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Abstract

A subset S of vertices of a graph G is a hop dominating set if
every vertex outside S is at distance two from a vertex of S. A
Roman dominating function on a graph G = (V,E) is a function
f : V (G) −→ {0, 1, 2} satisfying the condition that every vertex
u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. A hop Roman dominating function (HRDF) of
G is a function f : V (G) −→ {0, 1, 2} having the property that
for every vertex v ∈ V with f(v) = 0 there is a vertex u with
f(u) = 2 and d(u, v) = 2. The weight of a HRDF f is the sum
f(V ) =

∑

v∈V
f(v). The minimum weight of a HRDF on G is

called the hop Roman domination number of G and is denoted
by γhR(G). In this paper we characterize all graphs G of order n
with γhR(G) = n or γhR(G) = n− 1.

Keywords: Domination, Roman domination, Hop Roman
domination.
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1 Introduction

For notation and graph theory terminology not given here, we refer
to [7]. Let G = (V,E) be a graph with vertex set V = V (G) and
edge set E = E(G). The order of G is n(G) = |V (G)|. The open
neighborhood of a vertex v is NG(v) = {u ∈ V (G) |uv ∈ E(G)}. The
degree of v, denoted by deg(v), is |NG(v)|. The open neighborhood of a
subset S ⊆ V , is NG(S) =

⋃

v∈S NG(v), and the closed neighborhood of
S is the set NG[S] = NG(S) ∪ S. The distance between two vertices u
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and v in G, denoted by d(u, v), is the minimum length of a (u, v)-path
in G. The diameter, diam(G), of G is the maximum distance among
all pairs of vertices in G. If S is a subset of vertices in a graph G, then
we denote by G[S] the subgraph of G induced by S. For an integer
k ≥ 1, the set of all vertices at distance k from v is denoted by Nk(v).
Also we denote Nk[v] = Nk(v) ∪ {v}.

A subset of vertices of a graph G is a dominating set of G if every
vertex in V (G)−S has a neighbor in S. The domination number, γ(G),
is the minimum cardinality of a dominating set of G. Ayyaswamy and
Natarajan [4] introduced the concept of hop domination in graphs. A
subset S of vertices of a graph G is a hop dominating set (HDS) if
every vertex outside S is at distance two from a vertex of S. The hop
domination number, γh(G), of G is the minimum cardinality of a hop
dominating set of G. A HDS of G of minimum cardinality is referred
as a γh(G)-set. Farhadi et al. [6] generalized hope dominating sets and
studied k-hop dominating sets for every integer k ≥ 2. The concept
of hop domination was further studied, for example, in [3], [8], [9]. We
define the hop-degree of a vertex v in a graph G, denoted degh(v), to
be the number of vertices at distance 2 from v in G. The maximum
hop-degree among the vertices of G is denoted by ∆h(G).

A function f : V (G) −→ {0, 1, 2} having the property that for
every vertex v ∈ V with f(v) = 0, there exists a vertex u ∈ N(v) with
f(u) = 2, is called a Roman dominating function or just an RDF. The
weight of an RDF f is the sum f(V ) =

∑

v∈V f(v). The minimum
weight of an RDF on G is called the Roman domination number of
G and is denoted by γR(G). The mathematical concept of Roman
domination was defined and discussed by Stewart [13], and ReVelle
and Rosing [11], and subsequently developed by Cockayne et al. [5].

Roman dominating functions with further properties were consid-
ered by several authors, see for example, [1], [2], [10]. For any RDF f
on a graph G, it is clear that {v ∈ V (G) : f(v) 6= 0} is a dominating
set for G. It is an interesting question to study those RDF f such
that the set {v ∈ V (G) : f(v) 6= 0} is a hop dominating set for G.
Shabani [12] considered Roman dominating functions with the above
property and introduced the concept of hop Roman dominating func-
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tions. A hop Roman dominating function (HRDF) on a graph G is
a function f : V (G) −→ {0, 1, 2} having the property that for every
vertex v ∈ V with f(v) = 0 there is a vertex u with f(u) = 2 and
d(u, v) = 2. The weight of a HRDF f is the sum f(V ) =

∑

v∈V f(v).
The minimum weight of a HRDF on G is called the Hop Roman dom-
ination number of G and is denoted γhR(G). A HRDF with minimum
weight is referred as a γhR(G)-function. For a HRDF f in a graph

G, we denote by Vi (or V f
i to refer to f) the set of all vertices of G

with label i under f . Thus a HRDF f can be represented by a triple
(V0, V1, V2), and we can use the notation f = (V0, V1, V2). Among other
results, Shabani et al. [12] obtained the following.

Proposition 1 (Shabani [12]) For any graph G of order n and with

∆h(G) ≥ 1, γhR(G) ≥
2n

∆h(G) + 1
.

Proposition 2 (Shabani [12]) For any graph G of order n and with
∆h(G) ≥ 1, γhR(G) ≤ n−∆h(G) + 1.

In this paper, we characterize graphs with large hop Roman dom-
ination number. In Section 2, we characterize all graphs G of order n
with γhR(G) = n. In Section 3, we characterize all graphs G of order
n with γhR(G) = n− 1.

2 Graphs G with γhR(G) = n

In this section we characterize all graphs G of order n with γhR(G) = n.
For this purpose, we define a family of graphs as follows. Let G be
the family of graphs G such that G can be obtained from a sequence
G0, G1, ..., Gk, (k ≥ 1), of graphs, where G0 is a complete graph or
G0 = K2, G = Gk and, if k ≥ 1, then Gi+1 can be obtained recursively
from Gi by the following operation, for i = 0, 1, ..., k − 1.

Operation O. Add two new vertices and join each new vertex to
every vertex of Gi.

Theorem 3 Let G be a connected graph of order n. Then γhR(G) = n
if and only if G ∈ G ∪ {P4,Kn}.
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Proof. (⇒) The proof is by an induction on the order n of a graph
G with γhR(G) = n. If n ≤ 2 then clearly G is a complete graph. Thus
assume that n ≥ 3. Assume that the result is true for all graphs of
order less than n and let G be a graph of order n with γhR(G) = n.
From Proposition 2, we obtain that ∆h(G) ≤ 1. Thus diam(G) ≤ 3. If
diam(G) = 1, then G is a complete graph, as desired.

Assume that diam(G) = 2. Let v1v2v3 be a diametrical path in
G. Assume that there exists a vertex v ∈ N(v1) such that v /∈ N(v3).
Since diam(G) = 2, we have v ∈ N2(v3). Then degh(v3) ≥ 2, a contra-
diction. Thus N(v1) ⊆ N(v3), and similarly N(v3) ⊆ N(v1). Conse-
quently, N(v1) = N(v3). If there are three vertices a, b, c ∈ N(v1) such
that a 6∈ N(b) ∪ N(c), then degh(a) ≥ 2, a contradiction. Thus any
vertex of N(v1) is adjacent to at least |N(v1)| − 2 vertices of N(v1),
and so δ(G[N(v1)]) ≥ |N(v1)| − 2. If δ(G[N(v1)]) = |N(v1)| − 1, then
G[N(v1)] is a complete graph. Thus G is obtained fromG[N(v1)] by us-
ing Operation O, and so G ∈ G. Therefore assume that δ(G[N(v1)]) =
|N(v1)| − 2. Let G′ = G[N(v1)]. If |V (G′)| = 2, then G′ = K2, and
so G is obtained from K2 by using Operation O and so G ∈ G. Now,
let |V (G′)| ≥ 3. Suppose that γhR(G

′) ≤ |V (G′)| − 1. Let f be a

γhR(G
′)-function. Then g = (V f

0 , V f
1 ∪ {v1, v3}, V

f
2 ) is a HRDF of G

with g(V ) ≤ |V (G′)| + 1. Therefore, γhR(G) ≤ n− 1, a contradiction.
Therefore, γhR(G

′) = |V (G′)|. By the inductive hypothesis, G′ ∈ G or
G′ ∈ {P4,Kn}. Since δ(G′) = |V (G′)| − 2 we have G′ ∈ G. Therefore,
G is obtained from G′ ∈ G by using Operation O and so G ∈ G.

It remains to assume that diam(G) = 3. Let P : v1v2v3v4 be a
diametrical path in G. Suppose that G 6= P4. Let v ∈ V (G) − V (P ).
Clearly, v is not adjacent to both v1 and v4. Without loss of generality,
assume that v1 6∈ N(v). Since diam(G) = 3 and G is connected,
we have N(v) ∩ {v2, v3} 6= ∅. If v2 ∈ N(v), then degh(v1) ≥ 2, a
contradiction. Thus, v3 ∈ N(v), and so degh(v2) ≥ 2, a contradiction.
Thus V (G)− V (P ) = ∅. Consequently, G = P4.

(⇐) Let G ∈ G ∪ {P4,Kn}. We show that γhR(G) = n. If G = Kn

or G = P4, then we can easily see that γhR(G) = n. Now suppose that
G ∈ G. There is a sequence of graphs G0, G1, ...Gk, (k ≥ 1), where G0 is
a complete graph or G0 = K2, G = Gk and, if k ≥ 1, then Gi+1 can be
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obtained recursively from Gi by using Operation O for i = 0, ..., k − 1.
We use an induction on k to show that δ(G) = |V (G)| − 2 = n − 2. If
k = 1, then G = C4 or G is obtained from the complete graph Kn−2

and we can easily see that δ(G) = n−2. This establishes the basic step.
Suppose now that k ≥ 2 and the result is true for all graphs G ∈ G
that can be constructed from a sequence of length at most k − 1, and
let G

′

= Gk−1. By the induction hypothesis, δ(G
′

) = |V (G
′

)| − 2. By
construction, G is obtained from G

′

by using Operation O. Let x and
y be two vertices joined to any vertex of G

′

according to the Operation
O. Then, clearly d(x, y) = 2 and deg(x) = deg(y) = |V (G

′

)| = n − 2.
Now let x

′

∈ V (G
′

) be a vertex with degG′ (x
′

) = δ(G
′

) = |V (G
′

)| − 2.

Then degG(x
′

) = δ(G
′

) + 2 = |V (G
′

)| = n − 2. We conclude that
δ(G) = n− 2.

Now suppose, to the contrary, that γhR(G) ≤ n − 1. From Propo-
sition 2 we have ∆h(G) ≤ 2. If ∆h(G) = 2, then there exists a vertex
w ∈ V (G) such that degh(w) = 2 and so deg(w) ≤ n − 3, a contradic-
tion with δ(G) = n− 2. Thus ∆h(G) = 1. By Propositions 1 and 2 we
have γhR(G) = n, a contradiction. We conclude γhR(G) = n.

3 Graphs G with γhR(G) = n− 1

In this section we characterize connected graphs G of order n with
γhR(G) = n − 1. For this purpose, we define a family of graphs as
follows. Let G be the family of graphs described in Section 2. Let G∗

be the family of graphs G that can be obtained from a graph G′, where
G′ is a complete graph or G′ ∈ G, by one of the following operations:

Operation O1: Add three vertices and join each of them to every
vertex of G′.

Operation O2: Add a path P2 : v1v2 and a vertex v, join v to
every vertex of G′ and join any vertex of V (P2) to at least |V (G′)| − 1
vertices of G′, such that |V (G

′

)| ≥ 2 and if G′ ∈ G and x and y are two
vertices of G′ with d(x, y) = 2, then the following conditions hold.

(i) {x, y} ⊆ N(v1) ∪N(v2).
(ii) If x /∈ N(v1) ∩N(v2) or y /∈ N(v1) ∩N(v2), then v1 and v2 are

adjacent to any vertex of NG
′ (x).
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Lemma 4 If G ∈ G∗, then γhR(G) = |V (G)| − 1.

Proof. Let G ∈ G∗. We have the following cases.

Case 1. G is obtained from G
′

by using Operation O1. Let G be
obtained from G

′

by joining three vertices x, y, z to any vertex of G
′

.
Clearly the distance between any pair of vertices of {x, y, z} is two.
Let f

′

be a γhR(G
′

)−function. By Theorem 3, f
′

(V ) = |V (G
′

)|. Then
g defined by g(x) = 2, g(y) = g(z) = 0, and g(u) = f

′

(u) otherwise,
is a HRDF for G of weight f

′

(V ) + 2. Thus γhR(G) ≤ f
′

(V ) + 2 =
|V (G

′

)| + 2 = |V (G)| − 1. On the other hand, let f be a γhR(G)-
function. Then f(x)+ f(y)+ f(z) ≥ 2 (otherwise, at least two vertices
of {x, y, z} are not hop Roman dominated by f , a contradiction). Then
clearly f |V (G′) is a HRDF for G

′

. Then
∑

u∈V (G
′
) f(u) ≥ γhR(G

′) =

|V (G
′

)|. Then γhR(G) = w(f) ≥ |V (G
′

)|+ 2 = |V (G)| − 1. Therefore,
γhR(G) = |V (G)| − 1.

Case 2. G is obtained from G
′

by using Operation O2. Let v be the
added vertex and v1v2 be the added P2-path according to the Operation
O2. Clearly the distance between any vertex of V (P2) and the vertex
v is equal to two. Let f

′

be a γhR(G
′

)−function. By Theorem 3,
f

′

(V ) = |V (G
′

)|. Then g defined by g(v) = 2, g(v1) = g(v2) = 0 and
g(z) = f

′

(z) otherwise, is a HRDF for G with weight f
′

(V ) + 2. Thus
γhR(G) ≤ f

′

(V ) + 2 = |V (G
′

)|+ 2 = |V (G)| − 1.

Claim 1. There is a γhR(G)−function, say as f , such that f(v) +
f(v1) + f(v2) ≥ 2 and also

∑

u∈V (G′ ) f(u) ≥ |V (G
′

)|.

Proof of Claim 1: Suppose that at least one vertex of V (P2)
is adjacent to any vertex of G

′

. Let g be a γhR(G)−function. Then
g(v) + g(v1) + g(v2) ≥ 2 (otherwise, at least one vertex of {v, v1, v2}
is not hop Roman dominated by g, a contradiction). If two vertices v1
and v2 are adjacent to any vertex of G

′

, then clearly g|V (G′ ) is a HRDF

for G
′

. Then
∑

u∈V (G′ ) g(u) ≥ γhR(G
′) = |V (G

′

)|. Thus, without loss

of generality suppose that v1 is adjacent to any vertex of G
′

and v2 is
adjacent to |V (G

′

)| − 1 vertices of G
′

. Let a be a vertex of G
′

such
that a /∈ N(v2). Clearly a ∈ N2(v2). If g(a) 6= 0, then clearly g|V (G′ )

is a HRDF for G
′

. Thus
∑

u∈V (G′ ) g(u) ≥ γhR(G
′) = |V (G

′

)|. Now
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suppose that g(a) = 0. Note that in this case either a is hop Roman
dominate by a vertex of V (G

′

)− {a} or a is hop Roman dominate by
v2. If a is hop Roman dominate by a vertex of V (G

′

)−{a}, then clearly
g|V (G′ ) is a HRDF for G

′

. Thus
∑

u∈V (G′ ) g(u) ≥ γhR(G
′) = |V (G

′

)|.
Next suppose that a is hop Roman dominate by v2. Note that in this
case g(v2) = 2, g(v) = 0, g(v1) = 1. Then we can change g(v) to 2,
g(a) to 1, g(v1) and g(v2) to 0 to obtain a γhR(G)−function, g

′

, such
that g

′

(v) + g
′

(v1) + g
′

(v2) ≥ 2 and g
′

|V (G′ ) be a HRDF for G
′

. Then
∑

u∈V (G′ ) g
′

(u) ≥ γhR(G
′) = |V (G

′

)|.

Next suppose that any vertex of V (P2) is adjacent to exactly
|V (G

′

)| − 1 vertices of G
′

. First suppose that a be a vertex of G
′

such
that a /∈ N(v1)∪N(v2). Clearly d(a, v1) = d(a, v2) = 2. Then from Op-
eration O2, we conclude that a is adjacent to any vertex of V (G

′

)−{a}.
Let g be a γhR(G)−function. If g(v) + g(v1) + g(v2) ≤ 1, then clearly
g(v) = 1 and two vertices v1 and v2 are hop Roman dominated by a.
Thus, g(a) = 2. Then we can change g(a) to 1 and g(v) to 2 to obtain a
γhR(G)−function, g

′

, with g
′

(v)+ g
′

(v1)+ g
′

(v2) ≥ 2 such that g
′

|V (G′)

be a HRDF for G
′

. Then
∑

u∈V (G′ ) g
′

(u) ≥ γhR(G
′) = |V (G

′

)|.

Now suppose that a, b be two vertices of V (G
′

) such that a 6= b and
a /∈ N(v1), b /∈ N(v2). Clearly, d(a, v1) = d(b, v2) = 2. Note that in
this case, from Operation O2, we conclude that a and b are adjacent to
any vertex of V (G

′

)−{a, b} and note that in this case 1 ≤ d(a, b) ≤ 2.
Let g be a γhR(G)−function. If g(v) + g(v1) + g(v2) ≤ 1, then clearly
g(v) = 1 and g(a) = g(b) = 2. Then we can change g(a) and g(b)
to 1 and g(v) to 2, to obtain a HRDF for G with weight less than
g, a contradiction. Thus g(v) + g(v1) + g(v2) ≥ 2. Now suppose that
∑

u∈V (G
′
) g(u) < |V (G

′

)|. Then, there is u ∈ V (G
′

), such that g(u) = 0

and u is hop Roman dominated just by one vertex of {v1, v2}. Note that
in this case u = a or u = b. If g(a) = g(b) = 0, then g(v1) = g(v2) = 2
and clearly g(v) = 0. Then we can change g(v) to 2, g(v1) and g(v2)
to 0, and also g(a) and g(b) to 1, to obtain a γhR(G)−function, g

′

,
such that g

′

(v) + g
′

(v1) + g
′

(v2) ≥ 2 and also g
′

|V (G′ ) be a HRDF for

G
′

. Then
∑

u∈V (G
′
) g

′

(u) ≥ γhR(G
′) = |V (G

′

)|. Now suppose that

g(a) = 0 and g(b) 6= 0. Then, clearly g(v1) = 2 and g(v) = 0. Suppose
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that g(v2) = 0, then g(b) = 2. Thus we can change g(v) to 2, g(v1) and
g(v2) to 0, and also g(a) and g(b) to 1, to obtain a γhR(G)−function,
g
′

, such that g
′

(v) + g
′

(v1) + g
′

(v2) ≥ 2 and also g
′

|V (G′ ) be a HRDF

for G
′

. Then
∑

u∈V (G
′
) g

′

(u) ≥ γhR(G
′) = |V (G

′

)|. Next suppose that

g(v2) 6= 0. Note that in this case g(v2) = 1. Then we can change g(v) to
2, g(v1) and g(v2) to 0, and also g(a) to 1, to obtain a γhR(G)−function,
g
′

, such that g
′

(v) + g
′

(v1) + g
′

(v2) ≥ 2 and also g
′

|V (G′ ) be a HRDF

for G
′

. Then
∑

u∈V (G
′
) g

′

(u) ≥ γhR(G
′) = |V (G

′

)|. �

Now from Claim 1 we conclude that |V (G)| − 1 = 2 + |V (G
′

)| ≤
γhR(G). Therefore, γhR(G) = |V (G)| − 1.

Let F be the family of graphs illustrated in Figure 1. We are now
ready to state the main result of this section.

G2 G3 G4

G6 G7 G8

G10 G11 G12

G14

G5

G9

G13

G1

Figure 1. All graphs in the family F

10



Graphs with Large Hop Roman Domination Number

Theorem 5 If G is a connected graph of order n, then γhR(G) = n−1
if and only if G ∈ G∗ ∪ F ∪ {P5}.

Proof. (⇒) Let G be a connected graph of order n with γhR(G) =
n − 1. If ∆h(G) ≥ 3, then Proposition 2 leads to γhR(G) ≤ n − 2, a
contradiction. Thus ∆h(G) ≤ 2. If ∆h(G) = 1, then Propositions 1
and 2 imply that γhR(G) = n, a contradiction. Thus ∆h(G) = 2. Let
v be a vertex of G with degh(v) = ∆h(G) = 2 and N2(v) = {v1, v2}
and let G′ = G[N(v)]. We proceed with two claims namely Claim 1
and Claim 2.

Claim 1. If degh(z) = degh(w) = 2 for two distinct vertices z and
w of G, then N2(z) ∩N2(w) 6= ∅.

Proof of Claim 1: Assume that z, w be two distinct vertices of
G such that degh(z) = degh(w) = 2. Suppose to the contrary that
N2(z) ∩ N2(w) = ∅. Then f defined by f(z) = f(w) = 2, f(x) = 0
for x ∈ N2(z) ∪N2(w), and f(u) = 1 otherwise, is a HRDF for G with
weight n− 2. Thus γhR(G) ≤ n− 2, a contradiction. �

Claim 2. δ(G′) ≥ |V (G′)| − 2.

Proof of Claim 2: If there are three vertices a, b, c ∈ V (G′) such
that a 6∈ N(b)∪N(c), then degh(a) ≥ 2. Thus degh(a) = 2 and N2(a) =
{b, c}. Since degh(a) = degh(v) = 2 and N2(a)∩N2(v) = ∅, then Claim
1 leads to a contradiction. Therefore, any vertex of G′ is adjacent to
at least |V (G′)| − 2 vertices of G′. Therefore, δ(G′) ≥ |V (G′)| − 2. �

Note that diam(G) ≥ 2, since γhR(G) = n − 1. Suppose that
diam(G) ≥ 5. Let P : u1u2u3u4u5u6...ud be diametrical path in G.
Then u1, u5 ∈ N2(u3) and u2, u6 ∈ N2(u4). Since ∆h(G) = 2, thus
degh(u3) = degh(u4) = 2. This contradicts Claim 1. Thus diam(G) ≤
4. Therefore, we conclude that 2 ≤ diam(G) ≤ 4. We consider the
following cases.

Case 1. diam(G) = 2. Clearly V (G) −
(

N2(v) ∪ N [v]
)

= ∅. Ac-
cording to the Claim 2, we consider two following subcases.

Subcase 1.1. δ(G′) = |V (G′)| − 1. Then G′ is a complete graph.
Assume that v1v2 /∈ E(G). Note that d(v1, v2) = 2. If |V (G

′

)| = 1,
then any vertex of N2(v) is adjacent to the vertex of G

′

, and so G is
obtained from G

′

by Operation O1. Thus assume that |V (G
′

)| ≥ 2. If
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at least a vertex of N2(v) is adjacent to at most |V (G′)| − 1 vertices
of G

′

, then ∆h(G) = 2 leads to a contradiction. Thus both vertices v1
and v2 are adjacent to any vertex of V (G′). Hence G is obtained from
G

′

by Operation O1. Next assume that v1v2 ∈ E(G). If |V (G′)| = 1,
then v1 and v2 are adjacent to the vertex of G

′

. So G = G1 ∈ F . Thus
assume that |V (G′)| ≥ 2. Then we can see that there exists at most
one vertex in N(v), such as x, such that d(v1, x) = 2. Also there exists
at most one vertex in N(v), such as y, such that d(v2, y) = 2. Thus v1
and v2 are adjacent to at least |V (G′)| − 1 vertices of G′. Therefore, G
is obtained from G′ by Operation O2. Therefore, G ∈ G∗.

Subcase 1.2. δ(G′) = |V (G′)| − 2. Clearly |V (G′)| ≥ 2. Suppose
that |V (G′)| ≥ 3. First we show that G′ ∈ G. Suppose to the contrary,
that γhR(G

′) ≤ |V (G′)| − 1. Let f be a γhR(G
′)-function. Then we

can define g with g(v) = 2, g(v1) = g(v2) = 0 and g(z) = f(z) oth-
erwise, to obtain a HRDF for graph G with weight g(V ) = f(V ) + 2.
Thus γhR(G) ≤ f(V ) + 2 ≤ |V (G′)| − 1 + 2 = |V (G′)| + 1. Since
|V (G)| = |V (G′)|+ 3, therefore we have γhR(G) ≤ |V (G)| − 2 = n− 2,
a contradiction. Therefore, γhR(G

′) = |V (G′)| and by Theorem 3,
G′ ∈ G ∪ {P4,Kn−3}. Since δ(G′) = |V (G′)| − 2, thus G′ 6= P4 and
G′ 6= Kn−3. Therefore, G

′ ∈ G. Assume that v1v2 /∈ E(G). Then there
exists at most one vertex in N(v)∪{v2} at distance two from v1 (since
otherwise degh(v1) > 2, a contradiction). Since diam(G) = 2, we have
d(v1, v2) = 2. Then we conclude that v1 is adjacent to any vertex of G

′

.
Similarly v2 is adjacent to any vertex of G

′

. Therefore, G is obtained
from G

′

by using Operation O1. Therefore, G ∈ G∗. Now suppose that
v1v2 ∈ E(G). Note that in this case, if there is z ∈ V (G

′

), such that
z /∈ N(v1), then d(z, v1) = 2. Similarly if z /∈ N(v2), then d(z, v2) = 2.
Thus v1 and v2 are adjacent to at least |V (G

′

)| − 1 vertices of G
′

. Let
u ∈ V (G′) be a vertex with degG′(u) = δ(G′) = |V (G′)| − 2 and let w
be the vertex of G′ such that w /∈ N(u). Clearly dG′ (u,w) = 2. Then
u,w ∈ N(v1) ∪N(v2) (since in the otherwise, if u /∈ N(v1) ∪N(v2) or
w /∈ N(v1)∪N(v2), then degh(u) > 2 or degh(w) > 2, a contradiction).
Now suppose that u /∈ N(v1) ∩N(v2). Then since u ∈ N(v1) ∪N(v2),
so either u ∈ N(v1) or u ∈ N(v2). Without loss of generality, assume
that u ∈ N(v1) and u /∈ N(v2). Note that in this case v1 is adjacent
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to any vertex of NG
′ (u) (since otherwise, degh(v1) = degh(u) = 2,

N2(v1) ∩ N2(u) = ∅, and Claim 1 leads to contradiction). Also v2 is
adjacent to any vertex of NG

′ (u), since otherwise degh(v2) > 2, a con-

tradiction. Therefore, G is obtained from G
′

∈ G by operation O2.
Therefore, G ∈ G∗.

Now suppose that |V (G′)| = 2. Then G
′

= K2. If v1v2 /∈ E(G),
then v1 and v2 are adjacent to any vertex of G′, since otherwise there
exist two vertices at distance three or four from each other, a contra-
diction with diam(G) = 2. Thus G = G2 ∈ F . Thus assume that
v1v2 ∈ E(G). Note that in this case any vertex of V (G′) is adjacent to
at least one vertex of N2(v), since otherwise there exist two vertices in
G at distance three from each other, a contradiction with diam(G) = 2.
On the other hand any vertex of N2(v) is adjacent to at least one vertex
of V (G

′

). We conclude that G ∈ {G3, G4, G5}. Consequently, G ∈ F .

Case 2. diam(G) = 3. According to the Claim 2, we consider two
following subcases.

Subcase 2.1. δ(G′) = |V (G′)| − 1. Then G′ is a complete graph.
Assume that |V (G′)| ≥ 3. We can easily see that v1 and v2 are adjacent
to at least |V (G′)| − 1 vertices of G′ and N(v1) ∩ N(v2) 6= ∅. Let
v1v2 /∈ E(G), then d(v1, v2) = 2. If there is z ∈ N(v) such that
z /∈ N(v1), then z ∈ N2(v1). Thus degh(v1) ≥ 3, a contradiction.
Therefore, v1 is adjacent to any vertex of N(v). Similarly we can show
that v2 is adjacent to any vertex of N(v). In this case, distance between
any two vertices of N [v] ∪ N2(v) is at most two. Since diam(G) = 3,
thus we may suppose that V (G) − (N [v] ∪ N2(v)) 6= ∅. Note that
in this case there is a vertex z in V (G) − (N [v] ∪ N2(v)) such that
z ∈ N(v1) ∪ N(v2). Then clearly degh(z) ≥ 3, a contradiction. Next
suppose that v1v2 ∈ E(G). Note that in this case v1 and v2 are adjacent
to at least |V (G′)| − 1 vertices of G′. Thus distance between any two
vertices of N [v]∪N2(v) is at most two. Since diam(G) = 3, thus we may
suppose that V (G)−(N [v]∪N2(v)) 6= ∅. Note that in this case there is
a vertex z in V (G)−(N [v]∪N2(v)) such that z ∈ N(v1)∪N(v2). Then
clearly by Claim 1 or this fact that ∆h(G) = 2, we have a contradiction.
Hence, we conclude that |V (G′)| ≤ 2.

Suppose that |V (G′)| = 1. Let V (G′) = {w}. Then v1 and v2

13
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are adjacent to w and distance between any two vertices of N [v] ∪
N2(v) is at most two. Since diam(G) = 3, thus we may suppose that
V (G) − (N [v] ∪ N2(v)) 6= ∅. Let z be a vertex of V (G) − (N [v] ∪
N2(v)) such that z ∈ N(v1) ∪ N(v2). Then suppose that there is a
vertex z

′

∈ V (G) − (N [v] ∪ N2(v)) such that z
′

6= z. If z
′

∈ N(v1) ∪
N(v2), then z, z

′

∈ N2(w) and by this fact that ∆h(G) = 2 we have
degh(w) = 2. Then Claim 1 leads to a contradiction. Hence, z

′

∈
N(z) − {v1, v2}. Then clearly d(v, z

′

) = 4, a contradiction. Thus
|V (G) − (N [v] ∪ N2(v))| ≤ 1. Since diam(G) = 3, we conclude that
|V (G) − (N [v] ∪ N2(v))| = 1. Now suppose that v1v2 /∈ E(G), then
we can easily see that G ∈ {G6, G7} and if v1v2 ∈ E(G), then we can
easily see that G ∈ {G8, G9}. Therefore, G ∈ F .

Next suppose that |V (G′)| = 2. Then G′ = K2. Suppose that
v1v2 /∈ E(G). If a vertex of N2(v) is adjacent to both vertices of G

′

,
then the other vertex of N2(v) is also adjacent to both vertices of G

′

(otherwise this fact that ∆h(G) = 2 leads to contradiction). Note
that in this case for any pair a, b ∈ N [v] ∪ N2(v), d(a, b) ≤ 2. Since
diam(G) = 3, thus we may suppose that V (G) − (N [v] ∪N2(v)) 6= ∅.
Let z be a vertex of V (G)−(N [v]∪N2(v)) such that z ∈ N(v1)∪N(v2).
Then degh(z) ≥ 2. Since ∆h(G) = 2, we have degh(z) = 2. Note that
N2(z) = N(v), that Claim 1 leads to a contradiction. Hence any vertex
of N2(v) is adjacent to one vertex of G

′

. If NG
′ (v1)∩NG

′ (v2) 6= ∅ , then
degh(v1) = degh(v2) > 2, a contradiction. Thus NG

′ (v1)∩NG
′ (v2) = ∅

and d(v1, v2) = 3. If V (G) − (N [v] ∪N2(v)) 6= ∅, then Claim 1 or this
fact that diam(G) = 3, leads to contradiction. Therefore, we conclude
that V (G)− (N [v] ∪N2(v)) = ∅. Therefore, G = G9 ∈ F .

Now suppose that v1v2 ∈ E(G). If at least one vertex of N2(v) is
adjacent to both vertices of N(v), then for any pair a, b ∈ N [v]∪N2(v),
d(a, b) ≤ 2. Since diam(G) = 3, thus we may suppose that V (G) −
(N [v] ∪ N2(v)) 6= ∅. Let z be a vertex of V (G) − (N [v] ∪ N2(v)) such
that z ∈ N(v1)∪N(v2). Then degh(z) ≥ 2. Since ∆h(G) = 2, we have
degh(z) = 2. Note that in this case, Claim 1 leads to contradiction.
Hence each vertex of N2(v) is adjacent to one vertex of V (G

′

). If
NG

′ (v1)∩NG
′ (v2) = ∅, then for any pair a, b ∈ N [v]∪N2(v), d(a, b) ≤ 2.

Thus we may suppose that V (G)−(N [v]∪N2(v)) 6= ∅. Let z be a vertex

14
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of V (G) − (N [v] ∪ N2(v)) such that z ∈ N(v1) ∪N(v2). Then clearly
degh(z) = 2 and we can see that Claim 1 leads to a contradiction.
Hence NG

′ (v1) ∩ NG
′ (v2) 6= ∅. Let {x} = NG

′ (v1) ∩NG
′ (v2). Clearly

for any pair a, b ∈ N [v] ∪ N2(v), d(a, b) ≤ 2. Since diam(G) = 3,
thus we may suppose that V (G) − (N [v] ∪ N2(v)) 6= ∅. Let z be a
vertex of V (G)− (N [v]∪N2(v)) such that z ∈ N(v1)∪N(v2). Suppose
that there is z

′

∈ V (G) − (N [v] ∪ N2(v)), such that z 6= z
′

. If z
′

∈
N(v1)∪N(v2), then degh(x) = 2 and N2(x)∩N2(v) = ∅, and so Claim
1 leads to contradiction. Hence we shall have z

′

∈ N(z)−{v1, v2}, that
in this case clearly d(z

′

, v) = 4, a contradiction. Thus |V (G)− (N [v]∪
N2(v))| ≤ 1. If z is adjacent to only one vertex of N2(v), without loss
of generality, suppose that z be only adjacent to v1, then degh(v2) = 3,
a contradiction. Hence z ∈ N(v1) ∩N(v2) and G = G10 ∈ F .

Subcase 2.2. δ(G′) = |V (G′)| − 2. Clearly |V (G′)| ≥ 2. Suppose
that |V (G′)| ≥ 4. Let x be a vertex of G

′

such that degG′ (x) =

|V (G
′

)| − 2 and let y be the other vertex of G
′

such that y /∈ NG
′ (x).

We can see that d(x, y) = 2 and NG
′ (x) = NG

′ (y). We show that if

there is a vertex a ∈ V (G
′

) such that a /∈ N(v1), then d(a, v1) = 2. If
a = x, then at least one vertex of NG

′ (x) is adjacent to the vertex v1,
since in the otherwise, degh(v1) > 2, a contradiction. Thus we deduce
that d(a, v1) = 2. Next suppose that a ∈ NG

′ (x). If {x, y}∩N(v1) = ∅,
then degh(v1) > 2, a contradiction. Thus {x, y} ∩ N(v1) 6= ∅, and so
d(a, v1) = 2. If there are two vertices a, b ∈ V (G

′

) such that a, b /∈
N(v1). Then, degh(v1) > 2, a contradiction. Therefore, we conclude
that v1 and v2 are adjacent to at least |V (G′)| − 1 vertices of G′ and
clearly NG

′ (v1) ∩ NG
′ (v2) 6= ∅. Note that, we have d(v1, v2) ≤ 2.

Then clearly distance between any two vertices of N [v] ∪ N2(v) is at
most two. Since diam(G) = 3, thus we may suppose that V (G) −
(N [v] ∪ N2(v)) 6= ∅. Let z be a vertex of V (G) − (N [v] ∪ N2(v)) such
that z ∈ N(v1) ∪ N(v2). Then clearly degh(z) > 2, a contradiction.
Consequently, |V (G′)| ≤ 3.

Now suppose that |V (G′)| = 2. Then G′ = K2. Let V (G′) = {x, y}.
Let v1v2 /∈ E(G). If v1 and v2 are adjacent to both vertices of V (G′),
then distance between any two vertices of N [v]∪N2(v) is at most two.
Since diam(G) = 3, thus we may suppose that V (G)−(N [v]∪N2(v)) 6=
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∅. Let z be a vertex of V (G) − (N [v] ∪N2(v)) such that z ∈ N(v1) ∪
N(v2). Then clearly degh(z) = 2 and N2(z) ∩N2(v) = ∅. By Claim 1
we have a contradiction. Thus there exists at least one vertex in N2(v)
such that is adjacent to only one vertex of G′. If v1 is adjacent to both
vertices of V (G′) and v2 be adjacent to only one vertex of V (G′), then
d(v2, x) = 3 or d(v2, y) = 3. We show that V (G)− (N [v] ∪N2(v)) = ∅.
Suppose to contrary that there is z ∈ V (G)− (N [v]∪N2(v)) such that
z ∈ N(v1) ∪ N(v2). Then we can see that Claim 1 or diam(G) = 3
leads to contradiction. Therefore, we conclude that G = G7 ∈ F .
Now suppose that each vertex of N2(v) is adjacent to one vertex of G′.
If v1 is adjacent to x and v2 be adjacent to y, then d(v1, v2) = 4, a
contradiction. Hence, both vertices of N2(v) are adjacent to precisely
one vertex of G′, without loss of generality, suppose that v1 and v2 are
adjacent to x. Clearly d(y, v1) = d(y, v2) = 3. Then we can easily see
that V (G)− (N [v] ∪N2(v)) = ∅. Thus we deduce that G = G6 ∈ F .

Now suppose that v1v2 ∈ E(G). If there is at least a vertex in N2(v)
such that is adjacent to both vertices of G′, then distance between any
two vertices of N [v] ∪ N2(v) is at most two. Since diam(G) = 3, we
may suppose that V (G) − (N [v] ∪ N2(v)) 6= ∅. Let z be a vertex
of V (G) − (N [v] ∪ N2(v)) such that z ∈ N(v1) ∪N(v2). Then clearly
degh(z) = 2 and Claim 1 leads to contradiction. Therefore, we conclude
that each vertex of N2(v) is adjacent to one vertex of G′. If v1 is
adjacent to x and v2 be adjacent to y, then distance between any two
vertices of N [v] ∪ N2(v) is at most two and we can easily see that
V (G) − (N [v] ∪ N2(v)) = ∅. Thus both v1 and v2 are adjacent to
precisely one vertex of G′. In this case, there exist two vertices in
N [v] ∪ N2(v)) such that distance between them is equal to three and
also we can easily see that V (G) − (N [v] ∪ N2(v)) = ∅. Therefore
G = G11 ∈ F .

Next Suppose that |V (G′)| = 3. Then G′ is a path of length two.
Let G′ be the path P : xyu. Assume that v1v2 /∈ E(G). If one of the
vertices N2(v) is adjacent to all vertices of G

′

, then clearly the other
vertex of N2(v) is also adjacent to all vertices of G

′

. Now suppose
that both vertices of N2(v) are adjacent to any vertex of V (G

′

), then
distance between any two vertices of N [v]∪N2(v) is at most two. Since
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diam(G) = 3, thus we may suppose that V (G) − (N [v] ∪N2(v)) 6= ∅.
Let z be a vertex of V (G)−(N [v]∪N2(v)) such that z ∈ N(v1)∪N(v2).
Then clearly degh(z) > 2, a contradiction. Thus each vertex of N2(v)
is adjacent to at most two vertices of G′. If each vertex of N2(v) is
adjacent to two vertices of G′, then clearly NG

′ (v1) ∩NG
′ (v2) 6= ∅ and

so d(v1, v2) = 2. Thus hop-degree of each vertex of N2(v) is more than
two, a contradiction. Thus at least one vertex of N2(v) is adjacent to
only one vertex of G′. Suppose that both vertices of N2(v) are adjacent
to one vertex of G′, then we can easily see that y /∈ N(v1) ∪ N(v2),
and also NG′(v1) ∩NG′(v2) = ∅. Thus if v1 is adjacent to x, then v2 is
adjacent to u. Then d(v1, v2) = 4, a contradiction with diam(G) = 3.
Thus one vertex of N2(v) is adjacent to one vertex of G′ and the other
vertex is adjacent to two vertices of G′. Without loss of generality
suppose that v1 is adjacent to two vertices of G′ and v2 is adjacent to
only one vertex of G′. Then clearly NG

′ (v1) ∩ NG
′ (v2) = ∅, and as

before, we observe that v2 is not adjacent to y. Note that in this case
d(v1, v2) = 3 and we can easily see that V (G) − (N [v] ∪ N2(v)) = ∅.
Therefore, we conclude that G = G12 ∈ F .

Now assume that v1v2 ∈ E(G). If any vertex of N2(v) is adjacent
to at least two vertices of G′, then distance between any two vertices
of N [v] ∪ N2(v) is at most two. Since diam(G) = 3, thus we may
suppose that V (G)− (N [v] ∪N2(v)) 6= ∅. Let z be a vertex of V (G)−
(N [v]∪N2(v)) such that z ∈ N(v1)∪N(v2). Then degh(z) > 2, that is a
contradiction. Hence at least one vertex of N2(v) is adjacent to only one
vertex of G′. Note that in this case, any vertex of N2(v) is adjacent to
at most two vertices of G

′

. If both vertices v1 and v2 are adjacent to one
vertex of G′, then y /∈ N(v1)∪N(v2), since in the otherwise degh(v1) ≥
3 and degh(v2) ≥ 3, a contradiction. Also NG

′ (v1)∩NG
′ (v2) 6= ∅, in the

otherwise degh(v1) > 2 and degh(v2) > 2. Hence v1 and v2 are adjacent
to precisely one vertex of {x, u} and soG = G10 ∈ F . Now suppose that
a vertex of N2(v) be adjacent to both vertices of G′ and the other vertex
of N2(v) is adjacent to one vertex of G′. Without loss of generality
suppose that v2 is adjacent to one vertex of G′. Then y /∈ N(v2),
since in the otherwise degh(v2) ≥ 3, a contradiction. Without loss of
generality suppose that v2 is adjacent to u. If u /∈ N(v1), then {x, y} =
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NG
′ (v1) and we can see that degh(v2) ≥ 3, a contradiction. Therefore,

u ∈ N(v1). Next suppose that x ∈ N(v1), then we can easily see that
degh(v2) > 2, a contradiction. Hence, we have NG

′ (v1) = {y, u} and
NG

′ (v2) = {u}. Note that in this case d(x, v2) = 3 and we can see that
V (G)− (N [v] ∪N2(v)) = ∅. Consequently, we have G = G13 ∈ F .

Case 3. diam(G) = 4. According to the Claim 2, we consider two
following subcases.

Subcase 3.1. δ(G′) = |V (G′)| − 1. Then G′ is a complete graph.
Suppose that |V (G′)| ≥ 3. Clearly each vertex of N2(v) is adjacent
to at least |V (G′)| − 1 vertices of G′. Also v1 is adjacent to at least
|V (G′) ∪ {v2}| − 1 vertices of V (G′) ∪ {v2}, since in the otherwise if
there exist two vertices a, b ∈ V (G′)∪{v2} such that a, b /∈ N(v1), then
degh(v1) > 2, a contradiction. Similarly, we can see that v2 is adjacent
to at least |V (G′)∪{v1}|−1 vertices of V (G′)∪{v1}. Clearly, in this case
distance between any two vertices of N [v]∪N2(v) is at most two. Since
diam(G) = 4, we conclude that V (G)−(N [v]∪N2(v)) 6= ∅. Then there
is the vertex z ∈ V (G) − (N [v] ∪N2(v)) such that z ∈ N(v1) ∪N(v2).
Note that in this case degh(z) ≥ 2 and the fact that ∆h(G) = 2 or Claim
1, lead to contradiction. Therefore, we may assume that |V (G′)| ≤ 2.

We first assume that |V (G′)| = 2, then we can easily see that dis-
tance between any two vertices of N [v]∪N2(v) is at most three. Since
diam(G) = 4, we may suppose that V (G) − (N [v] ∪N2(v)) 6= ∅. Note
that in this case from the fact that ∆h(G) = 2 or Claim 1 we have a
contradiction.

Hence we can assume that |V (G′)| = 1. Let V (G′) = {z}. Then
v1 and v2 are adjacent to z and distance between every two vertices
in N [v] ∪N2(v) is at most two. Since diam(G) = 4, we conclude that
there is a vertex y ∈ V (G) − (N [v] ∪ N2(v)), such that d(y, v1) = 2
or d(y, v2) = 2. In this case, if v1v2 /∈ E(G), then hop-degree of at
least one vertex of N2(v) is more than two, a contradiction. Thus
v1v2 ∈ E(G). Now suppose that y ∈ V (G)− (N [v]∪N2(v)) is a vertex
at distance two from v1 and let v1xy be the path between v1 and y. If
x /∈ N(v2), then degh(x) = degh(v1) = 2 andN2(x)∩N2(v1) = ∅, that is
a contradiction with Claim 1. Thus x ∈ N(v2). If there exists a vertex
x

′

∈ V (G) − (N [v] ∪N2(v)) such that x
′

6= x and x
′

∈ N(v2) ∪N(v1),
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then degh(z) = 2, and N2(z) ∩ N2(v) = ∅, thus Claim 1 leads to
contradiction. Since y ∈ V (G) − (N [v] ∪ N2(v)) and y 6= x, so we
conclude that y /∈ N(v2) and since diam(G) = 4, so N(y) − {x} = ∅
and y is a leaf. On the other hand N(x) − N2(v) = {y}, since in
the otherwise, degh(v1) ≥ 3 and also degh(v2) ≥ 3, a contradiction.
Thus we conclude that G = G14 ∈ F . Similarly, we can show that if
y ∈ V (G) − (N [v] ∪ N2(v)) is a vertex at distance two from v2, then
G = G14 ∈ F .

Subcase 3.2. δ(G′) = |V (G′)| − 2. Clearly |V (G′)| ≥ 2. Suppose
that |V (G′)| ≥ 4. Let x be a vertex of V (G

′

) such that degG′ (x) =

|V (G
′

)| − 2 and let y be a vertex of G
′

such that y /∈ NG
′ (x). We can

see that d(x, y) = 2 and NG
′ (x) = NG

′ (y). We show that if there is

a vertex a ∈ V (G
′

) such that a /∈ N(v1), then d(a, v1) = 2. If a = x,
then at least one vertex of NG

′ (x) is adjacent to the vertex v1, since
in the otherwise, degh(v1) > 2, a contradiction. Thus we deduce that
d(a, v1) = 2. Next suppose that a ∈ NG

′ (x). If {x, y} ∩ N(v1) = ∅,
then degh(v1) > 2, a contradiction. Thus {x, y} ∩ N(v1) 6= ∅, and so
d(a, v1) = 2. If there are two vertices a, b ∈ V (G

′

) such that a, b /∈
N(v1), then degh(v1) > 2, a contradiction. Therefore, we conclude
that v1 is adjacent to at least |V (G′)|−1 vertices of G′. With a similar
argument we can show that v2 is adjacent to least |V (G′)| − 1 vertices
of G′. Clearly NG

′ (v1) ∩NG
′ (v2) 6= ∅. Then the distance between any

two vertices of N [v]∪N2(v) is at most 2. We may suppose that V (G)−
(N [v]∪N2(v)) 6= ∅, then there is the vertex z ∈ V (G)− (N [v]∪N2(v))
such that z ∈ N(v1)∪N(v2). Note that in this case clearly degh(z) > 2,
a contradiction. Hence, we conclude that V (G) − (N [v] ∪ N2(v)) = ∅
and so we may assume that |V (G′)| ≤ 3.

We first assume that |V (G′)| = 3. Then G′ is a path of length
two. Let G′ be the path P : xyu. Assume that at least one vertex
of N2(v) is adjacent to at least two vertices of G′. Without loss of
generality, suppose that v1 is adjacent to at least two vertices of G′.
Then clearly the distance between any two vertices of N [v] ∪ N2(v)
is at most 3. Thus we may suppose that there is at least a vertex
z ∈ V (G)− (N [v]∪N2(v)) that is adjacent to v1 or v2. If z is adjacent
to v1, then degh(z) ≥ 2 and Claim 1 or the fact that ∆h(G) = 2
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leads to a contradiction. Thus z is adjacent to v2. Note that in this
case v2 is adjacent to at least one vertex of G′. Then we can easily
see that Claim 1 or the fact that ∆h(G) = 2 leads to a contradiction.
Therefore, each vertex of N2(v) is adjacent to one vertex of G′. We
can see that y /∈ N(v1) ∪ N(v2). If NG

′ (v1) ∩ NG
′ (v2) 6= ∅, then the

distance between any two vertices of N [v] ∪N2(v) is at most 3. Thus
we may suppose that there is a vertex z ∈ V (G)− (N [v] ∪N2(v)) that
is adjacent to v1 or v2. Let x ∈ NG

′ (v1) ∩NG
′ (v2). Then degh(x) = 2

and N2(x) = {u, z}. Thus N2(x) ∩ N2(v) = ∅ and so Claim 1 leads
to a contradiction. Thus NG

′ (v1) ∩ NG
′ (v2) = ∅. If v1v2 ∈ E(G),

then clearly degh(v1) > 2 and degh(v2) > 2, a contradiction. Thus
v1v2 /∈ E(G). Then d(v1, v2) = 4 and clearly V (G)−(N [v]∪N2(v)) = ∅,
and so we conclude that G = G14 ∈ F .

Next we assume that |V (G′)| = 2, then G
′

= K2. Let V (G′) =
{x, y}. Clearly the vertices v1 and v2 are adjacent to at least one vertex
of G′. If each vertex of N2(v) is adjacent to both vertices of G′, then
clearly the distance between any two vertices in N [v]∪N2(v) is at most
two. Since diam(G) = 4, we may suppose that V (G)−(N [v]∪N2(v)) 6=
∅. Then there is the vertex z ∈ V (G) − (N [v] ∪ N2(v)) such that
z ∈ N(v1) ∪N(v2). Note that in this case degh(z) ≥ 2 and Claim 1 or
the fact that ∆h(G) = 2 lead to a contradiction. Thus there is at least
one vertex in N2(v) such that it is adjacent to only one vertex of G′.
Suppose that one vertex of N2(v) is adjacent to both vertices of V (G′)
and the other vertex is adjacent to only one vertex of G′. Then the
distance between any two vertices of N [v]∪N2(v) is at most two. Since
diam(G) = 4, we may suppose that V (G)− (N [v] ∪N2(v)) 6= ∅. Then
there is the vertex z ∈ V (G) − (N [v] ∪ N2(v)) such that z ∈ N(v1) ∪
N(v2). Note that in this case degh(z) ≥ 2 and Claim 1 or the fact that
∆h(G) = 2 lead to a contradiction. Therefore, any vertex of N2(v) is
adjacent to only one vertex of G′. Assume that v1v2 ∈ E(G). Note that
in this case the distance between any two vertices of N [v]∪N2(v) is at
most 3. We may suppose that V (G)− (N [v] ∪N2(v)) 6= ∅. Then there
is the vertex z ∈ V (G) − (N [v] ∪N2(v)) such that z ∈ N(v1) ∪N(v2).
Then we can easily see that Claim 1 or the fact that ∆h(G) = 2 lead to
a contradiction. Hence v1v2 /∈ E(G). Assume NG

′ (v1) ∩NG
′ (v2) 6= ∅,
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then clearly the distance between any two vertices of N [v] ∪ N2(v) is
at most 3. Thus we may suppose that V (G) − (N [v] ∪ N2(v)) 6= ∅.
Then there is the vertex z ∈ V (G) − (N [v] ∪ N2(v)) such that z ∈
N(v1) ∪ N(v2). Note that in this case we can easily see that Claim
1 leads to a contradiction. Therefore, NG

′ (v1) ∩ NG
′ (v2) = ∅, and

d(v1, v2) = 4. Thus we conclude that V (G) − (N [v] ∪N2(v)) = ∅ and
so G = P5.

(⇐) Suppose that G ∈ G∗ ∪ F ∪ {P5}. It is obvious that if G = P5

or G ∈ F , then γhR(G) = n − 1. Next suppose that G ∈ G∗. Then by
Lemma 4, we have γhR(G) = n− 1.
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