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Abstract

Based on concept of connected dominating sets of a simple
graphG we introduce a new invariant η(G) which does not exceed
the number of Hadwiger. The Nordhaus-Gaddum inequalities
are: η(G)η(G) ≥ n(G) and η(G) + η(G) ≤ 6n(G)/5. For values
of chromatic number χ(G) ≤ 4 we prove η(G) ≥ χ(G). We put
forward the hypothesis: the last inequality holds for all simple
graphs G.

Keywords: dominating set, number of Hadwiger, chromatic
number, Nordhaus-Gaddum inequalities.

1 Introduction

All graphs G considered in this paper are undirected, simple and fi-
nite with vertex set V (G). We denote |V (G)| by n(G). For X ⊆
V (G), we denote by G[X] the subgraph of G induced by X, fur-
ther, G − X = G[V (G) − X]. For the subgraph H of graph G,
G−H = G[V (G)−V (H)]. We shall write v ∼ u (v ≁ u) when vertices v
and u are (are not) adjacent. If every pair of vertices in X are adjacent,
then G[X] is a complete subgraph or a clique K. The clique number
ω(G) of a graph G is the number of vertices in a maximum clique in
G. The degree of a vertex is the number of edges incident to the ver-
tex. The number of Hadwiger h(G) is the largest number of connected
subgraphs of G, pairwise without common vertices and connected with
at least one edge. Contracting the edges within each of these sub-
graphs so that each subgraph collapses to a single vertex produces a
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maximum complete graph Kh(G) on h(G) vertices. From definition of
h(G) it follows that h(G) = max1≤i≤kh(Gi), where G1, G2, . . . , Gk are
components of disconnected graph G.

If D ⊆ V (G), G[D] is connected and every vertex not in D has a
neighbor in D, then it’s clear that h(G−D) ≤ h(G)−1. This property
allows us to introduce new invariants of the graph, in the definitions
of which we use the concept of connected dominating sets, and these
invariants do not exceed the number of Hadwiger.

2 Domination and New Invariants

Definition 1 A connected dominating set D is a subset of vertices of a
graph G such that every vertex is in D or adjacent to at least one vertex
in D, and G[D] is connected in all connected components (subgraphs)
of G.

Further, unless otherwise specified, dominating set means con-
nected dominating set. The edge e = vu is dominating if the set {v, u}
is dominating.

Definition 2 Let V1 be a dominating set in a graph G, let V2 be a
dominating set in G − V1, V3 – dominating set in G− V1 − V2 and so
on. η0(G) is the maximum length of the sequence of dominating sets
V1, V2, V3, . . ..

If V1, V2, . . . , Vη0 is a maximum sequence of dominating sets, then
it’s obvious that |Vη0 | = 1 or the set Vη0 is independent, i.e. no two of
its vertices are adjacent.

Theorem 1 For any graph G

(i) η0(G) ≤ h(G),

(ii) If D is any dominating set of G, then η0(G) ≥ η0(G−D) + 1,

(iii) η0(G) = max1≤j≤kη0(Gj), where G1, G2, . . . , Gk are connected
components of G.
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Proof. Let η0(G) = η0.
(i) If we contract all edges in induced subgraphs G(V1), G(V2), . . . ,

G(Vη0)), we obtain a graph Gc with clique number ω(Gc) = η0. From
definition of number of Hadwiger, h(G) ≥ ω(Gc).

(ii) If V1, V2, . . . , Vl is a maximum sequence of dominating sets of
G−D, then D,V1, V2, . . . , Vl is a sequence of dominating sets of G.

(iii) Let η0j = η0(Gj) for all j(1 ≤ j ≤ k) and V j
1 , V

j
2 , . . . , V

j
η0j be a

maximum sequence of dominating sets in Gj . Let max1≤j≤kη0j = η01.

If for some j, η0j < η01, then we put V j
i = ∅ for η0j + 1 ≤ i ≤ η01.

The sequence V1, V2, . . . , Vη01 , where Vi = ∪k
j=1V

j
i , is the sequence of

dominating sets in G. So, η0(G) ≥ max1≤j≤kη0(Gj).
Let V1, V2, . . . , Vη0 be a maximum sequence of dominating sets in

graph G. For all 1 ≤ i ≤ η0, Vi = ∪k
j=1V

j
i , where V

j
i is a corresponding

dominating set in Gj or V j
i = ∅. If for i = i0, V

j
i0

6= ∅, then V j
i 6= ∅

for all 1 ≤ i ≤ i0. Since Vη0 6= ∅, there exists at least one j for which

the sequence V j
1 , V

j
2 , . . . , V

j
η0 is the sequence of dominating sets in Gj .

So, η0(G) ≤ max1≤j≤kη0(Gj).
Therefore, η0(G) = max1≤j≤kη0(Gj).

The independence number α(G) of a graph G is the size of the
largest independent set of its vertices. Duchet and Meyniel [2] showed
that for every connected graph G with independence number α(G),
there exists a dominating set with at most 2α(G) − 1 vertices, and
therefore h(G)(2α(G) − 1) ≥ n(G).

Theorem 2 Let G be any graph with k connected components. Then

η0(G)(2α(G) − k) ≥ n(G).

Proof. The proof is by induction on n = n(G). For n ≤ 3, the
result is true by inspection. Suppose n ≥ 4 and suppose the result is
true for all graphs with fewer than n vertices, and let G be a graph with
n(G) = n and its components are G1, G2, . . . , Gk. In each component
Gi (1 ≤ i ≤ k) there exists dominating set Di and |Di| ≤ 2α(Gi) −
1. If D = ∪k

i=1Di, then |D| =
∑k

i=1 |Di| ≤ ∑k
i=1(2α(Gi) − 1) =

2α(G)−k. The induction hypotheses implies that η0(G)(2α(G)−k) =
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η0(G)
∑k

i=1(2α(Gi) − 1) ≥
∑k

i=1 η0(Gi)(2α(Gi) − 1) ≥
∑k

i=1(η0(Gi −
Di)+1)(2α(Gi)−1) =

∑k
i=1 η0(Gi−Di)(2α(Gi)−1)+

∑k
i=1(2α(Gi)−

1) ≥ ∑k
i=1 η0(Gi−Di)(2α(Gi−Di)−1)+2α(G)−k ≥ ∑k

i=1 n(Gi−Di)+

2α(G)−k =
∑k

i=1 n(Gi)−
∑k

i=1 |Di|+2α(G)−k ≥ ∑k
i=1 n(Gi) = n(G).

Let Cl = {v1, v2, . . . , vl} be a chordless cycle. A Mycielsky graph
Mk of order k is a triangle-free graph (ω(Mk) = 2) with chromatic
number χ(Mk) = k (see [5]). M2 contains two connected vertices,
M3 = C5. If V (Mk) = v1, v2, . . . , vn, the graph Mk+1 contains Mk

itself as a subgraph, together with n + 1 vertices: u1, u2, . . . , un, w.
Each vertex ui is connected to w, and for each edge vivj of Mk, graph
Mk+1 includes two edges, uivj and ujvi. The set {u1, u2, . . . , un, w} is
dominating in Mk+1 and η0(Mk+1) ≥ η0(Mk)+1. Because η0(M2) = 2,
η0(M3) = 3, for any order k: η0(Mk) ≥ χ(Mk). So, the difference
η0(G) − ω(G) can be arbitrarily large. However, if G is obtained by
adding some adjacent vertices with degree one to each vertex of any
graph H, then η0(G) = 2.

Definition 3 η(G) = max η0(G
′), where the maximum is taken over

all induced subgraphs G′ of the graph G.

Theorem 3 For any graph G

(i) ω(G) ≤ η(G) ≤ h(G),

(ii) If D is any dominating set in G then η(G) ≥ η(G −D) + 1,

(iii) If △(G) the maximum degree, then η(G) ≤ △(G) + 1.

Proof. (i) Let ω = ω(G). For any maximum clique Kω, η0(Kω) =
ω, so η(G) ≥ ω. If G′ is one of subgraphs for which η0(G

′) = η(G),
then, by Theorem 2, η0(G

′) ≤ h(G′), and therefore, η(G) ≤ h(G).

(ii) D is dominating set for all subgraphs of G containing D. The
statement follows from Theorem 2.

(iii) If η = η(G) and V1, V2, . . . , Vη is one of the longest sequence of
dominating sets, then Vη is an independent set. Degrees of all vertices
in this set are at least η − 1.
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If we take n cycles Cn−1, join every two different cycles with a single
edge using different vertices in each cycle, then for obtained graph G
with △(G) = 3, h(G) ≥ n, η(G) ≤ 4. So, the difference h(G) − η(G)
can be arbitrarily large.

The new invariant η(G) also can be defined as a maximum length
of a sequence of subsets of vertices U1, U2, U3, . . ., where Ui ∩ Uj = ∅

(i 6= j), every vertex from U1 ∪ U2 ∪ . . . ∪ Uk−1 is adjacent to at least
one vertex in Uk, and subgraph induced by Uk (k ≥ 2) is connected.

In the proof of some lower bounds for number of Hadwiger we can
just replace h by η. Below we give a proof of one theorem (see [6]) with
this replacement.

Theorem 4 Let G be any graph with α(G) = 2. Let n = n(G), ω =
ω(G), then η(G) ≥ (n+ ω)/3.

Proof. We proceed to prove by induction on n. Let K = Kω be
a maximum clique of G and let H = G− V (K). By a 2-path of H we
mean an induced subpath of length 2. The vertex set of any 2-path is
dominating in G. If H contains a 2-path P , then ω(G−P ) = ω(G) = ω
and the induction hypothesis implies that η(G) ≥ η(G − P ) + 1 ≥
(n−3+ω)

3 + 1 = (n+ ω)/3. If H does not contain any 2-path, then H is
either a complete graph or disjoint union of two complete graphs. In
both cases we claim that ω ≥ n/2. In the first case, this is evident.
In the second case, H is a disjoint union of two complete graphs, say
H1 and H2 and, because of α(G) = 2, every vertex of the complete
subgraph K is either joined to all vertices of H1 or to all vertices of
H2. This implies the claim. Consequently, η(G) ≥ ω ≥ (n + ω)/3.
Thus Theorem 4 is proved.

3 The Nordhaus-Gaddum inequalities for η(G)

Nordhaus and Gaddum studied the chromatic number in a graph G and
its complement G together. They proved lower and upper bounds of
the sum and of the product of chromatic numbers of G and G in terms
of n(G). Since then, any bound of the sum and/or the product of an
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invariant in a graph and its complement is called a Nordhaus-Gaddum
type inequality. We prove these inequalities for η(G).

The diameter of a connected graph G, denoted d(G), is the max-
imum distance between two vertices. If graph is not connected, then
the diameter is defined as infinite. Clearly, if d(G) ≥ 3, then in its
complement G exists dominating edge. Let G be connected. We call
the induced subgraph G0 a cut-subgraph if G−G0 is disconnected. If
d(G) = 2, then the vertex set of any connected cut-subgraph is domi-
nating in G.

Lemma 1 If G is connected, not complete and does not have a com-
plete cut-subgraph, then h(G) ≥ ω(G) + 1.

Proof. Let Kω be a maximum clique in G and subgraph H =
G−Kω is connected. If we assume that H is not joined to some vertex
v ∈ V (Kω), then Kω − v is complete cut-subgraph, hence V (H) is
dominating in G.

Lemma 2 If K is a complete subgraph of G and G−K is connected,
then in G exists dominating set D such that |D| ≤ 2α(G) − 1 and
|D ∩ V (K)| ≤ 1.

Proof. Let H = G−K and v ∼ u, where v ∈ V (K) and u ∈ V (H).
By the result of Duchet and Meyniel (see [2]), the subgraph H has the
dominating set D1 with p+ q vertices; p vertices form independent set
(independent vertices), and q ≤ p − 1. If p = α(G), then D = D1. If
p ≤ α(G)− 1 and D1 is not dominating in G, then D = D1∪{v, u}. In
this case |D| = |D1|+ 2 = p+ q + 2 ≤ 2p− 1 + 2 ≤ 2(α(G) − 1) + 1 =
2α(G) − 1.

Theorem 5 η(G) · η(G) ≥ n(G).

Proof. We proceed by induction on n = n(G). For n ≤ 5, the
result is clear. Suppose n ≥ 6, and statement holds for all graphs with
fewer than n vertices. Clearly, if max{d(G), d(G)} ≥ 3, then Theorem
5 holds. Let d(G) = d(G) = 2.
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Case 1: A complete cut-subgraph K exists in graph G (or in G) and
H1,H2, . . . ,Hk (k ≥ 2) are connected components of G − K.
In complement G (or in G) each edge e = vivj (vi ∈ V (Hi),
vj ∈ V (Hj), i 6= j) is dominating in subgraph induced in G by
the set of vertices V (G) − V (K). Let G′ = G − K − {vi, vj}.
We have: η(G) · η(G) ≥ η(G)(η(G′) + 1) = η(G)η(G′) + η(G) ≥
(η(G′) + 1)η(G′) + η(G) = η(G′)η(G′) + η(G′) + η(G) ≥ n(G′) +
η(G′)+η(G) = n(G)−n(K)−2+η(G′)+η(G) ≥ n(G)+η(G′)−2.
If η(G′) ≤ 1, then ω(G) ≥ (n − 2)/2, hence Theorem 5 holds in
this case.

Case 2: Neither G nor G does not contain a complete cut-subgraph.
Without loss of generality we may assume ω = ω(G) ≥ α(G) =
α. Let Kω be a maximum clique of G. By Lemma 2, G has a
dominating set D with n(D) ≤ 2α(G) − 1 and |D ∩ V (Kω)| ≤ 1.

Case 2.1: D is a dominating set in G, |D| = p + 1. The set D
consists of p independent vertices and one vertex adjacent to
all p vertices. Let G′ = G−D. Thus η(G)η(G) ≥ (η(G′) +
1)η(G) = η(G′)η(G) + η(G) ≥ η(G′)η(G′) + η(G) ≥ n− p−
1 + η(G). By Lemma 1, η(G) ≥ ω(G) + 1 ≥ p + 1, hence
Theorem 5 holds in this case.

Case 2.2: D is a dominating set in G, |D| = p + q, p vertices
are independent and 2 ≤ q ≤ p − 1. None of the vertices
of G is joined to all p independent vertices. In this case
these p vertices are dominating in G. Let G′ = G−D. We
have: η(G)η(G) ≥ (η(G′) + 1)η(G) = η(G′)η(G) + η(G) ≥
η(G′)(η(G′) + 1) + η(G) = η(G′)η(G′) + η(G′) + η(G) ≥
n(G′) + η(G′) + η(G) = n(G) − p − q + η(G′) + η(G) ≥
n(G)− 2α+1+ η(G′)+ η(G) ≥ n(G)− 2α+1+ω− 1+α ≥
n(G)− α+ ω ≥ n(G).

Now we prove the upper bound of a sum.
Kostochka proved (see [4]) that for number of Hadwiger, h(G) +

h(G) ≤ 6n(G)/5. We show that there are graphs G for which η(G) +
η(G) = 6n(G)/5.
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Given a graph G, we say that graph H = inf(G) is an inflation
of G if each vertex v ∈ V (G) is replaced by a complete graph Kv.
If u ∈ V (G) and v ∼ u, then in H every vertex of Kv is joined to
every vertex of Ku. We call the complete graphs Kv, Ku the atoms of
inflation.

Let H = inf(C5) and for corresponding atoms n(K1) = n(K2) =
n(K3) = n(K4) = n(K5) = k. In complete K2 and K4 we remove
all edges and the resulting graph we denote by G. In the graph G,
subgraph induced by the set of vertices V (K1) ∪ V (K5) is complete.
In the complement G, subgraph induced by the set of vertices V (K2)∪
V (K4) is complete, hence ω(G) = ω(G) = 2k. There are k disjoint
dominating sets {v2, v3, v4} in G : v2 ∈ V (K2), v3 ∈ V (K3), v4 ∈
V (K4), and k disjoint dominating sets {v1, v3, v5} in G : v1 ∈ V (K1),
v3 ∈ V (K3), v5 ∈ V (K5). So η(G) ≥ 3k, η(G) ≥ 3k, and η(G)+η(G) ≥
6k = 6n(G)/5.

4 New Invariant and Chromatic Number

Let G be any graph and chromatic number χ(G) = χ. In definition of
chromatic number, for independent sets of vertices V1, V2, , Vχ, ∪χ

i=1Vi =
V (G), Vi∩Vj = ∅ (i 6= j), we can always assume that V1 is a dominating
set in graph G, V2 is a dominating set in G − V1, V3 is a dominating
set in G− V1 − V2 and so on.

Now we begin to study the relationship between the chromatic num-
ber and η(G).

Let δ(G) be the minimum degree.

Lemma 3 If δ(G) ≥ 3, then in G exists a cycle and connected subgraph
joined to all vertices of this cycle.

Proof. We define the distance between two cycles C1 and C2 as the
shortest distance between all pairs of vertices v and u, where v ∈ C1 and
u ∈ C2. If two cycles have common vertices, then the distance between
them is zero. Among the pairs of cycles with maximum distance ρ,
choose one Cl with minimum length l. If G − Cl is connected, then
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Cl and G − Cl are desired. Let G − Cl be not connected. If ρ = 0,
then all components of G − Cl do not have cycles. If ρ > 0, then only
one component has cycles (otherwise ρ is not the maximum). Let T be
any component without cycles. Consider the graph H = Cl ∪T . First,
prove that l ≤ 4.

An arbitrary terminal vertex t ∈ V (T ) is joined to at least two
vertices of Cl. These two vertices divide Cl into two simple paths. If
l ≥ 5, then the length of one path is at least 3, and then the length of
the cycle induced by vertices of another path and t is less than l.

If T is joined to all vertices of Cl, then Cl and T are desired. Assume
that vertex v1 ∈ Cl is not joined to T . From the minimality of l it
follows that the number of terminal vertices in T is at least two.

Case 1. l = 3 and C3 = {v1, v2, v3}. In the graph T all terminal
vertices t1, t2, . . . , ts (s ≥ 2) are joined to v2 and to v3. The cycle
C = {t1, v2, v3} and the graph T − t1 are desired.

Case 2. l = 4 and C4 = {v1, v2, v3, v4}. All terminal vertices
t1, t2, . . . , ts (s ≥ 2) are adjacent to v2 and to v4. Assume that
s = 2, i.e. T is the chain and the number of vertices n(T ) ≥ 3. If
in this chain t1 ∼ t, then t ∼ v3. The cycle C = {t1, v2, t2, v4} and
the induced subgraph with the set of vertices V (T )∪{v3}−{t1, t2}
are desired. Now assume that s ≥ 3. The cycle C is the
same as above and the connected graph is induced by vertices
V (T )− {t1, t2}.

Theorem 6 If χ(G) ≤ 4, then η(G) ≥ χ(G).

Proof. The cases where χ(G) = 1, 2 are trivial. The case χ(G) = 3
is also easy: the graph requiring three colors has an odd cycle Cl =
{v1, v2, . . . , vl}. The set of vertices {v3, v4, . . . , vl} is joined to connected
v1 and v2. If χ(G) = 4, then without loss of generality, we may assume
that G is critical, i.e. for each vertex v: χ(G− v) = 3. For such graphs
(see [ 1 ]) δ(G) ≥ 3, and by Lemma 3, η(G) ≥ 4.

Let χ(k) = max{χ(G) | η(G) ≤ k}.
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Theorem 7 χ(k) ≤ 3 · 2k−3 for k ≥ 3.

Proof. We proceed by induction on k. As it is shown above,
χ(3) = 3. So suppose k ≥ 4 and suppose the result is true for all
graphs with η < k and let G = (V,E) be a graph with η(G) = k. Let
v0 ∈ V andDi be subgraph induced by all vertices at distance i from v0.
Subgraph G[{v0}∪D1 ∪D2∪ . . .∪Di−1] is connected, so η(Di) ≤ k−1
for all i. Clearly, that χ(G) ≤ max{χ(Di−1) + χ(Di)} (i = 1, 2, 3, . . .),
where D0 = {v0}. So, χ(G) ≤ 2 · χ(k− 1) ≤ 2 · 3 · 2k−1−3 = 3 · 2k−3.

Conjecture: For all graphs G, χ(G) ≤ η(G).

5 Concluding Remarks

The Hadwigers conjecture (HC) can be stated in form: For all graphs
G, χ(G) ≤ h(G). Therefore, a new conjecture is a strengthening of
HC. If HC is false, then a counterexample might possibly be obtained
among counterexamples to the new conjecture.

A good place to look for a counterexample to our conjecture are
graphs G with independence number α(G) = 2. For such graphs
χ(G) ≥ n(G)/2. In [3] Kim has proved that there is a constant c > 0
such that there exist graphs G on n vertices, with α(G) = 2 and clique
number ω(G) ≤ c

√
n · log n. For these graphs to have χ(G) ≤ η(G)

we need to find a sequence with at least χ(G)− c
√
n · log n dominating

sets with at least two vertices.
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