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Abstract

New options of the hidden discrete logarithm problem are
proposed as cryptographic primitive of the post-quantum signa-
ture algorithms. Two signature schemes using computations in
finite non-commutative algebras with associative multiplication
operation are introduced. The main feature of the proposed sig-
nature algorithms consists in using locally invertible elements of
algebras. Two different types of algebras are used: i) contain-
ing global bi-side unit and ii) containing a large set of global
right-side units.
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1 Introduction

Development of the post-quantum public-key cryptographic algorithms
and protocols is a current challenge of the applied and theoretic cryp-
tography [1], [2]. A well-known response to this challenge is the com-
petition for the development of the post-quantum public-key cryp-
toschemes, announced by NIST in 2016 [3]. The current outcome of
this competition is a set of post-quantum cryptoschemes, chosen as can-
didates for the adoption of post-quantum cryptographic standards on
their basis [4]. At the next stage it is expected to initiate an all-round
discussion of candidates from the wide cryptographic community. It is
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assumed that the main point at this three-year stage will be research
on the resistance of selected candidates to attacks using a hypothetical
quantum computer.

The problem of discrete logarithm in a hidden cyclic group [5] re-
mained outside the attention of NIST participants, although it seems
to be an interesting primitive for constructing practical post-quantum
cryptoschemes. Apparently this is due to the fact that in the litera-
ture this problem, which can be called the hidden discrete logarithm
problem (HDLP), is little illuminated. Another reason is a relatively
small number of known carriers of this problem, which are finite non-
commutative associative algebras (FNAAs). The urgency of the prob-
lem of finding new carriers of the HDLP is underlined in the paper [6].

The purpose of this work is to attract the attention of cryptographic
community to the HDLP as a post-quantum cryptographic primitive.
To achieve this goal, new types of algebras are being developed (Sec-
tion 2), new variants of the HDLP are introduced (Section 3), and
algorithms for digital signature based on the proposed options of the
HDLP are being developed for the first time (Section 4). In the con-
cluding Section 5 we estimate that the application of the HDLP for
the design of the post-quantum public-key algorithms and protocols is
a promising direction.

2 New carriers of the HDLP

The known option of the HDLP [5] is formulated in a finite non-
commutative group Γ as follows. Suppose the group Γ contains ele-
ments Q and G having large prime order q and satisfying the condition
G◦Q 6= Q◦G. In [5] it is proposed to compute a public key Y as follows
Y = Gw ◦Qx◦G−w, where the pair of integers (w, x) represents the pri-
vate key. Computing the values w < q and x < q, while the elements
Y, Q, and G are known, is called HDLP. The paper [5] decribes the
public key-agreement protocol, the public encryption algorithm, and
the commutative cipher based on the HDLP formulated in the finite
algebra of quaternions. No proposals for digital signature schemes are
known in the literature.
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While considering new FNAAs of the dimensions m = 4 and m = 6
the following common description is used. The m-dimensional vector
space defined over the finite field GF (p) becomes the m-dimensional
finite algebra after the operation for multiplying arbitrary two vectors
is defined, which is distributive relatively the addition operation. To
set the multiplication operation one can use the notion of formal basis
vectors denoted as e0 = (1, 0, 0 . . . , 0), e1 = (0, 1, 0 . . . , 0), ... em−1 =
(0, 0 . . . , 0, 1) and representation of some vector A = (a0, a1, . . . am−1)
in the form of the following summ of the single component vectors aiei:
A =

∑m−1
i=0 aiei.

The multiplication operation ◦ of the m-dimensional vectors A and
B =

∑m−1
j=0 bjej is defined by the following formula

A ◦B =

(

m−1
∑

i=0

aiei

)

◦





m−1
∑

j=0

bjej



 =
m−1
∑

j=0

m−1
∑

i=0

aibj (ei ◦ ej) , (1)

where product ei◦ej for all possible pairs of the integers i and j is to be
replaced by some single-component vector λek indicated by so called
basis vector multiplication table (BVMT). In formula (1) it is ussumed
that the intersection of the ith row and the jth column defines the cell
which contains the value λek = ei◦ej . If the coordinate λ 6= 1, then λ is
called structural coefficient. To build a FNAA we should compose and
use some BVMT defining non-commutative associative multiplication
operation.

2.1 The 4-dimensional FNAA

In this subsection we summarize in brief some results of the paper [7]
relating to the case of the 4-dimensional non-commutative algebra. The
FNAA defined by Table 1, where τ 6= 1, contains the global bi-side unit

E =

(

1

1− τ
,

1

1− τ
,

τ

τ − 1
,

1

τ − 1

)

for which for every element of the algebra the formulas A ◦E = A and
E ◦ A = A hold. Every vector A of the algebra, coordinates of which
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Table 1. The BVMT for defining the 4-dimensional algebra with the
global unit (τ 6= 1).

◦ e0 e1 e2 e3
e0 e0 e3 e0 e3
e1 τe2 e1 e2 τe1
e2 e2 e1 e2 e1
e3 τe0 e3 e0 τe3

satisfy the condition a0a1 6= a2a3, is invertible relatively the global unit
E, i.e., for arbitrary vector of such a kind there exists the vector A−1

such that A ◦ A−1 = A−1 ◦ A = E holds. The vectors B satisfying the
condition b0b1 = b2b3 are non-invertible relatively the global unit E.
However, the majority of vectors B are locally invertible, i.e., invertible
relatively some local bi-side unit EB acting as unit element in some
subset of the algebra elements, which includes the vector B. Evidently,
this subset is a finite group with the group operation ◦. There exists
the single local bi-side unit in the subset of the non-invertible (globally)
algebra elements. However, for some fixed non-invertible vector B there
exists a large set of the vectors E′

B satisfying the condition E′

B ◦B = B.

This set of the vectors E′

B can be called the set of the left-side units of
the vector B and is described by the following formula:

E′

B =

(

d,
b2

b0 + b2
−

b0 + b2

τb0 + b2
h, h,

b0

τb0 + b2
−

b0 + b2

τb0 + b2
d

)

, (2)

where h, d = 0, 1, . . . p− 1. Analogously, for the vector B there exists a
large set of the vectors E′′

B satisfying the condition B ◦E′′

B = B. The
last set can be called the set of the right-side units of the vector B and
is described by the following formula:

E′′

B =

(

d,
b3

b0 + b3
−

b0 + τb3

b0 + b3
h,

b0

b0 + b3
−

b0 + τb3

b0 + b3
d, h

)

, (3)

where h, d = 0, 1, . . . p− 1.
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The existence of many local units associated with a given non-
invertible vector is an essential point in setting a new form of the HDLP
proposed in Section 3.1. Earlier [8] the use of the non-invertible ele-
ments had been proposed in frame of the known form of the HDLP [5],
however in that proposal there are not exploited the local units related
to the used non-invertible element B.

2.2 The 6-dimensional FNAA

If the structural coefficients λ, µ, and τ in Table 2 satisfy the following
two conditions µ 6= τ and µ 6= λτ, then this BVMT defines the multi-
plication operation in the 6-dimensional FNAAs containing a large set
of the global right-side units. For some right-side unit X acting on the
vector A the following vector equation holds:

A ◦X = A. (4)

Using Table 2 one can represent (4) in the form of the following
system of six linear equations with coordinates of the right operand
x0, x1, . . . , x5 as the unknown values:







































a0x0 + τa0x2 + a0x4 + λa5x0 + µa5x2 + a5x4 = a0;

a1x1 + µa1x3 + λa1x5 + a4x1 + τa4x3 + a4x5 = a1;

a2x0 + τa2x2 + a2x4 + λa3x0 + µa3x2 + a3x4 = a2;

a2x1 + τa2x3 + a2x5 + a3x1 + µa3x3 + λa3x5 = a3;

a0x0 + τa0x2 + a0x4 + λa5x0 + µa5x2 + a5x4 = a4;

a0x1 + τa0x3 + a0x5 + a5x1 + µa5x3 + λa5x5 = a5.

(5)

The system (5) can be rewritten as the following system of six equations
with four unknowns: z1 = x0 + τx2 + x4; z2 = λx0 + µx2 + x4; z3 =
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x1 + τx3 + x5; z4 = x1 + µx3 + λx5 :







































a0z1 + a5z2 = a0;

a1z4 + a4z3 = a1;

a2z1 + a3z2 = a2;

a2z3 + a3z4 = a3;

a1z2 + a4z1 = a4;

a0z3 + a5z4 = a5.

(6)

The system (6) has the following single solution:

z1 = 1; z2 = 0; z3 = 0; z4 = 1. (7)

Using (7) one can write the following two independent systems:

{

x0 + τx2 + x4 = 1;

λx0 + µx2 + x4 = 0;
(8)

{

x1 + µx3 + λx5 = 1;

x1 + τx3 + x5 = 0.
(9)

Solution of the systems (8) and (9) defines all solutions of the system
(5). The lasts can be described by the following formula:

R =

(

x0, x1,
1 + (λ− 1)x0

τ − µ
,

1 + (λ− 1)x1
µ− λτ

,

(µ − λτ)x0 − µ

τ − µ
,

(τ − µ)x1 − τ)

µ− λτ

)

,

(10)

where x0, x1 = 0, 1, . . . p − 1. Thus, the solutions of the system (5) do
not depend on the value A, therefore formula (10) describes the full set
of the global right-side units in the considered FNAA.

One can easily prove the following propositions:

Proposition 1. For arbitrary global right-side unit Ri and arbitrary
integer n the following equation holds Rn

i = Ri.
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Propossition 2. For arbitrary two 6-dimensional vectors U and T

such that U ◦T = Ri, where Ri is a global right-side unit, and arbitrary
integer n the following equation holds Un ◦ T n = Ri.

Propossition 3. For arbitrary global right-side unit Ri, arbitrary
6-dimensional vector U, and arbitrary integer n the following equation
holds (Ri ◦ U)n = Ri ◦ U

n.

Proposition 4. Arbitrary global right-side unit Ri is simultaneously
the single local bi-side unit EA for the vector Ri ◦ A, where A is an
arbitrary non-zero vector.

Table 2. The BVMT defining the 6-dimensional FNAA with p2 different
global right-side units (λ 6= 1, µ 6= 1, τ 6= 1, τ 6= µ, λτ 6= µ)

◦ e0 e1 e2 e3 e4 e5
e0 e0 e5 τe0 τe5 e0 e5
e1 λe4 e1 µe4 µe1 e4 λe1
e2 e2 e3 τe2 τe3 e2 e3
e3 λe2 e3 µe2 µe3 e2 λe3
e4 e4 e1 τe4 τe1 e4 e1
e5 λe0 e5 µe0 µe5 e0 λe5

Computation of the local bi-side unit EA relating to the vector A

can be executed as finding the local left-side unit of the vector A from
the vector equation X ◦ A = A, i.e., from the following system of six
equations with six unknowns:







































(a0 + τa2 + a4)x0 + (λa0 + µa2 + a4)x5 = a0;

(a1 + µa3 + λa5)x1 + (a1 + τa3 + a5)x4 = a1;

(a0 + τa2 + a4)x2 + (λa0 + µa2 + a4)x3 = a2;

(a1 + τa3 + a5)x2 + (a1 + µa3 + λa5)x3 = a3;

(λa0 + µa2 + a4)x1 + (a0 + τa2 + a4)x4 = a4;

(a1 + τa3 + a5)x0 + (a1 + µa3 + λa5)x5 = a5.

(11)
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It is easy to see that for the vectors A satisfying the condition

∆A = (a4a5 − a0a1) (λ− 1) + (a3a4 − a1a2) (µ− τ)+

+ (a2a5 − a0a3) (λτ − µ) 6= 0
(12)

the system (11) has the single solution, i.e., the single local left-side
unit LA 6= (0, 0, . . ., 0) relates to every such vector A.

Proposition 5. All vectors A satisfying the condition (12) and re-
lating to a fixed local bi-side unit EA compose a finite group (with
the unit EA and the group operation ◦) contained in the considered
6-dimensional FNAA.

Earlier [9] the analogous 6-dimensional FNAA containing p4 differ-
ent global right-side units have been considered, however units of such
type had not been used at defining the HDLP.

3 Novel forms of defining the HDLP

3.1 The HDLP in FNAA containing the global unit

Over a FNAA with the global unit (for example, over the 4-dimensional
algebra considered in Subsection 2.1) one can define the HDLP as fol-
lows. Suppose the vector B is a non-invertible one and has sufficiently
large prime local order ω, the invertible vectors G and H are such
that the following conditions G ◦ B 6= B ◦ G, G ◦ H 6= H ◦ G, and
H ◦B 6= B ◦H hold. Then one can select at random an integer x < ω

and an invertible vector E from the sets of the local single-side units
of the vector B, i.e., from the sets (2) and (3) in the case of considered
4-dimensional FNAA, and compute the vectors Z, Y , and T :

Z = H ◦B ◦H−1; Y = G ◦Bx ◦G−1; T = G ◦E ◦H−1. (13)

The triple (Z, Y, T ) can be used as public key to which the private key
representing the set of values x, B, H, and G corresponds. The value E
is also secret, however it is used only at step of computing the public-
key element T . Computationally difficult problem consists in finding
the private key or alternative four values x′, B′, H ′, and G′ with which
the public key can be expressed in accordance with the formulas (13).
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3.2 The HDLP in FNAA containing large set of the

global single-side units

Over a FNAA with the set of the single-side global units (for example,
over the 6-dimensional algebra considered in Subsection 2.2, which con-
tains a large set of the global right-side units) an option of the HDLP
can be defined as follows. Suppose the vector A satisfying the condition
(12) has sufficiently large prime local order ω and the vectors G, P ,
H, and Q are selected so that the following conditions G ◦A 6= A ◦G,
H ◦A 6= A◦H, P ◦G = R1, and Q◦H = R2, where R1 and R2 6= R1 are
arbitrary global right-side units, hold. Then one can select at random
an integer x < ω and a global right-side unit R3, such that R3 6= R2 and
R3 6= R1, and compute the triple of the vectors Z, Y , and T satisfying
the following equations:

Z = H ◦ A ◦Q; Y = G ◦ Ax ◦ P ; P ◦ T ◦H = R3. (14)

The triple (Z, Y, T ) represents a public key connected with the private
key representing the set of values x, G, A, and Q. The values P , H,
and R3 are also secret, however they are needed to the owner of the
public key only in frame of the process of computing the values Z, Y ,
and T .

Finding the private key or some alternative four values x′, G′, A′,
and Q′, with which the public key can be expressed in accordance with
the formulas (14), represents a difficult computation problem. The last
is called HDLP due to using the exponentiation operation performed in
the finite cyclic group generated by the vector A, which is hidden in the
FNAA. The used exponentiation operation contributes significantly to
the difficulty of the considered variants of the HDLP.

4 Digital signature algorithms

In the case of using the HDLP introduced in Subsection 3.1 and the
4-dimensional FNAA described in Subsection 2.1 and defined over the
field GF (p) with 512-bit prime p one can propose the following signa-
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ture generation algorithm in which some specified hash function Fh is
used:

1. Generate a uniformly random value k < ω and compute the
vector V = G ◦Bk ◦H−1.

2. Compute the first signature element e = Fh(M,V ), where M is
the electronic document to be signed.

3. While interpreting the bit string e as a binary number, compute
the second signature element s = k − xe mod ω.

The respective signature verification algorithm is performed as fol-
lows:

1. Using the signature (e, s) to the document M , compute the
vector V ′: V ′ = Y e ◦ T ◦ Zs.

2. Compute the hash value e′ = Fh(M,V ′).

3. If e′ = e, then the signature is accepted as genuine. Otherwise
the signature is rejected.

Correctness proof of the proposed signature scheme is as follows:

V ′ =
(

G ◦Bx ◦G−1
)e

◦ T ◦
(

H ◦B ◦H−1
)(k−xe)

=

G ◦Bxe ◦G−1 ◦ T ◦H ◦Bk−xe ◦H−1 = G ◦Bxe ◦ E ◦Bk−xe ◦H−1 =

G ◦Bxe+k−xe ◦H−1 = G ◦Bk ◦H−1 = V ⇒ e′ = e.

While using the HDLP, set in the 6-dimensional FNAA defined over
the field GF (p) with 384-bit characteristic p (see Subsection 3.2), the
following algorithm can be proposed for generating a signature to doc-
ument M :

1. Select at random an integer k < ω and compute the vector
V = G ◦Ak ◦Q.

2. Compute the first signature element v = Fh(V ), where Fh is the
used hash function.

3. Compute the hash function value e from the document M and
the second signature element s: e = Fh(M) and s = ke− xv mod ω.

Verification of the signature (v, s) to the document M is to be
performed with the following algorithm:

1. Compute the hash value e from the document e = Fh(M).
2. Compute the vector V ′ : V ′ = Y ve−1

◦ T ◦ Zse−1

.
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3. Compute the hash value v′ from the vector V ′: v′ = Fh(V
′).

4. If v′ = v, then the signature is accepted as genuine. Otherwise
the signature is rejected as false one.

Proof of the correctness of the last signature scheme is as follows:

V ′ = (G ◦Ax ◦ P )ve
−1

◦ T ◦ (H ◦A ◦Q)se
−1

=

G ◦Axve−1

◦ P ◦ T ◦H ◦Ase−1

◦Q =

G ◦Axve−1

◦R3 ◦A
(ke−xv)e−1

◦Q =

G ◦Axve−1+k−xve−1

◦Q = G ◦ Ak ◦Q = V ⇒ v′ = v.

Like in the Schnorr digital signature protocol [10] and in the discrete
logarithm based standards [11], in the described signature schemes
there is used some cyclic group of the prime order. However, in the pro-
posed signature algorithms the used cyclic group is hidden in a FNAA.
The public part of the introduced new signature algorithms is the used
FNAA and three its elements Y, Z, and T that are connected with the
hidden cyclic group generated by powers of the hidden-group genera-
tor (the vector B in the first signature scheme and the vector A in the
second scheme) that is an element of the private key.

5 Conclusion

In this paper, two new FNAAs have been introduced as carries of the
HDLP defined in two novel forms. One should note that the proposed
two variants of the HDLP suit well to design digital signature schemes,
however it is not evident, how they can be used for designing the public
key agreement protocols. The known form of the HDLP [5] suits well
to design the last type of protocols, however at present no proposals
for signature schemes on its base are known. In the compared forms
of the HDLP there are used different mechanisms for hiding a cyclic
group.

Estimation of the security of the proposed signature algorithms to
quantum attacks is connected with estimation of the computational
difficulty of the reduction of the used HDLP to the discrete logarithm
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problem in GF (p). Consideration of this item represents an individual
task. If the polynomial-time algorithms for such reduction will not be
found for several years after publication of the proposed forms of the
HDLP and signature schemes on their base, then one can hope the at-
tractive candidates for post-quantum signature standards will be aval-
able. Significant advantage of the proposed signature schemes relatively
the candidates selected in frame of the NIST PQCrypto project [3] is
smaller signature size (384 to 512 bits in the case of 128-bit security)
and higher performance of the signature generation and verification
procedures.

Besides analysis of the resistance to quantum attacks, future devel-
opment of the performed research can be also related to justification of
the parameters of the FNAAs applied as carriers of the HDLP used as
cryptographic primitive as well as to justification of the parameters of
the HDLP.
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