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Error correcting codes from sub-exceeding

functions

L. Rabefihavanana, H. Andriatahiny, T. Rabeherimanana

Abstract

In this paper, we present linear systematic error-correcting
codes Lk and L+

k
which are the results of our research on the

sub-exceeding functions.
Given an integer k such that k ≥ 3, these two codes are re-

spectively [2k, k] and [3k, k] linear codes. The minimum distance
of L3 is 3 and for k ≥ 4 the minimum distance of Lk is 4. The
code L+

k
, the minimum distances are respectively 5 and 6 for

k = 4 and k ≥ 5.
By calculating the complexity of the algorithms, our codes

have fast and efficient decoding.
Then, for a short and medium distance data transmission (wifi

network, bluetooth, cable, ...), we see that the codes mentioned
above present many advantages.

Keywords: Error correction code, encoding, decoding, sub-
exceeding function.
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1 Introduction

New information and communication technologies or NICTs require
today a norm increasingly strict in terms of quality of service. The
diversity and the increasing volumes of data exchanged/processed also
require increasingly fast and reliable systems.

In these constraints related to information processing, we need to
take into account the increased sensitivity of technologies in front of
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external disruptive sources. It’s about especially to protect information
against environmental damage during transmission.

The aim of this article is to build new error correcting codes using
the results of our two articles entitled: Parts of a set and sub-exceeding
function: coding and decoding [16] in 2017 and Encoding of Partition
Set Using Sub-exceeding Function [15] in 2018.

In the last section of this article, we give the decoding algorithm of
these codes using Groebner basis.

2 Preliminaries

Let n be a positive integer, JnK denotes the set of positive integers less
or equal to n and the zero element, i.e.

JnK = {0, 1, 2, ... n} .

2.1 The necessary ones on the study of sub-exceeding

functions

Definition 2.1. (See [16]) Let n be a positive integer and let f be a
map from [n] to JnK. This function f is said sub-exceeding if for all i
in JnK, we have

f(i) ≤ i.

We denote by Fn the set of all sub-exceeding functions on [n], i.e.

Fn = {f : JnK −→ JnK | f(i) ≤ i, ∀i ∈ JnK} . (1)

Remark 2.2. A sub-exceeding function f can be represented by the
word of n + 1 alphabet f(0)f(1)f(2)...f(n). So, we describe f by its
images f = f(0)f(1)f(2)...f(n).

Definition 2.3. (See [16]) Let n and k be two integers such that 0 ≤
k ≤ n. We define by Hk

n the subset of Fn such that

Hk
n = {f ∈ Fn | f(i) 6 f(i+ 1) for all i ∈ JnK and Im(f) = JkK} .

(2)
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Here, Hk
n is the set of all sub-exceeding functions of Fn with a

quasi-increasing sequence of images formed by all elements of JkK.

Example 2.4. Take n = 4 and k = 3. We find that the function
f = 01123 is really in H3

4 because (f(i))0≤i≤4 is a quasi-increasing
sequence formed by all the elements of J3K. But if we take f = 01133,
even if the sequence (f(i))0≤i≤4 is quasi-increasing, f = 01133 /∈ H3

4

because Im(f) 6= J3K (without 2 among the f(i)).

Following Definition 2.3, we denote by Hn the set defined as follows:

Hn =

n⋃

k=0

Hk
n. (3)

Theorem 2.5. ( See [16])
Let n and k be two integers such that 0 ≤ k ≤ n.

1. For k = 0, we always find that H0
n is a set of singletons:

H0
n = {f = 000...00n+1-terms} .

2. For k = n, we also find that Hn
n is a set of singletons:

Hn
n = {f = 0123....(n − 1)(n)} .

3. For any integer k such that 0 < k < n, we can construct all
sub-exceeding functions of Hk

n as follows:

(a) Take all the elements of Hk−1
n−1 and add the integer k at the

end,

(b) Take all the elements of Hk
n−1 and add the integer k at the

end

To better presentation of this construction, we adopt the following
writing:

Hk
n =

{

Hk−1
n−1 x k

} ⋃ {

Hk
n−1 x k

}

.

Here, (∗) x k means that we add the integer k at the end of all
elements of (∗).
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Table 1. The iteration table of the elements of Hk
n

n r k 0 1 2 3 4 ...

0 0

1 00 01

001
2 000 011 012

0001 0012
3 0000 0011 0112 0123

0111 0122

00001 00012 00123
00011 00112 01123

00000 00111 01112 01223 01234
4 01111 00122 01233

01122
01222

From Theorem 2.5, we have this Table 1 which presents all elements
of Hk

n for some integers n (n = 0, 1, 2, 3 and 4).

Proposition 2.6. See [16]
Let n and k be two integers such that 0 6 k 6 n. So, we have the
following relations:

1. Card H0
n = Card Hn

n = 1,

2. Card Hk
n = Card Hk−1

n−1 + Card Hk
n−1,

3. Card Hk
n =

(
n
k

)

and Card Hn = 2n.

Proof. From the construction of the elements of Hk
n in Theorem 2.5,

we have directly the result of Proposition 2.6.

This Proposition 2.6 presents to us the iterative calculus of the car-
dinal of Hk

n.
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Thus, Table 2 below gives the cardinal of Hk
n for some integers n

(n = 0, 1, 2, 3 and 4).

Table 2. The cardinal table of Hk
n

n r k 0 1 2 3 4 ...

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1
...

Thus constructed, Table 2 is none other than the Pascal triangle.

3 Main result:

error-correcting codes from the study on the

sub-exceeding function

In this section, we present our linear error-correcting code from sub-
exceeding function.

3.1 The error-correcting code constructions

Recall that for a positive integer n, a function f from JnK to JnK is
said to be sub-exceeding if for any integer i in JnK, we always have the
inequality f(i) ≤ i.

Thus, the sub-exceeding term amounts to saying that the image of
an integer i by an application f is always an integer smaller or equal
to this one.

Theorem 3.1. Let k be a positive integer and let f be an application
from JkK to F

k+1
2 . Then the application f is a sub-exceeding function if

and only if f(0) = 0.
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This theorem tells us that all message of k bits on F2 which begins
with 0 is a sub-exceeding function.

Proof. We say that the image of an integer i in JkK by the application
f is always equal to 0 or 1. Thus, by the condition f(0) = 0, we have
f(i) ≤ i for all i. So, f is a sub-exceeding function.

Now, let’s examine the subset Hk for the set of sub-exceeding func-
tions in all application from JkK in F

k+1
2 . That is to say the subset Hk

for the set of k bits messages on F2.
Referring to Theorem 2.5, we can have all the elements of Hk (see

Table 3). Moreover, from Proposition 2.6, we find

Card (H0
k) = 1 and that Card(H1

k) = k. (4)

Table 3 shows the elements of Hi
k for each value of i ∈ {0, 1} and some

integer k.

Definition 3.2. For a positive integer k, we define by Tk the matrix
of k + 1 rows and k columns such that

Tk =













0 0 0 ... 0 0 1
0 0 0 ... 0 1 1
0 0 0 ... 1 1 0
...

...
... ր ր

...
...

0 0 1 1 0 ... 0
0 1 1 0 0 ... 0
1 1 0 0 0 ... 0
0 1 1 1 1 ... 1













. (5)

Here, T [i, j] denotes the element of Tk in the ith row and the jth column
and

- for all i in {1, 2, .., k},

* Tk[k − i+ 1, i] = 1,

* Tk[k + 1, i] = 1, except Tk[k + 1, 1] = 0,

- for all i in {2, .., k}, Tk[k − i+ 2, i] = 1.
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Table 3. The elements of Hi
k

n \ k 0 1

0 0

1 00 01

2 000 001
011

0001
3 0000 0011

0111

00001
4 00000 00011

00111
01111

000001
000011

5 000000 000111
001111
011111

...

In the other cases, Tk[i, j] = 0 and j in {1, 2, .., k}.

Remark 3.3. The matrix Tk of our definition establishes the relation
between the set H1

k and the generating matrix of our code that we will
see below. (see also [16]).

Proposition 3.4. Reminding that H1
k is the set of sub-exceeding func-

tions fi of length k + 1 such that

fi = 000 ... 0 11...1
︸ ︷︷ ︸

i− times
, with i ∈ {1, ...k} .

Then the product fi × Tk gives the word gi such that
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





g1 = 0111...111
g2 = 1011...111
g3 = 1101...111
...

...
gk−1 = 1111...101
gk = 1111...110







. (6)

Notation 3.5. Now let’s denote by Gk the matrix

Gk =










g1
g2
g3
...
gk










=












0111...111
1011...111
1101...111

...
1111...101
1111...110












. (7)

Example 3.6. For k = 3, we have:

G3







g1 = 011
g2 = 101
g3 = 110






, T3 =







0 0 1
0 1 1
1 1 0
0 1 1







where H1
3







f1 = 0001
f2 = 0011
f3 = 0111







For k = 4, we have:

G4







g1 = 0111
g2 = 1011
g3 = 1101
g4 = 1110







, T4 =









0 0 0 1
0 0 1 1
0 1 1 0
1 1 0 0
0 1 1 1









, H1
4







f1 = 00001
f2 = 00011
f3 = 00111
f4 = 01111







3.2 The linear systematic code Lk

Theorem 3.7. Let k be a positive integer and let ψ be the linear ap-
plication from F

k
2 to F

2k
2 such that

ψ : F
k
2 −→ F

2k
2

m 7−→ ψ(m) = m × GLk
,

(8)
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where m is the message of k bits such that m = m1m2...mk and GLk

is the generator matrix such that GLk
=

(
Ik Gk

)
, where Gk is the

matrix defined in the equation (6).

Thus, the application ψ forms a systematic [2k, k]-linear error-
correcting code denoted by Lk. The minimum distance of L3 is 3, and
for k ≥ 4 the minimum distance of Lk is 4.

Proof. First, since GLk
=

(
Ik Gk

)
is a matrix of k rows and 2k

columns whose rows are linearly independent vectors, so the application
ψ is injective from F

k
2 to F

2k
2 . Thus, ψ(Fk

2) is a vector space over F2 of
dimension k. Then ψ forms a systematic linear error-correcting code
of dimension k and length 2k.

Now, let m be the message such as m = m1 m2...mk and note by c
its image by the application ψ.

c = ψ(m) = m × GLk
.

Since ψ is a systematic code, a codeword c of length 2k can be separated
into two vectors c1 and c2. That is to say, c = c1 c2. Here, the vector
c1 is the original message (c1 = m), and c2 is the vector (control bits)
such that c2 = m × Gk.

So, for any integer i in {1, 2, ..., k}, we have

c2[i] =
k∑

j=1,j 6=i

mj.

So, two cases are possible:

- If the weight of m is even

{

and that mi = 0 ⇒ c2[i] =
∑k

j=1,j 6=imj = 0.

and if mi = 1 ⇒ c2[i] =
∑k

j=1,j 6=imj = 1.

In this case, the code word c is: c = m m.
(Ex: for k = 6, if m = 011101, we have c = 011101 011101 )
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- If the weight of m is odd
{

and that mi = 0 ⇒ c2[i] =
∑k

j=1,j 6=imj = 1.

and if mi = 1 ⇒ c2[i] =
∑k

j=1,j 6=imj = 0.

In this case, the code word c is: c = m m, wherem is the opposite
of m.
(Ex: for k = 7, if m = 0000111, we have c = 0000111 1111000)

Now,

1. Take k = 3,
if w(m) = 1 −→ w(c) = 3,
if w(m) = 2 −→ w(c) = 4,
if w(m) = 3 −→ w(c) = 3.

(9)

Thus, the minimum distance for the code L3 is 3.

2. for k ≥ 4,

if w(m) = 1 −→ w(c) = k,
if w(m) = 2 −→ w(c) = 4,
if w(m) = 3 −→ w(c) = k,

...
if w(m) = p (even) −→ w(c) = 2p,
if w(m) = q (odd) −→ w(c) = k.

(10)

Thus, the minimum distance for the code Lk is 4.

Example 3.8. For k = 3, from the main theorem (3.7), we have

L3 =







000000
001110
010101
100011
011011
101101
110110
111000







, GL3
=





1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0



 .
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Initial messages:

F
3
2 =

(
000
001

010
100

011
101

110
111

)

.

Example 3.9. For k = 4, from the main theorem (3.7), we have

GL4
=







1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0







(11)

and

L4 =

00000000
00011110
00101101
01001011
10000111

00110011
01010101
10011001
01100110
10101010
11001100

01111000
10110100
11010010
11100001
11111111

3.3 The linear systematic code L+
k

Theorem 3.10. Let k be an integer such that k ≥ 4, and let’s take the
system {e′1, e

′
2, ..., e

′
k}, where e′i = ψ(gi) (see the equation 6). So, we

can build a [3k, k]-linear systematic code with generator matrix

GL+

k

=






e′1

Ik
...
e′k




 (12)

which is denoted by L+
k .

The code L+
4 has minimum distance 5, and for k ≥ 5, the code L+

k

has minimum distance 6. The generating matrix G of this code has the
form

G
L+

k

=
(
Ik Gk Ik

)
. (13)
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Proof. Since Lk is a sub-space over F2, any linear combination between
the code words e′1, e

′
2, ..., e

′
k gives a code in Lk of weight equal to 4.

Then, for a message m in F
k
2, the code word c generated by the matrix

G
L+

k

(ie c = m × G
L+

k

) has a weight:

1. For k = 4,
if w(m) = 1 −→ w(c′) = 5,
if w(m) = 2 −→ w(c′) = 6,
if w(m) = 3 −→ w(c′) = 7,
if w(m) = 4 −→ w(c′) = 12.

(14)

So we have a code 2-corrector L+
4 with a minimal distance d = 5.

2. For k ≥ 5,

if w(m) = 1 −→ w(c′) ≥ 6,
if w(m) = 2 −→ w(c′) = 6,
if w(m) = 3 −→ w(c′) ≥ 7,

...
if w(m) = k −→ w(c′) ≥ k + 4.

(15)

So we have a code 2 -corrector L+
k with a minimal distance d = 6.

Example 3.11. The code L+
4 .

Now take the four (4) vectors in L4 which are:

e′1 = 01111000
e′2 = 10110100
e′3 = 11010010
e′4 = 11100001

. (16)

The code L+
4 is as follows:

G
L+

4

=







1 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0
0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1






. (17)
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L+
4 =

0000 0000 0000
0001 1110 0001
0010 1101 0010
0100 1011 0100
1000 0111 1000

0011 0011 0011
0101 0101 0101
1001 1001 1001
0110 0110 0110
1010 1010 1010
1100 1100 1100

0111 1000 0111
1011 0100 1011
1101 0010 1101
1110 0001 1110
1111 1111 1111

Example 3.12. The code L+
5 .

Now take the five (5) vectors in L5 which are:

e′1 = 01111 10000
e′2 = 10111 01000
e′3 = 11011 00100
e′4 = 11101 00010
e′4 = 11110 00001

. (18)

The code L+
5 is thus as follows:

GL+

5

=









1 0 0 0 0 0 1 1 1 1 1 0 0 0 0
0 1 0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 1 0 0 1 1 0 1 1 0 0 1 0 0
0 0 0 1 0 1 1 1 0 1 0 0 0 1 0
0 0 0 0 1 1 1 1 1 0 0 0 0 0 1









. (19)

The code words of L+
5 are:

00000 00000 00000
00001 11110 00001
00010 11101 00010
00100 11011 00100
01000 10111 01000
10000 01111 10000

00011 00011 00011
00101 00101 00101
00110 00110 00110
01001 01001 01001
01010 01010 01010
01100 01100 01100
10001 10001 10001
10010 10010 10010
10100 10100 10100
11000 11000 11000

11100 00011 11100
11010 00101 11010
11001 00110 11001
10110 01001 10110
10101 01010 10101
10011 01100 10011
01110 10001 01110
01101 10010 01101
01011 10100 01011
00111 11000 00111

01111 01111 01111
10111 10111 10111
11011 11011 11011
11101 11101 11101
11110 11110 11110
11111 00000 11111

(20)
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4 Decoding for the error correcting codes Lk
and L+

k

After considering the parameters necessary for the study of these codes,
we present here the appropriate decoding algorithms.

4.1 The dual codes of Lk and L+
k

Theorem 4.1. (See [9], [12], [17] )
If C is an [n, k] code over F2, then the dual code C⊥ is given by all words
u ∈ F

n
2 such that < u , c >= 0 for each c ∈ C, where < , > denotes

the ordinary inner product. The dual code C⊥ is an [n, n− k] code. If
G = (Ik |M) is a generator matrix for C, then H =

(
MT | In−k

)
is

the generator matrix for C⊥.

Example 4.2. For the code L4 and L+
4 the generator matrix is respec-

tively

GL4
=







1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0







and

GL+

4

=







1 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0
0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1






.

So the dual code L⊥
4 and (L+

4 )
⊥ have respectively his generator matrix:

HL⊥

4
=







0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1






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and

H(L+

4
)⊥ =















0 1 1 1 1 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1















. (21)

As the columns of HL⊥

4
(or H(L+

4
)⊥) are pairwise distinct, so for a

codeword c that contains exactly one error, the decoding will be easy by
looking at the H × tc syndrome.

Definition 4.3. Let c be an element of linear code C such that c =
m1 m2 ... mn, where mi ∈ F2 for all i. We define the monomial Xc of
F2[X1X2...Xn] by

Xc = Xm1

1 Xm2

2 ...Xmn

n . (22)

Example 4.4. Take c = 101101 which is a codeword of L3. In
F2[X1X2...X6], the monomial Xc was

Xc = X1
1X

0
2X

1
3X

1
4X

0
5X

1
6 = X1X3X4X6.

Theorem 4.5. (see [4])
Let C be an [n, k]-linear systematic code over F2. Define by IC the
binomial ideal of F2[X1X2...Xn] associated with C such that

IC = 〈Xc −Xc′ | c− c′ ∈ C〉+ 〈X2
i − 1 | 1 ≤ i ≤ n〉. (23)

Theorem 4.6 (Groebner basis of the Binomial ideal IC). (See [12])
Take the lexicographic order on F2[X1X2...Xn], i.e. X1 ≻ ... ≻ Xn.
An [n, k] linear systematic code C of generator matrix (Ik |M) has the
reduced Groebner basis

B = {Xi −Xmi | 1 ≤ i ≤ k} ∪
{
X2

i − 1 | k + 1 ≤ i ≤ n
}
. (24)

Here mi is the ith line of the matrix M .
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Example 4.7. For the code (L+
4 ), the corresponding binomial ideal of

this code in F2[X1X2...Xn] has the reduced Groebner basis given by the
elements

b1 = X1 −X6X7X8X9 b5 = X2
5 − 1

b2 = X2 −X5X7X8X10 b6 = X2
6 − 1

b3 = X3 −X5X6X8X11 b7 = X2
7 − 1

b4 = X4 −X5X6X7X12 b8 = X2
8 − 1

b9 = X2
9 − 1 b10 = X2

10 − 1
b11 = X2

11 − 1 b12 = X2
12 − 1

, (25)

where

GL+

4

=







1 0 0 0 0 1 1 1 1 0 0 0
0 1 0 0 1 0 1 1 0 1 0 0
0 0 1 0 1 1 0 1 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1






. (26)

4.2 Error-correction of the code Lk

1. The ideal case is that no error was produced during transmission.
We can use two methods to detect the presence of errors:

- We make the product of the control matrix H with the re-
ceived code and we have to find a null vector, which means
that there was no error during the transmission.

- Now the second method: as our code Lk is a systematic code,
the received code word can be split into two, i.e. c = m1 m2,
where m1 is the message sent and m2 is the control code.
So, if the weight of m1 is even and m1 = m2 or if the weight
of m1 is odd and m2 = m1, in both cases the code has no
error during the transmission. Otherwise there are errors.

2. The other case is that errors occur during transmission.
Suppose that one error was produced. So, we find out here how
to fix it. The only error must be in m1 or m2. Moreover, if the
real message m sent is of even (odd) weight, the word m1+m2 is
of weight 1 (resp (k− 1)). As a result, the decoding is as follows:
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- If the weight of m1+m2 is 1, it remains to find the only bit
that distinguishes m1 from m2 and fix it for the weight of
m1 to be even.

- If the weight of m1+m2 is k− 1, it remains to find the only
bit for that m2 = m1 and fix it for the weight of m1 to be
odd.

Algorithm of Decoding for the code Lk

Input r (received word)

Output c (corrected word)

Begin

Determine m1 and m2 such that r = m1m2;

Calculate w1 = w(m1), w2 = w(m2)
and w1,2 = w(m1 +m2);

∗ If w1,2 = 0 or w1,2 = k, so c = r;

∗ If w1,2 = 1

· and if w1 is even, so c = m1 m1;
· and if w1 is odd, so c = m2 m2;

∗ If w1,2 = k − 1

· and if w1 is odd, so c = m1 m1;
· and if w1 is even, so c = m2 m2;

∗ Else print(“The message contains more
than one error, we can not correct them”)

End

By simple calculation, we find that the complexity of this algorithm is
linear, i.e. O(n).

Remark 4.8. For k = 4, the parameters of the code L4 coincide with
those of the extended Hamming code H(8, 4, 4). But by comparing the
decoding algorithm presented in [14] on page 88 to 92 (decoding by the
butterfly operator) with our algorithm, the complexity of our decoding
is interesting.
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Remark 4.9. The code Hadamard[4, 2, 2] have also the same param-
eters as our code L2.

4.3 Error correction for the code L+
k

We try to give here the correction steps for a codeword that contains
at most 2 errors.
An immediate consequence of the study of the reduced Groebner basis
of the Binomial ideal IC is a decoding algorithm for linear codes. This
algorithm was given in slightly different form in [4].

Theorem 4.10. (See [12])
Let C be an [n,k] code over F2, and let B be the reduced Groebner basis
for C given in (24). Suppose the code C is t-error-correcting. The
following algorithm gives a decoder D for the code C. Given a received
word c ∈ F

n
2 , if the word given by rem(Xc−1, B) has at most t nonzero

entries, then form D(c) = (Xc − 1) − rem(Xc − 1, B). This gives the
codeword that is closest to the received word.

Remark 4.11. In other ways, for the linear systematic code L+
k , we

can also use the parity check matrix HL+

k

for the decoding. By the

form of this parity check matrix, we have:

- all the columns of HL+

k

(see (21)) are different from each other,

- all additions of two columns of HL+

k

are also pairwise distinct.

Then, for a received word c which contains at most two errors,

- if one error was presented at the ith position of c, thusH× tc = hi.

- If c contains two errors at the ith and jth position (i < j), thus
H × tc = hi + hj .

The calculation of H
L+

k

× tc specifies the positions of errors. So, we

find that the number of operations for the decoding of the code L+
k

denoted Nop is 2k(6k + 1) i.e.

Nop(L
+
k ) =

2n(2n + 1)

3
, where n = 3k.
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Then, we find that the complexity of this algorithm is quadratic, i.e.
O(n2).

4.3.1 Comparative analysis between L+
k and the code of

Hamming

Table 4 below presents a comparative study between the Hamming code
and L+

k for some cases where the two codes are of the same length.

Table 4. Comparative study between Hamming code and L+
k

HAMMING CODE CODE BUILT FROM

SUB-EXCEEDING FONCTION

It is a linear code of It is a linear code of
the form the form

[2r − 1, 2r − r − 1, 3]. [3k, k, 6].

Form For r = 4, we have For k = 5, we have
[15, 11, 3] − linear code. [15, 5, 6] − linear code.

For r = 6, we have For k = 21, we have
[63, 57, 3] − linear code. [63, 21, 6] − linear code.

Minimum distance: Minimum distance:
d = 3 d = 6

Correction capacity: Correction capacity:
ec = 1 ec = 2

Parameters For the [15, 11, 3] − code For the [15, 5, 6] − code
Correction rate is Correction rate is

Cr = 1/15 Cr = 2/15

For the [63, 57, 3] − code For the [63, 21, 6] − code
Correction rate is Correction rate is

Cr = 1/63 Cr = 2/63
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These codes have the same length but different dimensions. However,
the code L+

k has 2 bits for the correction capability and the error de-
tection capability was 5 comparing with the Hamming code which can
correct one error and detect only 2 errors.
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