3.

Figure 3. An underlying deciding mechanism of an ensemble learner.
The learners are combined by giving a specific set of weights to create
a combination for producing an output.

In testing, a set of instances to be predicted can be denoted with
st1, st2, st3, ..., stp. p denotes the number of testing instances. However,
it is not compulsory to equalize p and n. Instead, p is generally deter-
mined as less than n. For this purpose, a specific percentage is used
to perform testing. Otherwise, cross-validation methods are applied.
10-fold cross-validation is one of the most popular of them.

3.2 Related Works

Related works can be examined in twofold: these are ensemble learn-
ing and HO studies which are closely related to defect prediction. In
this respect, existing works have been summarized and the need for
performing the experiment has been stressed. Due to the fact that HO
is not a new research field for defect prediction, the number of related
studies is limited. However, prevalence of HO in search-based software
engineering has helped to solve this issue.

The efficacy of ensemble learning approaches depends on the prop-

92

optimization of ensemble learning . . .

erties of defect prediction data sets in a specific ratio. In a study [26]
where the prediction performance is examined by combining feature
selection with ensemble learning, forward selection outperformed other
feature selection techniques. It can be considered one of the basic
studies because its findings revealed that feature selection is of great
importance for ensemble learning. In another study [29], feature selec-
tion helped to solve class imbalance problem and increased the success
of ensemble learning. Such hybrid models had been tested in some
areas except defect [27]. For instance, a hybrid model was tested on
banking system and yielded promising results [27].

Wang et. al proposed a new classifier for defect prediction data
sets by benefiting the advantages of kernel and ensemble learning ap-
proaches [6]. Although the method produced high results in F-measure,
employing only industrial data sets without considering open-source
ones creates a crucial threat for the validity. Further, a tuning opera-
tion was not conducted during the classification experiment.

The success of ensemble learning was also evaluated for multi-
class defect prediction. In one of them [30], initially, binary-labeled
instances were converted to multi-class form. Thereafter, the classi-
fication was completed based on a sophisticated coding. Despite this
method coped with imbalanced data sets, hyperparameter settings were
not considered while developing ensemble learning method. The inter-
action between class imbalance and ensemble learning much intrigued
researchers. In [31], two boosting methods were discussed on five per-
formance measures. According to the obtained results, AdaBoost.NC
showed best performance in general.

Laradji et al. proposed an ensemble learning module [26]. Their
experiment using seven classifiers depicted that greedy selection is much
preferable for feature selection. Although AUC results are close to 1
in three data sets, the method should be verified with different feature
selection and ensemble methods. Likewise, Peng et al. pointed out that
AdaBoost provides some advantages along with analytical hierarchy
process.

Researchers have long strived to determine how a modification made
on a software influences defect ratio. In [32], this impact was investi-

93

M. Maruf Öztürk

gated in terms of scale and proposed a two-layer ensemble method
utilizing both bagging and stacking. The method was evaluated with
three alternatives on six data sets. It revealed up to 70% of defect-prone
modifications. Related paper stated that improving the parameters of
proposed method was planned.

HO is one of the focuses of search-based software engineering [33]–
[35]. Parameter tuning has long been a topic of interest in the study
of search-based software engineering.

Fu et. al claimed that tuning process of defect prediction requires
too much time [10]. In their study, it was detected that HO is feasi-
ble and increase the accuracy of the prediction up to 60%, especially
in defect data sets. While making tuning on selected parameters of
the predictors, the effect of parameter search method is not negligible.
Thus, a study [9] asserts that parameter search method strongly de-
pends on the scale of the data sets. Moreover, random search method
is much suitable with small-scale data sets.

One of the most comprehensive studies was conducted by Tan-
tithamthavorn et al. [8] who examined almost all parameter search
methods exhaustively. They concluded that some classifiers such as
C5.0 and neural network are rather compatible for HO. It was also
stressed that HO should be tested in terms of ensemble learning
method.

Practitioners should employ HO without applying a machine learn-
ing model, asserted in a recent study [7]. K-nearest neighbor outper-
formed competing methods with the maximum enhancement in the
accuracy of the prediction.

3.3 Ensemble learning algorithms

Ensemble learning approach is an interesting topic that emerged at the
end of 90’s [36]–[38], [38]. As shortly stated in Section I, three different
approaches are adopted in ensemble learning: boosting, bagging, and
stacking. Therefore, related experiments are devised to encompass at
least one of them. Uncommonly, a study could benefit more than one
approach.

94

optimization of ensemble learning . . .

In the beginning, software defect prediction had relied on tests per-
formed with one classifier [39], [40]. Ensemble learning studies were
revealed after discussing the findings of preceding works [41]. Due to
ensemble learning methods date back to the mid of the 1990s, basic
methods were applied and their improved versions were produced. In
this section, primary ensemble learning methods are elaborated.

Pioneer works preferred to use neural network in constructing en-
semble learning methods [42], [43]. Experimental data sets are mainly
associated with image processing.

Learn++ is an ensemble learning method which uses lazy classifiers
and is fast to neural networks [44]. In Learn++, last decision mech-
anism is weighted voting. The method converges well as it does not
need prior training data instances. Ensemble learning was also utilized
in training process. In [45], a learning machine namely EN-ELM was
developed and tested on some images. This study depicts the promi-
nence of the selection of parameters for alleviating the computational
cost of classification.

Consistent methods can be developed by combining various ensem-
ble learning strategies. WAG is one of them [46] and it was constructed
by unifying wagging and bagging. Unlike bagging, wagging assigns
weights to training instances using Poisson distribution. The method
was able to reduce test error remarkably.

Ensemble learning was also used in the classification of noisy data
sets [47]. Thus, a model having high error tolerance and accuracy can
only be obtained by that way.

While developing an ensemble learning method, having high num-
ber of main classifiers increases computational cost quadratically.
Therefore, classifier count is tried to be optimal magnitude. For in-
stance, triTraining is an ensemble method that consists of three classi-
fiers in which classification errors are compared to decide a label of an
instance [28]. Test operation is performed by comparing error ratios
of three classifiers to decide instance label. triTraining showing better
performance than three competing methods is regarded as a reference
model to various ensemble learning methods.

In [48], a fuzzy cluster-based ensemble learning approach namely

95

M. Maruf Öztürk

IFCESR was proposed. It employs soft clustering techniques to create
ensemble clusters. The effectiveness of the method was tested on UCI
data sets. According to the obtained results, IFCESR surpassed state
of the art alternatives in terms of clustering accuracy.

Customer scoring is an interesting field in which ensemble learning
was utilized [27]. The method using hybrid methods simultaneously
has better performance results with AdaBoost than other methods.
Moreover, PCA is much feasible for feature selection rather than infor-
mation gain and GA. Fuzzy cognitive map was improved with ensem-
ble approach [49]. In doing so, it was observed that the performance
of fuzzy cognitive map decreases remarkably when it is employed with
Hebbian learning.

Pratama et al. presented a new ensemble learning method namely
pEnsemble [50]. It consists of three components: drift detection,
ensemble pruning, online feature selection. The main advantage of
pEnsemble is that it features less complexity than its alternatives.

3.4 Limitations of existing approaches

Existing works have investigated various aspects of applying HO on
defect prediction data sets so far [7]–[10]. They rely on specific as-
sumptions. First, default configuration of classifiers does not yield
high success according to the HO models. Thus, a special configura-
tion is searched for each classifier. Second, it is asserted that parameter
search method should be selected in accordance with the experimental
data sets. In this respect, parameter search methods are compared in
varying type of data sets. The common aspect of preceding works is
that they do not include any evaluation of HO in terms of ensemble
learning approaches. In particular, preceding works lack investigation
of ensemble learning approaches in which HO is applied on constructor
classifiers. Rather than establishing such an experimental environment,
detail information is presented by extending the evaluation interval of
hyperparameters. In this case, the experiment is enriched according to
the main objective but the scope of the evaluation is restricted.

Ensemble learning approaches date back to older times then HO
[6], [26], [47], [51]. Therefore, with respect to the defect prediction, the

96

optimization of ensemble learning . . .

number of ensemble studies is more than those of HO. Ensemble learn-
ing methods are generally proposed to address class imbalance and
noisy data problems. However, mathematical models related to the
defectiveness metrics are rarely employed in the construction of an en-
semble learning method.

To alleviate the limitations mentioned above, this paper investi-
gates the effects of HO in ensemble learning approaches. To this end,
some promising classifiers such as C5.0 and neural network have been
used in constructing experimental ensemble methods. In addition to
this, novelEnsemble having no restriction on the number of classifiers
is proposed. The method considers the number of defects depending
on the number of line of codes while determining an instance label.

Performing the experiment for a data set could fill the gaps as fol-
lows: 1) Observing the success change of ensemble learning approaches
in case of applying HO; 2) Encouraging the development of ensemble
methods that are designed for defect prediction rather than general
data mining operations; 3) Determining whether each HO operation
has a profound impact on defect prediction; 4) Revealing the compati-
bility level of ensemble learning approaches on HO in which static code
metrics are exploited.

4 Method

In the concept of ensemble learning, the main purpose is to combine
various classifiers to increase prediction performance. The reason is
that using only one classifier in a prediction experiment may not per-
form well in every experimental condition.

The method presented in Algorithm 1 is a defect prediction al-
gorithm. It can be consisted of various classifiers depending on the
experimental design. In this study, Algorithm 1 comprises three clas-
sifiers RandomForest, C5.0, and neural network. The error mentioned
in the following paragraph is the percentage of incorrectly classified
instances in the prediction. The algorithm utilizes defectiveness rate
while comparing the errors of the classifiers. The classifier producing
the minimum error in the iteration determines the label of an instance
in testing.

97

M. Maruf Öztürk

Algorithm 1 takes three parameters including O,U , and C. This
method includes an error additive model. First loop of the algorithm
encompasses Si = BootStrap(O) and Ei = 0.5 which is an arbitrary
error value that is used if related classifier does not change in terms of
error rate during the learning.

In the second loop, N denotes the number of the instances to be
exposed to ensemble learning. E1 = C1(Ui), E2 = C2(Ui), E3 = C3(Ui)
calculates the error rates of three classifiers. total ← total +Ej calcu-
lates the total error up to the reached instances. total changes increas-
ingly until all the instances are exposed to training. In the latter step,
mean error is calculated and assigned to av. Mean error is associated
with the number of instances and the number of classifiers. i represents
the index of an instance. In the third step, the classifier having mini-
mum error is detected with z ← min(e1, e2, e3). y ←

∫
av+ x2 + c is a

function that relies on total defect, mean error, and the number line of
codes av, x, c. Since a defective region can be detected with at least two
curves as in Figure 4, an integral function is utilized in Algorithm 1.

Figure 4. An example illustration of area between curves determining
defective region of a defect prediction data sets.

98

optimization of ensemble learning . . .

The ambiguousness of the boundary of defective region reveals the need
for integral calculation. (z <= y) compares the minimum error ob-
tained in the related instance with the average error of defective region.
If the error of the classifier is less than average error, the classifier is
used for labeling Ui. Otherwise, C1, C2, C3 calculates the number of
labeling biases along with a straight bagging. According to this calcu-
lation, testing is completed.

Calculating Si in Algorithm 1 is similar to that of triTraining. How-
ever, the criteria used while deciding the label of an instance are dif-
ferent. For instance, during examining the individual errors of the
instances, novelEnsemble is interested in produced errors until mean
error and related training instance are in use.

Algorithm 1 novelEnsemble Algorithm

1: Input O:Original labeled instance set,
U:Unlabeled instance set,
C:RandomForest, C5.0, NeuralNet

2: for each item i in Ci do

3: Si = BootStrap(O)
4: Ci = Learn(Si)
5: Ei = 0.7
6: end for

7: for each item i in N do

8: E1 = C1(Ui), E2 = C2(Ui), E3 = C3(Ui)
9: total←total+Ei

10: av←total/i
11: z←min(E1,E2,E3)
12: y←

∫
av+(total)2+c //av=mean error, x=i. total error, c=total

defects/line of code
13: if (z <= y)
14: Ui ← Cz

15: else Ui ← compute(C1, C2, C3)
16: end for

99

M. Maruf Öztürk

5 Experiment Design

This section presents experimental data sets and research questions
(RQ). Further, experimental settings and performance parameters are
elaborated. Last, research questions are discussed.

5.1 Data sets

27 data sets have been used to evaluate novelEnsemble. They include
the versions of following projects: ant [52], berek, camel, ckjm [53],
e-learning, ivy, jedit, kalkulator, log4j, lucene, nieruchomosci, tomcat,
and xalan [54]. These data sets have been obtained from tera-promise
repository.

Some properties of experimental data sets are given in Table 1.
These projects are open-source and coded with java programming lan-
guage. An instance denotes either a software module or a class. The
number of the instances in the projects is rather different. For instance,
while tomcat has 858 instances, berek has 70 instances. Employing
various instances in comparison projects alleviates the burden in eval-
uating the results of the experiments. Further, it ensures a clear bias
about novelEnsemble. Table 2 gives used metrics with their definitions
and types. There are 24 software metrics. 4 out of 24 metrics are of
process metrics.

5.2 Performance Parameters

Performance parameters used in a defect prediction experiment change
depending on the type of the problem. For example, if a method is
developed for class imbalance, PF, g-mean, and AUC are frequently
involved in the evaluation [55], [56]. It is well known that the works
including HO have a great number of parameters. However, in recent
works, MCC has become popular among researchers handling with de-
fect prediction [57], [58].

In this study, AUC, MCC, and classification error have been used
for evaluating novelEnsemble. Due to the main focus of the paper is
ensemble learning methods, the scale of the performance parameters

100

optimization of ensemble learning . . .

Table 1. Details of the projects used in the experiment.

Project Version Number of instances Number of defects Defectiveness (%)

ant 1.7 745 338 22
arc 1 234 33 11
berek 1 70 33 43
camel 1.0 339 14 3
camel 1.2 608 522 41
camel 1.4 872 335 16
camel 1.6 965 188 19
ckjm 1.8 10 23 50
e-learning 1 64 9 13
ivy 1.1 111 233 56
ivy 1.4 241 18 6
ivy 2.0 352 56 11
jedit 3.2 272 382 90
jedit 4.0 306 226 24
jedit 4.1 312 217 25
jedit 4.2 367 106 13
jedit 4.3 492 12 2
kalkulator 1 27 7 25
log4j 1.0 135 61 25
log4j 1.1 109 82 33
log4j 1.2 205 498 92
lucene 2.0 195 268 46
lucene 2.2 247 413 57
lucene 2.4 340 630 59
nieruchomosci 1 27 13 37
tomcat 6 858 114 8
xalan 2.4 723 155 15

101

M. Maruf Öztürk

Table 2. Metrics of experimental data sets.

Name Description. Type

wmc Weighted Methods per Class Static code
dit Depth of inheritance Static code
noc Number of children Static code
cbo Coupling between objects Static code
rfc Response for a class Static code
lcom Lack of cohesion Static code
ca Afferent coupling Static code
ce Efferent couplings Static code
npm Number of Public Methods Static code
lcom3 A variant of lcom Static code
loc Line of codes Static code
dam Data Access Metric Static code
moa Measure of. Aggregation Static code
mfa Measure of functionality abstraction Static code
cam Cohesion Among Methods of class Static code
ic Inheritance Coupling Static code
cbm Coupling between Methods Static code
amc Average Method Complexity Static code
nr Number of revisions Process
ndc Number of distinct committers Process
nml Number of modified lines Process
ndpv Number of defects fixed in previous version Process
max cc Maximum Class Coupling Static code
avg cc Average Class Coupling Static code

is not large. Moreover, to the best of our knowledge, this study is
first to discuss ensemble learning in defect prediction along with HO.
Therefore, the initiative is made rather than focusing on the detail of
the results.

In Table 3, performance parameters used in the experiment are
presented. MCC consists of confusion matrix members and AUC is the
area under the ROC. In the formula indicating AUC, m are the data
points and i refers to the execution number on m data points that
denotes true label [59]. On the other hand, j refers to the execution
time of n data points. The formula of AUC in each iteration produces
1 if pi > pj. p denotes the probability value assigned by the classifier to

102

optimization of ensemble learning . . .

Table 3. Performance parameters used in the experiment.

name formula

MCC (TP∗TN−FP∗FN)√
(TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)

AUC 1
mn

∑i=1
m

∑j=1
n 1pi>pj

Classification Error Ei
f
n
∗ 100

the related data point. Classification Error is denoted with Ei, where
f is the number of incorrectly classified instances and n denotes the
total number of instances in prediction.

5.3 Experimental conditions

Besides novelEnsemble, the results produced from three ensemble learn-
ing methods are discussed throughout the paper. This section explains
how do four methods exploit experimental data and which configura-
tions are optimal.

Figure 5. The schema of parameter search.

103

M. Maruf Öztürk

Parameter search is applied on three methods: novelEnsemble, en-
sembleHyper, ve triTraining. Figure 5 presents a five-level schema.
First level selects the data set to be involved in HO. In the second
level, parameter bounds are determined. Parameters of second level
are similar for three methods. Notwithstanding this similarity, type
and the number of parameter change in accordance with the type of
the classifier. In order to find suitable parameters, parameter search
methods of third level are exposed to a process including 30 iterations.
The values obtained from 10 fold cross-validation are returned in the
fifth level.

Firstly, ensembleNoHyper is an ensemble learning method and it
does not include any HO process. ensembleNoHyper is run by combin-
ing five classifiers with bagging approach. Five classifiers are: Re-
gressionAdaBoostLearner, RegressionRandomForestLearner, Regres-
sionSquareLossGradientBoostLearner, C5.0, and neural net. Con-
figurations of RegressionAdaBoostLearner are Iterations=50,learning
rate=1,minSplitSize=1, seed=42, maxTreeDepth=15. minSplitSize
represents the value in a node of tree model that must exist before
a split is performed. Learning rate affects convergent ratio to local
minimal. maxTreeDepth limits depth of a tree model with the prede-
fined value. subSampleRatio is used to overcome class imbalance prob-
lem when there is a good model to be trained. featuresPrSplit is the
number of features to split in each node. Parameter settings of Regres-
sionAdaBoostLearner are the same that of C5.0. Neural net uses only
learningrate=0.1. The parameter settings of RandomForestLearner are
trees=100,minSplit=1,maxtreeDepth=2000,
featuresPrSplit=0,subSampleRatio=1,seed=42. RegressionSquareLoss-
GradientBoostLearner employs iterations: 80, learningRate: 0.028,
maximumTreeDepth: 12, subSampleRatio: 0.559, featuresPrSplit: 10.
In ensembleNoHyper, any parameter search method is not used. In-
stead, it is exposed to a process including 200 iterations with bagging.
In the meantime, a data set is divided into 70% training and 30% test-
ing parts. Mean values of testing results of the prediction and error
rates are recorded afterwards.

Specific parameter settings are used for each data set in ensemble-

104

optimization of ensemble learning . . .

Hyper. In order to find the optimal settings, firstly parameter search
methods are determined. These are RandomSearch and GridSearch.
RandomSearch [60] examines random combinations of a range of val-
ues of parameters. In the beginning, the number of iterations must
be defined. Despite RandomSearch does not gurantee to find the best
parameter settings, it is very fast in testing. On the other hand, Grid-
Search [61] aims to configure optimal parameters for a given model.
The main advantage of GridSearch is that it is not limited to be ap-
plied to one model. Rather, GridSearch can be utilized for multi-model
machine learning parameter search. Average values obtained from the
search methods are applied for each data set in accordance with de-
tected settings. Parameter search methods of RegressionAdaBoost-
Learner are harnessed in the range presented in Table 4. After deter-
mining suitable classification settings with 10 fold cross-validation, a
process including 200 iterations is performed as in ensembleNoHyper.
Average results are obtained with the same training and testing ratios.

In the experiment, triTraining includes RegressionRandomForestLe-
arner, neural net, and C5.0. Some methods such as C5.0 and neural net
are involved in the experiment due to their advantages in constructing
ensemble methods [8]. To search a parameter, GridSearch has been
used. As in preceding methods, triTraining is harnessed to produce
average results obtained with 200 iterations.

novelEnsemble is an ensemble learning method that has not restric-
tion on the number of classifiers. To construct novelEnsemble, three
classifiers have been used. However, the number of the classifiers con-
structing novelEnsemble can be augmented. Initially, novelEnsemble
selects training data via BootStrap to assign them to the related clas-
sifier. The ranges presented in Table 4 are of parameters of classifiers
given in Algorithm 1. RandomSearch and GridSearch are utilized in
searching parameters. To this end, test process including 200 iterations
is performed after completing 10 fold cross-validation. Thereafter, per-
formance values are recorded. The distinctive property of novelEnsem-
ble is that it considers classification error along with the number of line
of codes and the number of defects.

105

M. Maruf Öztürk

Table 4. Parameter bounds of experimental classifiers.

RegressionAdaBoostLearner and C5.0

Min Max Transform Type

iterations 1 1000 Linear
learningrate 0 0.9 Linear
maxTreeDepth 1 15 Linear
minSplitSize 1 4 Linear

RegressionRandomForestLearner

Min Max Transform Type

iterations 1 1000 Linear
splitsize 1 4 Linear
maxTreeDepth 1 15 Linear

RegressionSquareLossGradientBoostLearner

Min Max Transform Type

iterations 1 1000 Linear
learningrate 0 1 Linear
maxTreeDepth 1 15 Linear

NeuralNet

Min Max Transform Type

iterations 1 1000 Linear
learningrate 0 1 Linear

5.4 Reserch Questions

RQ1: How does novelEnsemble perform comparing with the alterna-
tives in terms of classification error? Iteration number in ensemble
learning approaches remarkably affects the success of the prediction.
However, error rates are expected to be low. The main purpose of RQ1
is to compare error rates of novelEnsemble with other ensemble ap-
proaches. The comparison is done with using novelEnsemble in which
parameters are optimized before executing classification process. In do-
ing so, the reliability of ensemble learning approaches can be discussed
depending on the testing iteration.

RQ2: Does HO create a favorable affect on ensemble learning meth-

106

optimization of ensemble learning . . .

ods? Despite the fact that HO has been investigated on various pre-
dictors, RQ2 emerges because any HO technique has not been tried
on an ensemble learning method yet. RQ2 compares ensemble learn-
ing methods having optimized hyperparameters with the others which
have no tuning process. In order to perform this, some performance
parameters such as AUC and MCC are utilized.

RQ3: Has the experiment produced different results in terms of sta-
tistical values? RQ3 investigates whether the difference of experimental
findings are remarkable. To this end, initially Welch’s Heteroscedastic
F Test is applied on AUC and MCC results. Thereafter, to validate
the difference of p-value, Cliff’s delta is performed on the performance
results.

6 Results

6.1 Classification errors

Answer to RQ1: In order to analyze the relationship between com-
petitive methods, four methods are considered: ensembleHyper, en-
sembleNoHyper, triTraining and novelEnsemble. Error performance
values of three data sets including ant-1.7, camel-1.4 [62], and jedit-4.0
are illustrated in Figure 6-8. Mean error values change according to
the iteration of testing process. Three data sets have different project
structure and scales. For this reason, they are involved in the error ob-
servation so that the generality of the empirical analysis is reinforced.
Favorable effects of HO have been detected, especially in novelEnsem-
ble. The case is so different in the others. Unlike novelEnsemble, in
which ensemble methods and hyperparameters are different, error val-
ues of the others are dramatically high. ensembleHyper has also a HO
process that its error rates are noticeably low comparing with ensem-
bleNoHyper. However these two methods are stagnant in three data
sets. Thus, fluctuations of error rates are not much depending on the
iteration. On the other hand, in such experiments, a linear improve-
ment in error values is inherent. Although triTraining shows a linear
improvement, it has the highest error rates.

107

M. Maruf Öztürk

Iterations

E
r
r
o

r

0 50 100 150 200

0.0

0.1

0.2

0.3

0.4

0.5

ensembleHyper

novelEnsemble

triTraining

ensembleNoHyper

Figure 6. Error rates of ensemble classifiers on ant-1.7.

Iterations

E
r
r
o

r

0 50 100 150 200

0.0

0.1

0.2

0.3

0.4
novelEnsemble

triTraining

ensembleNoHyper

ensembleHyper

Figure 7. Error rates of ensemble classifiers on camel-1.4.

108

optimization of ensemble learning . . .

It is clear that novelEnsemble behaves not like commonly reported
classifiers in low iterations. For instance, in Figure 8, the success of
novelEnsemble falls especially between 0-50 iterations. However, nove-
lEnsemble seems to be the most preferable method. It is worthwhile to
note that optimization is an extremely depended on constraints. Hav-
ing the number of instances which is not greater than 1000 and limiting
the number of iterations with 180 are shortcomings which seriously af-
fect the reliability of the findings.

Iterations

E
r
r
o

r

0 50 100 150 200

0.0

0.1

0.2

0.3

0.4
novelEnsemble

triTraining

ensembleNoHyper

ensembleHyper

Figure 8. Error rates of ensemble classifiers on jedit-4.0.

6.2 Effects of HO on ensemble learners

Answer to RQ2: novelEnsemble is used along with four methods
to answer RQ2. In order to investigate advantages and disadvantages
of HO, some methods having HO or not should be added to the ex-
periment. Therefore, HO has not been applied on ensembleNoHyper.
Mean values of AUC and MCC results are presented in Figure 9-10.
The most scatted values are of ensembleNoHyper that has not any HO
process.

109

M. Maruf Öztürk

Figure 9. Mean AUC results of four algorithms on all data sets.

110

optimization of ensemble learning . . .

Figure 10. Mean MCC results of four algorithms on all data sets.

111

M. Maruf Öztürk

It is clearly known from these figures that HO enforces the values to
be in a specific interval. In the meantime, triTraining has the lowest
mean of AUC values. It has been devised as compatible as working
with error values of three classifiers. However, triTraining has not a
special evaluation for some classifiers such as C5.0 and neural network
which have produced promising results in recent years. Despite the fact
that triTraining may produce unfavorable predictions, it is notable that
triTraining is a pioneer learner in its field to encourage practitioners
to improve future versions of it. Making modifications on the experi-
mental design could achieve a general bias. The figures of the results
show that novelEnsemble outperformed its alternatives in terms of the
consistency of performance measures. On the other hand, triTaining
has even yielded worse results than ensembleNoHyper that does not
include any HO process. Although the performance of an ensemble
learner seems to be depended on the selected classifiers and data sets,
it is also of great importance to parameter search methods. In con-
clusion, RandomSearch and GridSearch are available in ensembleNo-
Hyper but triTraining does not need such an operation. Further, it
has been detected that ensemble learning methods developed based on
classification errors such as triTraining cannot remedy the challenges
encountered in constructing an ensemble learning method.

Detail AUC results given in Figure 11-14 help to examine the suc-
cess of data sets individually. In these figures, data sets having high
values vary in accordance with their properties. The values recorded
in 0.5−0.6 are of triTaining and ensembeNoHyper. ensembleNovelHy-
per has an AUC value greater than 0.8. Compared to ensembleHyper,
triTraining, and ensembleNoHyper, it is clearly seen that HO has in-
creased AUC values at 0.2.

6.3 Statistical analyzes

Answer to RQ3: The results produced by ensemble learning methods
differ according to iteration counts. Therefore, evaluating comparison
methods for one aspect is difficult and misleading [63]–[65]. To solve
this problem, the difference of AUC and MCC results is investigated.

112

optimization of ensemble learning . . .

Figure 11. AUC results of ensembleHyper on all data sets.

113

M. Maruf Öztürk

Figure 12. AUC results of novelEnsemble on all data sets.

114

optimization of ensemble learning . . .

Figure 13. AUC results of ensembleNoHyper on all data sets.

115

M. Maruf Öztürk

Figure 14. AUC results of triTraining on all data sets.

116

optimization of ensemble learning . . .

The data sets exposed to prediction have completely normal distribu-
tion thanks to a normalization step of the experiment. However, un-
equal variances exist in the values of data sets. Welch’s Heteroscedastic
F Test is suitable in case of unequal variances [66]. It has been applied
on AUC and MCC values produced by comparison algorithms. As seen
from Table 5, statistical findings are so different in two performance
parameters.

Cliff’s Delta is selected during the examination of the difference
magnitude of performance parameters. The reason is that the results
have not any normal distribution. Thus, Cohen’s d, which is an al-
ternative method to measure the magnitude of statistical difference, is
vulnerable to normality violation. Table 6 presents Cliff’s Delta results
recorded by benefiting ”effsize” library available in R package. The
magnitude of the difference is almost remarkable in overall matched
methods. In particular, contrary to their structural similarity, delta
estimate of novelEnsemble-triTraining is very large. However, the dif-
ference is negligible in ensembleHyper-ensembleNoHyper. The types
and counts of hyperparameters may have led to the difference. Further,
the compatibility level of default configurations could be incidentally
high.

Table 5. Welch’s Heteroscedastic F Test of performance parameters.
Differences are statistically significant for two parameters.

MCC AUC

statistic 111.308 341.4222
num df 3 3
denom df 56.25705 53.12816
p.value 1.23E-23 1.10E-34

7 Threats to Validity

This section discusses threats to validity for the experiment. Threats
are related to data sets, theoretical background of the method, and the

117

M. Maruf Öztürk

Table 6. Cliff’s Delta results of comparison algorithms.
MCC

delta estimate confidence interval inf sup

ensembleHyper-novelEnsemble -0.8024691 (large) 95 percent -1.4746337
ensembleHyper-ensembleNoHyper 0.1234568 (negligible) 95 percent -0.1944507 , 0.4178945
novelEnsemble-triTraining 1 (large) 95 percent 0.9976115, 1.0000000
ensembleNoHyper-triTraining 0.877915 (large) 95 percent 0.6848872, 0.9558020
ensembleNoHyper-novelEnsemble -0.8125685 (large) 95 percent -1.4746337
ensembleNoHyper-triTraining 0.88294 (large) 95 percent 0.5858982, 0.8534020

AUC

ensembleHyper-novelEnsemble -0.5788752 (large) 95 percent -1.0305861
ensembleHyper-triTraining 0.9122085 (large) 95 percent 0.6950655, 0.9768375
ensembleHyper-ensembleNoHyper 0.1234568 (negligible) 95 percent -0.1944507 0.4178945
novelEnsemble-triTraining 1 (large) 95 percent 0.9976115, 1.0000000
ensembleNoHyper-triTraining 0.877915 (large) 95 percent 0.6848872, 0.9558020
ensembleNoHyper-novelEnsemble -0.8024691 (large) 95 percent -1.4746337

generality of the results.

Threats to internal validity refers to the features used in the
experiment. Static code attributes of 27 data sets have been used in
the experiment. Therefore, with respect to the ensemble learning, nov-
elEnsemble has a mathematical model based on static code metrics.
Having homogeneous metrics has alleviated the burden of experimen-
tal process. Similar number of the instances exists in different versions
of the projects. It has been tried to select the versions employed in pre-
ceding works. The heterogeneity of metrics is one of the main challenges
in defect prediction. Since the experiment uses the data sets having
same metrics, there is not any need for performing metric matching.
However, a replication of this study on heterogeneous software projects
would be desirable.

Threats to external validity relates to the data sets which en-
tirely consist of open-source ones. Thus, any industrial data set has not
been considered during the experiment. To remove this threat, various
versions of data sets of a software project are analyzed.

Threats to construct validity is related to the classifiers utilized
in constructing ensemble learners and performance measures. Choosing
the classifiers used in the construction of an ensemble learning method
is of great importance. Therefore, establishing an ensemble learner via
unsuccessful prediction models is not reliable so that superior predictors

118

optimization of ensemble learning . . .

such as C5.0 and neural network have been preferred. If classification
error is considered, examining error trends in small-scale could create
an evaluation threat. To solve this problem, 200 iterations have been
performed in testing process. To evaluate the results, AUC, classifi-
cation error, and MCC have been used. Besides them, g-mean and
f-measure are well known among practitioners who work with imbal-
anced data sets. For this reason, a small proportion of those is not
involved in recording performance values.

Threats to conclusion validity refers to the treatment and the
outcome. To evaluate the consistency of the results, Welch’s Het-
eroscedastic F Test and Cliff’s Delta have been conducted. While
choosing statistical methods, it has been regarded whether the data
have normal distribution.

8 Conclusion and Future Remarks

HO is a common performance improvement method in machine learn-
ing. In this work, the effects of applying HO on ensemble learners have
been observed. Further, a novel ensemble learner namely novelEnsem-
ble has been proposed. In preceding works, it has not been investigated
how HO is applied on ensemble learning methods. Further, the suc-
cess of an ensemble learner employing default configurations in defect
prediction was not comprehensively examined. In this context, the
findings of this study have been obtained from an experimental design
solving some issues of defect prediction when ensemble learners are
used. novelEnsemble outperformed the others in terms of AUC and
MCC. The main findings of the paper can be summarized as follows:

1. novelEnsemble demonstrated a clear superiority to its closest
alternative in AUC with 86%. The difference is almost 9%. It rises to
30% when novelEnsemble is compared with triTraining.

2. Some classifiers such as C5.0 and neural network are much more
variable than previously thought. Thus, ensembleHyper, which in-
cludes some predictors except C5.0 and neural network, shows worse
performance than novelEnsemble. Therefore, predictors used in con-
structing an ensemble learner should be changed according to data sets

119

M. Maruf Öztürk

and experimental settings.

3. The success of an ensemble learner may not change depending
on parameter search method, used ensemble approach, and selected
hyperparameters. For instance, ensembleHyper and ensembleNoHyper
produced similar results in AUC and MCC values. Moreover, the dif-
ference of these values is negligible in performed statistical analyzes. In
such cases, the experiment could be replicated by changing hyperpa-
rameters and the predictors constructing ensemble learners. The most
ineffective configurations can be revealed by that way.

4. In an ensemble learner, besides classification error, other metrics
indicating defectiveness should be considered. Thus, novelEnsemble
decides the label of an instance by comparing average number of defects
with classification error. triTraining has been found to be the most
unsuitable ensemble learner among all methods. Because, it has an
experimental design based solely on classification error and restricts
the number of predictors with three.

The future agenda of the paper encompasses the following: 1) nove-
lEnsemble used BootStrap to select training instances as in triTraining.
Instead, it is planned to develop a method utilizing some supervised
techniques such as clustering by taking data scale into account; 2) Al-
though novelEnsemble is not dependent on the number of classifiers,
C5.0 and neural network have been involved in the experiment because
they yielded promising results in preceding works. However, it is still
unclear to what extent parameter search can contribute to HO in en-
semble learners. It would be interesting to investigate that topic; 3) In
the experiment, 27 data sets have been used. Yet another direction is
to validate the findings of the paper with industrial data sets.

References

[1] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “An empirical comparison of model validation techniques
for defect prediction models,” IEEE Transactions on Software En-
gineering, vol. 43, no. 1, pp. 1–18, 2017.

120

optimization of ensemble learning . . .

[2] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Heterogeneous cross-
company defect prediction by unified metric representation and
cca-based transfer learning,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 2015,
pp. 496–507.

[3] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical study of classi-
fier combination for cross-project defect prediction,” in Computer
Software and Applications Conference (COMPSAC), 2015 IEEE
39th Annual, vol. 2. IEEE, 2015, pp. 264–269.

[4] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect pre-
diction for imbalanced data,” in Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on, vol. 2.
IEEE, 2015, pp. 99–108.

[5] X. Yang, K. Tang, and X. Yao, “A learning-to-rank approach
to software defect prediction,” IEEE Transactions on Reliability,
vol. 64, no. 1, pp. 234–246, 2015.

[6] T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple kernel en-
semble learning for software defect prediction,” Automated Soft-
ware Engineering, vol. 23, no. 4, pp. 569–590, 2016.

[7] H. Osman, M. Ghafari, and O. Nierstrasz, “Hyperparameter opti-
mization to improve bug prediction accuracy,” in Machine Learn-
ing Techniques for Software Quality Evaluation (MaLTeSQuE),
IEEE Workshop on. IEEE, 2017, pp. 33–38.

[8] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “Automated parameter optimization of classification
techniques for defect prediction models,” in Software Engineer-
ing (ICSE), 2016 IEEE/ACM 38th International Conference on.
IEEE, 2016, pp. 321–332.

[9] W. Fu, V. Nair, and T. Menzies, “Why is differential evolution bet-
ter than grid search for tuning defect predictors?” arXiv preprint
arXiv:1609.02613, 2016.

121

M. Maruf Öztürk

[10] W. Fu, T. Menzies, and X. Shen, “Tuning for software analyt-
ics: Is it really necessary?” Information and Software Technology,
vol. 76, pp. 135–146, 2016.

[11] M. Bieshaar, S. Zernetsch, A. Hubert, B. Sick, and K. Doll, “Coop-
erative starting movement detection of cyclists using convolutional
neural networks and a boosted stacking ensemble,” arXiv preprint
arXiv:1803.03487, 2018.

[12] F. Moretti, S. Pizzuti, S. Panzieri, and M. Annunziato, “Urban
traffic flow forecasting through statistical and neural network bag-
ging ensemble hybrid modeling,” Neurocomputing, vol. 167, pp.
3–7, 2015.

[13] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting
system,” in Proceedings of the 22nd acm sigkdd international con-
ference on knowledge discovery and data mining. ACM, 2016, pp.
785–794.

[14] D. Roschewitz, K. Driessens, and P. Collins, “Simultaneous ensem-
ble generation and hyperparameter optimization for regression,”
in Benelux Conference on Artificial Intelligence. Springer, 2017,
pp. 116–130.

[15] X. Wang, H.-J. Xing, Y. Li, Q. Hua, C.-R. Dong, and W. Pedrycz,
“A study on relationship between generalization abilities and fuzzi-
ness of base classifiers in ensemble learning.” IEEE Trans. Fuzzy
Systems, vol. 23, no. 5, pp. 1638–1654, 2015.

[16] G. Haixiang, L. Yijing, L. Yanan, L. Xiao, and L. Jinling, “Bpso-
adaboost-knn ensemble learning algorithm for multi-class imbal-
anced data classification,” Engineering Applications of Artificial
Intelligence, vol. 49, pp. 176–193, 2016.

[17] M.-J. Kim, D.-K. Kang, and H. B. Kim, “Geometric mean based
boosting algorithm with over-sampling to resolve data imbalance
problem for bankruptcy prediction,” Expert Systems with Appli-
cations, vol. 42, no. 3, pp. 1074–1082, 2015.

122

optimization of ensemble learning . . .

[18] A. Reiss, G. Hendeby, and D. Stricker, “A novel confidence-based
multiclass boosting algorithm for mobile physical activity moni-
toring,” Personal and Ubiquitous Computing, vol. 19, no. 1, pp.
105–121, 2015.

[19] Q. Miao, Y. Cao, G. Xia, M. Gong, J. Liu, and J. Song, “Rboost:
label noise-robust boosting algorithm based on a nonconvex loss
function and the numerically stable base learners,” IEEE transac-
tions on neural networks and learning systems, vol. 27, no. 11, pp.
2216–2228, 2016.

[20] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a
support vector machine for cross-project defect prediction,” Em-
pirical Software Engineering, vol. 21, no. 1, pp. 43–71, 2016.

[21] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data
vs. domain vs. process,” in Proceedings of the the 7th joint meet-
ing of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering.
ACM, 2009, pp. 91–100.

[22] M. M. Öztürk, “Comparing hyperparameter optimization in cross-
and within-project defect prediction: A case study,” Arabian Jour-
nal for Science and Engineering, pp. 1–16, 2018.

[23] Y. Bengio, “Gradient-based optimization of hyperparameters,”
Neural computation, vol. 12, no. 8, pp. 1889–1900, 2000.

[24] S. S. Keerthi, “Efficient tuning of svm hyperparameters using ra-
dius/margin bound and iterative algorithms,” IEEE Transactions
on Neural Networks, vol. 13, no. 5, pp. 1225–1229, 2002.

[25] K. Ito and R. Nakano, “Optimizing support vector regression hy-
perparameters based on cross-validation,” in Neural Networks,
2003. Proceedings of the International Joint Conference on, vol. 3.
IEEE, 2003, pp. 2077–2082.

123

M. Maruf Öztürk

[26] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect pre-
diction using ensemble learning on selected features,” Information
and Software Technology, vol. 58, pp. 388–402, 2015.

[27] F. N. Koutanaei, H. Sajedi, and M. Khanbabaei, “A hybrid data
mining model of feature selection algorithms and ensemble learn-
ing classifiers for credit scoring,” Journal of Retailing and Con-
sumer Services, vol. 27, pp. 11–23, 2015.

[28] Z.-H. Zhou and M. Li, “Tri-training: Exploiting unlabeled data
using three classifiers,” IEEE Transactions on knowledge and Data
Engineering, vol. 17, no. 11, pp. 1529–1541, 2005.

[29] C. W. Yohannese, T. Li, M. Simfukwe, and F. Khurshid, “En-
sembles based combined learning for improved software fault pre-
diction: A comparative study,” in Intelligent Systems and Knowl-
edge Engineering (ISKE), 2017 12th International Conference on.
IEEE, 2017, pp. 1–6.

[30] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learn-
ing to improve software defect prediction,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Re-
views), vol. 42, no. 6, pp. 1806–1817, 2012.

[31] S. Wang and X. Yao, “Using class imbalance learning for software
defect prediction,” IEEE Transactions on Reliability, vol. 62, no. 2,
pp. 434–443, 2013.

[32] X. Yang, D. Lo, X. Xia, and J. Sun, “Tlel: A two-layer ensemble
learning approach for just-in-time defect prediction,” Information
and Software Technology, vol. 87, pp. 206–220, 2017.

[33] A. Arcuri and G. Fraser, “Parameter tuning or default values?
an empirical investigation in search-based software engineering,”
Empirical Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[34] A. S. Sayyad, K. Goseva-Popstojanova, T. Menzies, and H. Am-
mar, “On parameter tuning in search based software engineering:

124

optimization of ensemble learning . . .

A replicated empirical study,” in Replication in Empirical Software
Engineering Research (RESER), 2013 3rd International Workshop
on. IEEE, 2013, pp. 84–90.

[35] M. Borg, “Tuner: a framework for tuning software engineering
tools with hands-on instructions in r,” Journal of software: Evo-
lution and Process, vol. 28, no. 6, pp. 427–459, 2016.

[36] H. Lappalainen, “Ensemble learning for independent component
analysis,” in Proc. Int. Workshop on Independent Component
Analysis and Signal Separation (ICA99). Citeseer, 1999, pp. 7–12.

[37] Y. Liu and X. Yao, “A cooperative ensemble learning system,”
in Neural Networks Proceedings, 1998. IEEE World Congress on
Computational Intelligence. The 1998 IEEE International Joint
Conference on, vol. 3. IEEE, 1998, pp. 2202–2207.

[38] G. Rätsch, B. Schölkopf, A. J. Smola, S. Mika, T. Onoda, and
K.-R. Müller, “Robust ensemble learning,” 2000.

[39] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust prediction of
fault-proneness by random forests,” in Software Reliability En-
gineering, 2004. ISSRE 2004. 15th International Symposium on.
IEEE, 2004, pp. 417–428.

[40] B. Clark and D. Zubrow, “How good is the software: a review
of defect prediction techniques,” in Software Engineering Sympo-
sium, Carreige Mellon University, 2001.

[41] A. Tosun, B. Turhan, and A. Bener, “Ensemble of software defect
predictors: a case study,” in Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and
measurement. ACM, 2008, pp. 318–320.

[42] B. E. Rosen, “Ensemble learning using decorrelated neural net-
works,” Connection science, vol. 8, no. 3-4, pp. 373–384, 1996.

125

M. Maruf Öztürk

[43] D. Barber and C. M. Bishop, “Ensemble learning for multi-layer
networks,” in Advances in neural information processing systems,
1998, pp. 395–401.

[44] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: An
incremental learning algorithm for supervised neural networks,”
IEEE transactions on systems, man, and cybernetics, part C (ap-
plications and reviews), vol. 31, no. 4, pp. 497–508, 2001.

[45] N. Liu and H. Wang, “Ensemble based extreme learning machine,”
IEEE Signal Processing Letters, vol. 17, no. 7, p. 754, 2010.

[46] G. I. Webb and Z. Zheng, “Multistrategy ensemble learning: Re-
ducing error by combining ensemble learning techniques,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 8,
pp. 980–991, 2004.

[47] P. Zhang, X. Zhu, Y. Shi, L. Guo, and X. Wu, “Robust ensemble
learning for mining noisy data streams,” Decision Support Sys-
tems, vol. 50, no. 2, pp. 469–479, 2011.

[48] J. Hu, T. Li, C. Luo, H. Fujita, and Y. Yang, “Incremental fuzzy
cluster ensemble learning based on rough set theory,” Knowledge-
Based Systems, vol. 132, pp. 144–155, 2017.

[49] E. I. Papageorgiou and A. Kannappan, “Fuzzy cognitive map en-
semble learning paradigm to solve classification problems: Appli-
cation to autism identification,” Applied Soft Computing, vol. 12,
no. 12, pp. 3798–3809, 2012.

[50] M. Pratama, W. Pedrycz, and E. Lughofer, “Evolving ensemble
fuzzy classifier,” IEEE Transactions on Fuzzy Systems, 2018.

[51] Y. Peng, G. Kou, G. Wang, W. Wu, and Y. Shi, “Ensemble of soft-
ware defect predictors: an ahp-based evaluation method,” Inter-
national Journal of Information Technology & Decision Making,
vol. 10, no. 01, pp. 187–206, 2011.

126

optimization of ensemble learning . . .

[52] U. Apache, “Apache software foundation,” URL http://java.
apache. org, 2011.

[53] D. Spinellis, “Ckjm-a tool for calculating chidamber and kemerer
java metrics,” 2009.

[54] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Proceedings of
the 6th International Conference on Predictive Models in Software
Engineering. ACM, 2010, p. 9.

[55] L. Chen, B. Fang, Z. Shang, and Y. Tang, “Tackling class overlap
and imbalance problems in software defect prediction,” Software
Quality Journal, vol. 26, no. 1, pp. 97–125, 2018.

[56] X.-Y. Jing, F. Wu, X. Dong, and B. Xu, “An improved sda based
defect prediction framework for both within-project and cross-
project class-imbalance problems,” IEEE Transactions on Soft-
ware Engineering, vol. 43, no. 4, pp. 321–339, 2017.

[57] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “The impact of automated parameter optimization on
defect prediction models,” IEEE Transactions on Software Engi-
neering, 2018.

[58] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use
of machine learning in software defect prediction,” IEEE Transac-
tions on Software Engineering, vol. 40, no. 6, pp. 603–616, 2014.

[59] A. P. Bradley, “The use of the area under the roc curve in the
evaluation of machine learning algorithms,” Pattern recognition,
vol. 30, no. 7, pp. 1145–1159, 1997.

[60] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13, no.
Feb, pp. 281–305, 2012.

[61] R. Everaers and K. Kremer, “A fast grid search algorithm for
molecular dynamics simulations with short-range interactions,”

127

M. Maruf Öztürk

Computer Physics Communications, vol. 81, no. 1-2, pp. 19–55,
1994.

[62] C. Ibsen and J. Anstey, Camel in action. Manning Publications
Co., 2018.

[63] A. Kotelyanskii and G. M. Kapfhammer, “Parameter tuning for
search-based test-data generation revisited: Support for previ-
ous results,” in Quality Software (QSIC), 2014 14th International
Conference on. IEEE, 2014, pp. 79–84.

[64] S. Herbold, A. Trautsch, and J. Grabowski, “A comparative study
to benchmark cross-project defect prediction approaches,” IEEE
Transactions on Software Engineering, 2017.

[65] F. Wu, X.-Y. Jing, X. Dong, J. Cao, M. Xu, H. Zhang, S. Ying, and
B. Xu, “Cross-project and within-project semi-supervised software
defect prediction problems study using a unified solution,” in Soft-
ware Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th
International Conference on. IEEE, 2017, pp. 195–197.

[66] S.-L. Jan and G. Shieh, “Sample size determinations for welch’s
test in one-way heteroscedastic anova,” British Journal of Mathe-
matical and Statistical Psychology, vol. 67, no. 1, pp. 72–93, 2014.

M. Maruf Öztürk Received December 7, 2018

Department of

Computer Engineering

Faculty of Engineering

Isparta, TURKEY

Phone: +90 246 211 15 63

E–mail: muhammedozturk@sdu.edu.tr, maruf215@gmail.com

128

