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New Bounds for the Harmonic Energy and

Harmonic Estrada index of Graphs

Akbar Jahanbani

Abstract

Let G be a finite simple undirected graph with n vertices and
m edges. The Harmonic energy of a graphG, denoted byHE(G),
is defined as the sum of the absolute values of all Harmonic eigen-
values of G. The Harmonic Estrada index of a graph G, denoted
by HEE(G), is defined as HEE = HEE(G) =

∑n

i=1
eγi , where

γ1 > γ2 > · · · > γn are the H-eigenvalues of G. In this paper
we present some new bounds for HE(G) and HEE(G) in terms
of number of vertices, number of edges and the sum-connectivity
index.

Keywords: Eigenvalue of graph, Energy, sum-connectivity index,
Harmonic energy, Harmonic Estrada index.

1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V =
V (G) = {v1, v2, ...., vn} and edge set E(G), |E(G)| = m. The order
and size of G are n = |V | and m = |E|, respectively. For a vertex
vi ∈ V , the degree of vi, denoted by deg(vi) (or just di), is the number
of edges incident to v. The independence number, denoted α(G), of
graph G is defined as the size of the largest independent set in G. The
chromatic number χ′(G) of G is the smallest number of colors needed
to color all vertices of G in such a way that no pair of adjacent vertices
get the same color. A graph G is regular if there exists a constant r
such that each vertex of G has degree r, such graphs are also called
r-regular. The adjacency matrix A(G) of G is defined by its entries
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as aij = 1 if vivj ∈ E(G) and 0 otherwise. Let λ1 > λ2 > · · · > λn
denote the eigenvalues of A(G). λ1 is called the spectral radius of the
graph G. The energy of the graph G is defined as:

E = E(G) =
n
∑

i=1

| λi |, (1)

where λi, i = 1, 2, . . . , n , are the eigenvalues of graph G. This concept
was introduced by I. Gutman and is intensively studied in chemistry,
since it can be used to approximate the total π-electron energy of a
molecule (see, e.g. [21], [23] ). Since then, numerous other bounds for
energy were found (see, e.g. [1], [2], [22], [24], [32], [33], [34]).

For a graph G, the Harmonic index H(G) is defined in [19] as

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
,

where d(u) denotes the degree of a vertex u in G. In 2012, Zhong rein-
troduced this index as Harmonic index and found the minimum and
maximum values of the Harmonic index for simple connected graphs
and trees [39]. To know more about this index, refer to [ [3] – [5], [11] –
[10], [28], [36], [39] – [41]]. In [19], Favaron et al. considered the relation
between Harmonic index and the eigenvalues of graphs. Zhong [39],
found the minimum and maximum values of the Harmonic index for
connected graphs and trees, and characterized the corresponding ex-
tremal graphs. Recently, Wu et al. [38], give a best possible lower bound
for the Harmonic index of a graph (a triangle-free graph, respectively)
with order n and minimum degree at least two and characterize the
extremal graphs.

The sum-connectivity index χ(G) and the general sum-connectivity
index χβ(G) were recently proposed by Zhou and Trinajstić in ( [42],
[43]) and defined as

χ(G) =
∑

uv∈E(G)

(d(u) + d(v))
−1
2
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and
χβ(G) =

∑

uv∈E(G)

(d(u) + d(v))β , (2)

where β is a real number. Some mathematical properties of the
(general) sum-connectivity index on trees, molecular trees, unicyclic
graphs and bicyclic graphs were given in ( [42], [43], [15]- [17]). The
Harmonic matrix of a graph G is a square matrix H(G) = [hij ] of
order n, defined via [27]

hij =











0 if the vertices vi and vj of G are not adjacent
2

(di+dj)
if the vertices vi and vj of G are adjacent

0 if i = j.

(3)

The eigenvalues of the Harmonic matrix H(G) are denoted by
γ1, γ2, . . . , γn and are said to be the H-eigenvalues of G and their col-
lection is called Harmonic spectrum or H-spectrum of G. We note
that since the Harmonic matrix is symmetric, its eigenvalues are real
and can be ordered as γ1 > γ2 > · · · > γn.

This paper is organized as follows. In Section 2, we give a list of
some previously known results. In Section 3, we obtain lower and upper
bounds for the Harmonic energy of graph G. In Section 4, we obtain
lower and upper bounds for the Harmonic Estrada index of graph G.
All graphs considered in this paper are simple.

2 Preliminaries and known results

In this section, we shall list some previously known results that will
be needed in the next section. We first calculate tr(H2) and tr(H3),
where tr denotes the trace of the respective matrix.

Denote by Nk the k-th spectral moment of the Harmonic matrix
H, i. e.,

Nk =

n
∑

i=1

(γi)
k (4)

and recall that Nk = tr(Hk).
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Lemma 1. Let G be a graph with n vertices and Harmonic matrix H.
Then

(1) N0 =

n
∑

i=1

(γi)
0 = n, (5)

(2) N1 =

n
∑

i=1

γi = tr(H) = 0, (6)

(3) N2 =
n
∑

i=1

(γi)
2 = tr(H2) = 8χ−2(G), (7)

(4) N3 =

n
∑

i=1

(γi)
3 = tr(H3) = 32χ−2(G)

(

∑

k∼i, k∼j

1

(dk)2

)

, (8)

(5) N4 =

n
∑

i=1

(γi)
4 = tr(H4) =

n
∑

i=1

(

∑

i∼j

4

(di + dj)2

)2

(9)

+
∑

i 6=j

4

(di + dj)2

(

∑

k∼i, k∼j

4

(dk)2

)2

. (10)

where
∑

i∼j indicates summation over all pairs of adjacent vertices
vi, vj and also

∑

k∼i, k∼j

1

(dk)2
=

∑

k∼i, k∼j

1

(di + dk)(dk + dj)
.

Nowadays, H is referred to as the Harmonic index.

Proof. By definition, the diagonal elements of H are equal to zero.
Therefore the trace of H is zero.

Next, we calculate the matrix H2. For i = j

(H2)ii =
n
∑

j=1

HijHji =
n
∑

j=1

(Hij)
2 =

∑

i∼j

(Hij)
2 =

∑

i∼j

4

(di + dj)2
,
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whereas for i 6= j

(H2)ij =

n
∑

j=1

HijHji = HiiHij +HijHjj +
∑

k∼i, k∼j

HikHkj =

=
2

(di + dj)

∑

k∼i, k∼j

4

(dk)2
.

Therefore

tr(H2) =
n
∑

i=1

∑

i∼j

4

(di + dj)2
= 8

∑

i∼j

1

(di + dj)2
.

Hence by equality (2), we have

tr(H2) = 8χ−2(G).

Since the diagonal elements of H3 are

(H3)ii =
n
∑

j=1

Hij(H2)jk =
∑

i∼j

2

(di + dj)
(H2)ij =

=
∑

i∼j

4

(di + dj)2

(

∑

k∼i, k∼j

4

(dk)2

)

we obtain

tr(H3) =

n
∑

i=1

∑

i∼j

4

(di + dj)2

(

∑

k∼i, k∼j

4

(dk)2

)

=

= 32
∑

i∼j

1

(di + dj)2

(

∑

k∼i, k∼j

1

(dk)2

)

.

Hence by equality (2), we have

tr(H3) = 32χ−2(G)

(

∑

k∼i, k∼j

1

(dk)2

)

.
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We now calculate tr(H4). Because tr(H4) = ‖H2‖2F , where ‖H2‖2F
denotes the Frobenius norm of H2, we obtain

tr(H4) =
n
∑

i,j=1

| (H2)ii |2=
∑

i=j

| (H2)ii |2 +
∑

i 6=j

| (H2)ii |2

=

n
∑

i=1

(

∑

i∼j

4

(di + dj)2

)2

+
∑

i 6=j

4

(di + dj)2

(

∑

k∼i, k∼j

4

(dk)2

)2

.

Remark 1. Recall that [8] for a graph with eigenvalues λ1, λ2, . . . , λn,
with m edges and t triangles,

Mk =

n
∑

i=1

(λi)
k.

M0 = n, M1 =

n
∑

i=1

(λi) = 0, M2 =

n
∑

i=1

(λi)
2 = 2m,

M3 =

n
∑

i=1

(λi)
3 = 6t.

Lemma 2. (RayleighRitz) [25] If B is a real symmetric n × n matrix
with eigenvalues λ1(B) > λ2(B) 6 · · · 6 λn(B), then for any X ∈ R

n,
(X 6= 0),

X
t
BX 6 λ1(B)Xt

X.

Equality holds if and only if X is an eigenvector of B, corresponding
to the largest eigenvalue λ1(B).

Theorem 1. [11] Let G be a simple graph with the chromatic number
χ′(G) and the Harmonic index H(G), then

χ′(G) 6 2H(G),

with equality if and only if G is a complete graph, possibly with some
additional isolated vertices.
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Lemma 3. [36] Let G be a triangle-free graph with n vertices and m
edges, then

H(G) >
2m

n
.

Lemma 4. [8] Let G be a graph, where the number of eigenvalues
greater than, less than, and equal to zero are p, q and r, respectively.
Then

α 6 r +min{p, q},

where α is the independence number of G.

Remark 2. For non-negative x1, x2, . . . , xn and k > 2,

n
∑

i=1

(xi)
k
6 (

n
∑

i=1

xi
2)

k
2 . (11)

Lemma 5. [6] For any real x, one has ex > 1+x+ x2

2! +
x3

3! . Equality
holds if and only if x = 0.

3 Bounds for the Harmonic Energy of a graph

In this section, we obtain lower and upper bounds for the Harmonic
energy of graph. TheHarmonic energy of the graph G is defined in [27]
as:

HE(G) =

n
∑

i=1

| γi | . (12)

First, we prove the following theorem that will be needed for obtaining
the bounds of Harmonic energy.

Theorem 2. Let G be a connected graph with n > 2 vertices. Then
the spectral radius of the Harmonic matrix is bounded from below as

λ1 >
2H(G)

n
. (13)
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Proof. Let H = ||hij || be the Harmonic matrix corresponding to H. By
Lemma 2, for any vector X = (x1, x2, . . . , xn)

t,

XtHX =

( n
∑

j,j∼1

xjzj1,

n
∑

j,j∼2

xjzj2, . . . ,

n
∑

j,j∼n

xjzjn

)t

X

= 2
∑

i∼j

zijxixj (14)

because hij = hji. Also,

XtX =

n
∑

i=1

x2i . (15)

Using Eqs. (14) and (15), by Lemma 2, we obtain

γ1 >

2
∑

i∼j

zijxixj

n
∑

i=1

x2i

. (16)

Since (16) is true for any vector X, by putting X = (1, 1, . . . , 1)t, we
have

γ1 >
2H(G)

n
.

Theorem 3. Let G be a graph with n vertices. Then

HE(G) 6
8

n

√

χ−2(G) +

√

(n− 1)

(

8χ−2(G)−
( 8

n

√

8χ−2(G)
)2
)

.

Proof. By applying the Cauchy-Schwartz inequality to the two (n− 1)
vectors (1, 1, . . . , 1) and (| γ1 |, | γ2 |, . . . , | γn |), we have

( n
∑

i=2

| γi |
)2

6 (n− 1)

( n
∑

i=2

γ2i

)

.
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By the define of Harmonic energy, we can get

(HE(G) − γ1)
2 =

( n
∑

i=2

| γi |
)2

6 (n− 1)

( n
∑

i=1

γ2i − γ21

)

= (n− 1)

(

8χ−2(G) − γ21

)

, (by Equality 7)

then

HE(G) 6 γ1 +

√

(n− 1)

(

8χ−2(G) − γ21

)

. (17)

Now let us define a function

f(x) = x+

√

(n− 1)

(

8χ−2(G) − x2
)

.

In fact, by keeping in mind γ1 > 1, we set γ1 = x. Using

n
∑

i=2

γ2i = 8χ−2(G),

we get that
x2 = γ21 6 8χ−2(G).

In other words, x 6
√

8χ−2(G), meanwhile f ′(x) = 0 implies that

x =

√

8

n
χ−2(G).

Therefore f is a decreasing function in the interval
√

8

n
χ−2(G) 6 x 6 8

√

χ−2(G)

and
√

8

n
χ−2(G) 6 x 6

8

n

√

χ−2(G) 6 γ1.
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Hence

f(γ1) 6 f

(

8

n

√

χ−2(G)

)

.

Therefore

HE(G) 6
8

n

√

χ−2(G) +

√

(n− 1)

(

8χ−2(G)−
( 8

n

√

8χ−2(G)
)2
)

.

By Theorem 1 and Theorem 2, we establish the following result.

Theorem 4. Let G be a non-empty and non-singular graphs with n

vertices and chromatic number χ′. Then

HE(G) >
χ′

n
+ ln | detH | −ln

(

χ′

n

)

. (18)

Proof. Since G is non-singular, it is | γi |> 0, i = 1, 2, . . . , n. Consider
a function

f1 (x) = x− 1− lnx,

for x > 0. It is elementary to prove that f1 (x) is increasing for x > 1
and decreasing for 0 < x 6 1. Consequently, f1 (x) > f1 (1) = 0,
implying that x > 1 + lnx for x > 0, with equality holding if and only
if x = 1. Using the above result, we get

HE(G) = γ1 +

n
∑

i=2

| γi |

≥ γ1 + n− 1 +

n
∑

i=2

ln | γi |

= γ1 + n− 1 + ln

n
∏

i=2

| γi |

= γ1 + n− 1 + ln | detH | −lnγ1. (19)
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At this point, one has to recall that, by Lemma 2, γ1 >
χ′

n
.

Since x >
χ′

n
> 1, we have that

g(x) = x+ n− 1 + ln | detH | −lnx,

is an increasing function on 1 6 x 6 n. So we conclude that

g(x) > g

(

χ′

n

)

=
χ′

n
+ (n − 1) + ln | detH | −ln

(

χ′

n

)

.

Combining the above result with (19), we arrive at (18).

Also, by Theorem 2 and Lemma 3, we establish the following result.

Remark 3. Let G be a triangle-free graph with n vertices and m edges,
then

HE(G) >
4m

n2
+ ln | detH | −ln

(

4m

n2

)

.

Or

HE(G) 6
4m

n2
+

√

(n− 1)(8χ−2(G)−
4m

n2
).

Theorem 5. Let G be a connected graph with n > 2 vertices and
independence number α. Then

HE(G) 6 2
√

(n− α)χ−2(G).

Proof. Let γ1, γ2, . . . , γp, be the p positive eigenvalues of G and let
η1, η2, . . . , ηq, be the q negative eigenvalues of G. Then G has n− p− q
eigenvalues which are equal to zero. From Lemma 4, we have

α 6 (n− p− q) +min{p, q}.

Thus α 6 (n− p− q) + p and α 6 (n− p− q) + q. Namely, p 6 n− α

and q 6 n− α. Since

p
∑

i=1

γi +

q
∑

i=1

ηi = 0, we have that

HE(G) = 2

p
∑

i=1

γi = 2

q
∑

i=1

| ηi | .
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From Cauchy - Schwarz inequality, we have that

HE(G) = 2

p
∑

i=1

γi 6 2

√

√

√

√p

p
∑

i=1

γi.

Similarly, we have that

HE(G) = 2

q
∑

i=1

ηi 6 2

√

√

√

√q

q
∑

i=1

ηi.

Therefore

HE(G)2

2
=

HE(G)2

4
+

HE(G)2

4
6 p

p
∑

i=1

γ2i + q

q
∑

i=1

η2i

6 (n − α)

p
∑

i=1

γ2i + (n− α)

q
∑

i=1

η2i

= (n − α)

( p
∑

i=1

γ2i +

q
∑

i=1

η2i

)

= 8(n − α)χ−2(G).

Hence
HE(G) 6 4

√

(n− α)χ−2(G).

Theorem 6. If the graph G is regular of degree r, r > 0 , then

HE(G) =
1

r
E(G).

If, in addition r = 0, then HE(G) = 0.

Proof. If r = 0, then G is the graph without edges. Then directly from
the definition (3) it follows that Hi,j = 0 for all i, j = 1, 2, . . . , n, i. e.,
that H(G) = 0. All eigenvalues of the zero matrix 0 are equal to zero.
Therefore, HE(G) = 0.
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Suppose now that G is regular of degree r > 0, i. e., that d1 =
d2 = · · · = dn = r. Then all non-zero terms in H(G) are equal to 1

r
,

implying that H(G) = 1
r
A(G). Therefore, γi =

1
r
λi. Theorem 6 follows

from the definitions of energy and Harmonic energy.

Theorem 7. Let G be a graph with n vertices. Then

HE(G) 6

√

8nχ−2(G) −
n

2
(| γ1 | − | γn |)2. (20)

Proof. From the Lagrange’s identity (see for example [22]),

0 6 8nχ−2(G)−HE(G)2 =

n
∑

i=1

| γi |2 −
( n
∑

i=1

| γi |
)2

=

=
∑

16i6j6n

(| γi | − | γj |)2,

the following inequality can be obtained

0 6 8nχ−2(G) −HE(G)2 >

n−1
∑

i=2

(

(| γ1 | − | γi |)2 + (| γi | − | γn |)2)

+ (| γ1 | − | γn |)2
)

.

On the other hand, according to the Jennsen’s inequality (see [21]),
from the above inequality it follows that

0 6 8nχ−2(G) −HE(G)2 >
n− 2

2
(| γ1 | − | γn |)2 + (| γ1 | − | γn |)2

=
n

2
(| γ1 | − | γn |)2.

After rearranging the above inequality, the inequality (20) is obtained.

Theorem 8. Let G be a graph with n > 2 vertices. Then for each T

with the property γ1 > T >

√

8χ−2(G)
n

, the following is valid

HE(G) 6 T +
√

(n− 1)(8χ−2(G)− T 2). (21)
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Proof. In [37] a class of real polynomials Pn(x) = xn + a1x
n−1 +

a2x
n−2 + b3x

n−3 + · · ·+ bn, denoted as Pn(a1, a2), where a1 and a2 are
fixed real numbers, was considered. For the roots x1 > x2 > · · · > xn
of an arbitrary polynomial Pn(x) from this class, the following values
were introduced

x̄ =
1

n

n
∑

i=1

xi, (22)

∆ = n

n
∑

i=1

x2i −
( n
∑

i=1

xi

)2

. (23)

Then upper and lower bounds for the polynomial roots, xi, i =
1, 2, . . . , n, were determined in terms of the introduced values

x̄+
1

n

√

∆

n− 1
6 x1 6 x̄+

1

n

√

(n− 1)∆, (24)

x̄− 1

n

√

i− 1

n− i+ 1
∆ 6 xi 6 x̄+

1

n

√

n− i

i
∆, 2 6 i 6 n− 1, (25)

x̄− 1

n

√

(n− 1)∆ 6 xn 6 x̄− 1

n

√

∆

n− 1
. (26)

Consider the polynomial

ψn(x) =

n
∏

i=1

(x− | γi |) = xn + a1x
n−1 + a2x

n−2 + b3x
n−3 + · · ·+ bn.

Since

a1 = −
n
∑

i=1

| γi |= −HE

and

a2 =
1

2

[

( n
∑

i=1

| γi |
)2

−
n
∑

i=1

| γi |2
]

=
1

2
HE2 − 4χ−2(G),
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the polynomial ψn(x) belongs to a class of real polynomials Pn(−HE,
1
2HE2 − 4χ−2(G)). Based on the following equalities

x̄ =
1

n

n
∑

i=1

| γi |=
HE
n
, (27)

∆ = n

n
∑

i=1

| γi |2 −
( n
∑

i=1

| γi |
)2

= 8nχ−2(G)−HE2, (28)

for x1 = γ1, according to (27), (28) and the right-hand side of the first
inequality in (25), we get

γ1 6
HE
n

+

√

(n− 1)(8n
∑

i∼j

1

(di + dj)2
−HE2). (29)

Now, for each real T with the property γ1 > T >

√

χ−2(G)
n

from (29)
it follows that

T 6
HE
n

+
√

(n− 1)(8nχ−2(G) −HE2).

After rearranging the above inequality, the inequality (21) is obtained.

Theorem 9. Let G be a simple graph with n > 2 vertices. Then

1

n

√

8nχ−2(G)

n− 1
6 γ1 6

1

n

√

8n(n− 1)χ−2(G),

− 1

n

√

i− 1

n− i+ 1
8nχ−2(G) 6 γi 6

1

n

√

n− i

i
8nχ−2(G)

for 2 6 i 6 n− 1

− 1

n

√

8n(n− 1)χ−2(G) 6 γn 6 − 1

n

√

8nχ−2(G)

n− 1
.

Proof. Let the characteristic polynomial of a graph G be the following:

ϕn(x) =
n
∏

i=1

(x− γi) = xn + a1x
n−1 + a2x

n−2 + b3x
n−3 + · · · + bn.
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Since

a1 = −
n
∑

i=1

γi = 0

and

a2 =
1

2

[

( n
∑

i=1

γi

)2

−
n
∑

i=1

γ2i

]

= −4χ−2(G),

the polynomial ϕn(x) belongs to a class of real polynomials Pn(0,
−4χ−2(G)), by the equalities

x̄ =
1

n

n
∑

i=1

γi = 0

and

∆ = n

n
∑

i=1

γ2i −
( n
∑

i=1

γi

)2

= 8nχ−2(G)

and inequalities (24), (25), (26), the proof is completed.

Theorem 10. Let G be a graph with n vertices and |γ1| > |γ2| > · · · >
|γn| be a non-increasing arrangement of eigenvalues of G. Then, the
following inequality is valid

HE(G) >
√

8nχ−2(G)− θ(n)(|γ1| − |γn|)2. (30)

where θ(n) = n[n2 ](1 − 1
n
[n2 ]), while [x] denotes integer part of a real

number x.

Proof. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers for which
there exist real constants a, b,A andB, so that for each i, i = 1, 2, . . . , n,
a 6 ai 6 A and b 6 bi 6 B. Then the following inequality is valid
(see [7])

∣

∣

∣

∣

n

n
∑

i=1

aibi −
n
∑

i=1

ai

n
∑

i=1

bi

∣

∣

∣

∣

6 θ(n)(A− a)(B − b). (31)

Equality in (31) holds if and only if a1 = a2 = · · · = an and b1 = b2 =
· · · = bn.
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For ai := |γi|, bi := |γi|, a = b := |γn| and A = B := |γ1|, i = 1, 2, . . . n
inequality (31) becomes

∣

∣

∣

∣

n

n
∑

i=1

|γi|2 −
( n
∑

i=1

|γi|
)2∣

∣

∣

∣

6 θ(n)(|γ1| − |γn|)2.

Therefore, the above inequality becomes

8nχ−2(G) −HE(G)2 6 θ(n)(|γ1| − |γn|)2,

wherefrom the statement of Theorem 10 follows. Since equality in (31)
holds if and only if a1 = a2 = · · · = an and b1 = b2 = · · · = bn, equality
in (30) holds if and only if |γ1| = |γ2| = · · · = |γn|.

Theorem 11. Let G be a graph with n vertices and |γ1| > |γ2| > · · · >
|γn| be a non-increasing arrangement of eigenvalues of G. Then, the
following inequality is valid

HE(G) >
|γ1||γn|n+ 8χ−2(G)

|γ1|+ |γn|
. (32)

Equality in (32) holds if and only if G ∼= K̄n.

Proof. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers for which
there exist real constants R and r, so that for each i, i = 1, 2, . . . , n
there holds rai 6 bi 6 Rai. Then the following inequality is valid
(see [14])

n
∑

i=1

b2i + rR

n
∑

i=1

a2i 6 (r +R)
n
∑

i=1

aibi. (33)

Equality in (33) holds if and only if for at least one i, 1 6 i 6 n there
holds rai = bi = Rai.

For ai := 1, bi := |γi|, r := |γn| and R := |γ1|, i = 1, 2, . . . n,
inequality (31) becomes

n
∑

i=1

|γi|2 + |γ1||γn|
n
∑

i=1

1 6 (|γn|+ |γ1|)
n
∑

i=1

|γi|.
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Therefore, the above inequality becomes

8nχ−2(G) + n|γ1||γn| 6 (|γn|+ |γ1|)HE(G).

If for some i there holds that rai = bi = Rai, then for the same i the
following equality also holds: bi = r = R. This means that for each
j, j 6= i there holds |γi| 6 |γj | 6 |γi|. Therefore equality in (33) holds
if and only if |γ1| = |γ2| = · · · = |γn|.

Theorem 12. Let G be a non-empty graph with n vertices. Then

HE(G) >
(N2)

2

N4
.

Proof. We start with the Hölder inequality

n
∑

i=1

aibi 6

( n
∑

i=1

a
p
i

)
1
p
( n
∑

i=1

b
q
i

)
1
q

, (34)

which holds for non-negative real numbers a1, a2, . . . , an and b1, b2, . . . ,
bn. Setting ai = |γi|

1
2 , bi = |γi|

3
2 , p = 2 and q = 2, from (34), we obtain

n
∑

i=1

|γi|2 =
n
∑

i=1

|γi|
1
2
(

|γi|3
)

1
2 6

( n
∑

i=1

|γi|
)

1
2
( n
∑

i=1

|γi|3
)

1
2

. (35)

Then
n
∑

i=1

|γi|3 6= 0 and (35) can be written as the following

n
∑

i=1

|γi| >

( n
∑

i=1

|γ2i |
)2

n
∑

i=1

|γi|3
.

Hence by equalities (12), (7) and (8), we have

HE(G) >
(N2)

2

N4
.

287



Akbar Jahanbani

Theorem 13. Let G be a non-empty graph with n vertices. Then

HE(G) >

√

32nχ−2(G)
(

|γ1|γn|
)

|γ1|+ |γn|
.

Proof. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers for which
there exist real constants m1,m2,M1 and M2, so that for each i, i =
1, 2, . . . , n, m1 6 ai 6 M1 and m2 6 bi 6 M2. Then the following
inequality is valid by the Hölder inequality (see [26], p. 135)

[

n
∑

i=1

(ai)
2

][

n
∑

i=1

(bi)
2

]

6
1

4

(

√

M1M2

m1m2
+

√

m1m2

M1M2

)2( n
∑

i=1

aibi

)2

, (36)

where the equality holds if and only if a1 = a2 = · · · = an , b1 = b2 =
. . . = bn , m1 =M1 = a1 , m2 =M2 = b1.

For ai := |γi|, bi := 1, m1 := |γn|, M1 := |γ1|, M2 = m2 := 1,
i = 1, 2, . . . n, inequality (36) becomes

[

n
∑

i=1

(|γi|)2
][

n
∑

i=1

(1)2

]

6
1

4

(

√

|γ1|
|γn|

+

√

|γn|
|γ1|

)2( n
∑

i=1

|γi|
)2

. (37)

Hence by equalities (12), (7), we have

8nχ−2(G) 6
1

4

(

√

|γ1|
|γn|

+

√

|γn|
|γ1|

)2(

HE(G)

)2

.

Therefore

HE(G) >

√

32nχ−2(G)(|γ1|γn|
)

|γ1|+ |γn|
.

Theorem 14. Let G be a graph with n vertices. Then

HE(G) 6
3
√
n2

√

8χ−2(G).
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Proof. Let a1, a2, . . . , an, b1, b2, . . . , bn and c1, c2, . . . , cn, be positive
real numbers, i = 1, 2, . . . , n. Then the following inequality is valid
by the Hölder inequality (see [26], p. 137)

( n
∑

i=1

aibici

)3

6

[

n
∑

i=1

(ai)
3

][

n
∑

i=1

(bi)
3

][

n
∑

i=1

(ci)
3

]

, (38)

where equality holds if and only if ai = bi = ci , i = 1, 2, . . . , n. For
ai := |γi|, bi := 1, ci := 1, i = 1, 2, . . . n inequality (38) becomes

( n
∑

i=1

|γi|
)3

6

[

n
∑

i=1

(|γi|)3
][

n
∑

i=1

(1)3

][

n
∑

i=1

(1)3

]

= n2

[

n
∑

i=1

(|γi|)3
]

6 n2

[

n
∑

i=1

(|γi|)2
]

3
2

, by Inequality (11 )

= n2

[

n
∑

i=1

(γi)
2

]
3
2

= n2 [8χ−2(G)]
3
2 , by Equality (7 ).

Therefore
HE(G) 6

3
√
n2

√

8χ−2(G).

Theorem 15. Let G be a graph with n vertices. Then

HE(G) 6 8χ−2(G).

Proof. Let a1, a2, . . . , an and b1, b2, . . . , bn be real numbers for which
there exist real constants r and s, such that r + s = 1 , r, s 6= 0, 1.
Then the following inequality is valid by the Hölder inequality (see [26],
p. 135)

n
∑

i=1

aibi >

[

n
∑

i=1

(ai)
1
r

]r [ n
∑

i=1

(bi)
1
s

]s

for r > 1. (39)

289



Akbar Jahanbani

For ai := |γi|
1
2 , bi := |γi|

1
2 , r := 1

2 , s :=
1
2 inequality (39) becomes

n
∑

i=1

|γi|
1
2 |γi|

1
2 >

[

n
∑

i=1

(|γi|
1
2 )2

]
1
2
[

n
∑

i=1

(|γi|
1
2 )2

]
1
2

n
∑

i=1

|γi| >
[

n
∑

i=1

|γi|
]

1
2
[

n
∑

i=1

|γi|
]

1
2

n
∑

i=1

|γi|2 >
[

n
∑

i=1

|γi|
]

1
2
[

n
∑

i=1

|γi|
]

1
2

.

Hence by equalities (12) and (7), we have

8χ−2(G) > H(G).

4 Bounds on the Harmonic Estrada index of a

graph

In this section, we obtain lower and upper bounds for the Harmonic
Estrada index of graphs. We first recall that the Estrada index of a
graph G is defined by

EE = EE(G) =

n
∑

i=1

eλi .

Denoting by Mk =Mk(G) to the k-th moment of the graph G, we get

Mk =Mk(G) =

n
∑

i=1

(λi)
k.

and recalling the power-series expansion of ex, we have

EE =
∞
∑

i=1

Mk(G)

k!
.
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It is well known that [18] Mk(G) is equal to the number of closed
walks of length k of the graph G. In fact Estrada index of graphs
has an important role in Chemistry and Physics and there exists
a vast literature that studies this special index. In addition to the
Estrada’s papers mentioned above, we may also refer the reader to
( [12], [13], [20], [29], [30], [31]) for the detailed information, such as
lower and upper bounds for Estrada index in terms of the number of
vertices and edges, and some inequalities between Estrada index and
the energy of G.

Let thus G be a graph of order n whose Harmonic eigenvalues are
γ1 > γ2 > · · · > γn. Then the Harmonic Estrada index of G, denoted
by HEE(G), is defined as [35]

HEE = HEE(G) =

n
∑

i=1

eγi .

Recalling Eq. (4), it follows that

HEE(G) =
∞
∑

i=1

Nk

k!
.

Theorem 16. Let G be a graph with n vertices. Then the Harmonic
Estrada index of G is bounded as

√

n2 + 16χ−2(G) 6 HEE(G) 6 n− 1 + e
√

8χ−2(G). (40)

Proof. Lower bound. Directly from the definition of the Harmonic
Estrada index, we get

HEE(G)2 =
n
∑

i=1

e2γi + 2
∑

i<j

eγieγj . (41)
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In view of the inequality between the arithmetic and geometric means,

2
∑

i<j

eγieγj > n(n− 1)

(

∏

i<j

eγieγj
)

2
n(n−1)

=

= n(n− 1)

[

( n
∏

i=1

eγi
)n−1

]
2

n(n−1)

=

= n(n− 1)

(

e

n
∑

i=1

γi) 2
n

, by
n
∑

i=1

γi = 0

= n(n− 1). (42)

By means of a power-series expansion, and bearing in mind the prop-
erties of N0, N1 and N2, we get

n
∑

i=1

e2γi =
n
∑

i=1

∑

k>0

(2γi)
k

k!
= n+ 16χ−2(G) +

n
∑

i=1

∑

k>3

(2γi)
k

k!
.

Because we are aiming at a (as good as possible) lower bound, it may

look plausible to replace
∑

k>3
(2γi)k

k! by 8
∑

k>3
(γi)k

k! . However, instead
of 8 = 23 we shall use a multiplier ω ∈ [0, 8], so as to arrive at

n
∑

i=1

e2γi > n+ 16χ−2(G) + ω

n
∑

i=1

∑

k>3

(γi)
k

k!

= n+ 16χ−2(G)− ωn− 4ωχ−2(G) + ω

n
∑

i=1

∑

k>0

(γi)
k

k!
,

i.e.,
n
∑

i=1

e2γi > (1− ω)n+ 4(4 − ω)χ−2(G) + ωHEE(G). (43)

By substituting (42) and (43) back into (41), and solving for HEE we
obtain

HEE >
ω

2
+

√

(n− ω

2
)2 + 4(4− ω)χ−2(G). (44)
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It is elementary to show that for n > 2 and 4χ−2(G) > 1 the function

f(x) :=
x

2
+

√

(n− x

2
)2 + (4− x)4χ−2(G)

monotonically decreases in the interval [0, 8]. Consequently, the best
lower bound for HEE is attained not for ω = 8, but for ω = 0. Setting
ω = 0 into (44 ) we arrive at the first half of Theorem 16.
Upper bound. By definition of the Harmonic Estrada index, we have

HEE = n+
n
∑

i=1

∑

k>1

(γi)
k

k!
6 n+

n
∑

i=1

∑

k>1

(| γi |)k
k!

= n+
∑

k>1

1

k!

n
∑

i=1

[

(γi)
2
]
k
2 6 n+

∑

k>1

1

k!

[

n
∑

i=1

(γi)
2

]
k
2

= n+
∑

k>1

1

k!

(

8χ−2(G)

)
k
2

= n− 1 +
∑

k>0

(

√

8χ−2(G)

)k

k!
,

which directly leads to the right-hand side inequality in (40). By this
the proof of Theorem 16 is completed.

Theorem 17. Let G be a graph with n vertices.

HEE(G) 6 n− 1 + e
4
√
N4 .
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Proof. By definition of the Harmonic Estrada index, we have

HEE(G) =

n
∑

i=1

eγi =

n
∑

i=1

∞
∑

k=0

γki
k!

6 n+

n
∑

i=1

∞
∑

k=1

| γi |k
k!

=

= n+

∞
∑

k=1

1

k!

n
∑

i=1

(γ4i )
k
4

6 n+

∞
∑

k=1

1

k!

( n
∑

i=1

γ4i

)
k
4

=

= n+

∞
∑

k=1

1

k!
H

k
4 =

= n− 1 +

∞
∑

k=0

4

√

Nk
4

k!
=

= n− 1 + e
4√N4 .

Theorem 18. Let G be a graph with n vertices. Then

HEE(G) 6 e
√

8χ−2(G). (45)
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Proof. By definition of Harmonic Estrada index, we have

HEE(G) =

n
∑

i=1

eγi 6

n
∑

i=1

e|γi| =
n
∑

i=1

∑

k>0

(| γi |)k
k!

=
∑

k>0

1

k!

n
∑

i=1

(| γi |)k

≤
∑

k>0

1

k!
(

n
∑

i=1

(| γi |)2)
k
2 (by Inequality 11)

=
∑

k>0

1

k!
(

n
∑

i=1

(γi)
2)

k
2

=
∑

k>0

1

k!
(8χ−2(G))

k
2 ( by Equality 7)

=
∑

k>0

1

k!
(
√

8χ−2(G))
k = e

√
8χ−2(G).

Theorem 19. Let G be a graph with n vertices. Then

HEE(G) >

√

√

√

√

√

n2 + 8nχ−2(G) +

32nχ−2(G)

(

∑

k∼i, k∼j

1

(dk)2

)

3
. (46)

Proof. Suppose that γ1, γ2, . . . , γn is the spectrum of G. Using the
definition of the Harmonic Estrada index and Lemma 5 we have

HEE(G)2 =
n
∑

i=1

n
∑

j=1

eγi+γj

>

n
∑

i=1

n
∑

j=1

(

1 + γi + γj +
(γi + γj)

2

2
+

(γi + γj)
3

6

)

=
n
∑

i=1

n
∑

j=1

(

1 + γi + γj +
γ2i
2

+
γ2j

2
+ γiγj+

+
γ3i
6

+
γ3j

6
+
γ2i γj

2
+
γiγ

2
j

2

)

.
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Now, by Equality (6),

n
∑

i=1

n
∑

j=1

(γi + γj) = n

n
∑

i=1

γi + n

n
∑

j=1

γj = 0,

n
∑

i=1

n
∑

j=1

γiγj = (
n
∑

i=1

γi)
2 = 0.

By Equality (7),

n
∑

i=1

n
∑

j=1

(
γ2i
2

+
γ2j

2
) =

n

2

n
∑

i=1

γ2i +
n

2

n
∑

j=1

γ2j = 8nχ−2(G).

Similarly by Equality (8),

n
∑

i=1

n
∑

j=1

(
γ3i
6
+
γ3j

6
) =

n

6

n
∑

i=1

γ3i +
n

6

n
∑

j=1

γ3j =

32nχ−2(G)

(

∑

k∼i, k∼j

1

(dk)2

)

3
.

By Equality (6),

n
∑

i=1

n
∑

j=1

γiγ
2
j

2
=

1

2

n
∑

i=1

γi

n
∑

j=1

γ2j = 0,

n
∑

i=1

n
∑

j=1

γ2i γj

2
=

1

2

n
∑

i=1

γ2i

n
∑

j=1

γj = 0.

Combining the above relations, the proof is completed.

5 Summary and conclusions

For a graph of order n, the Harmonic matrix is defined as the square
matrix whose (i, j)- element is equal to the sum 2

d(u)+d(v) of degrees of
adjacent vertices u and v , and zero otherwise. In this paper we obtain
some new bounds for the Harmonic Energy and Harmonic Estrada
index of graphs.
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ties in Graphs (Conjectures of Graffiti-II),” Discrete Mathematics,
vol. 111, pp. 197–220, 1993.

[20] D. Gungor and S. B. Bozkurt, “On the distance Estrada index of
graphs,” Hacettepe Journal of Mathematics and Statistics, vol.
38, pp. 277–283, 2009.

[21] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic
Chemistry, Berlin: Springer, 1986.

[22] I. Gutman, M. Milun, and N. Trinajstic̀, “Comment on the paper:
Properties of the latent roots of a matrix. Estimation of π-electron
energies by B. J. McClelland,” J. Chem. Phys., vol.59, pp. 2772–
2774, 1973.

298



Harmonic Energy and Harmonic Estrada index . . .

[23] I. Gutman, “The energy of a graph: old and new results,” in
Algebraic Combinatorics and Applications, A. Betten, A. Kohnert,
R. Laue, and A. Wassermann, Eds. Berlin: Springer-Verlag, 2001,
pp. 196–211.

[24] I. Gutman, “The energy of a graph,” Ber. Math. Stat. Sckt.
Forschungzentrum Graz, vol. 103, pp. 1–22, 1978.

[25] R. A. Horn and C. R. Johnson, Matrix Analysis, New York: Cam-
bridge Univ. Press, 1985.

[26] L. C. Hsu and X. H. Wang, The Methods and Examples of Math-
ematical Analysis, Higher Education Press, 1988.

[27] S. M. Hosamani, B. B. Kulkarni, R. G. Boli, and V. M. Gadag,
“QSPR analysis of certain graph theoretical matrices and their
corresponding energy,” Appl. Math. Nonlin. Sci., vol.2, pp. 131–
150, 2017.

[28] A. Ilic, “Note on the harmonic index of a graph,” Applied Math-
ematics Letters., vol. 25, pp. 561–566, 2012.

[29] N. Jafari Rad, A. Jahanbani, and D. A. Mojdeh, “Tetracyclic
Graphs with Maximal Estrada Index,” Discrete Mathematics, Al-
gorithms and Applications, vol. 7, pp. 1750041, 2017.

[30] N. Jafari Rad, A. Jahanbani, and R. Hasni, “Pentacyclic Graphs
with Maximal Estrada Index,” Ars Combin., vol. 133, pp. 133–145,
2017.

[31] N. J. Rad, A. Jahanbani, and I. Gutman, “Zagreb Energy and Za-
greb Estrada Index of Graphs,” MATCH Commun. Math. Com-
put. Chem., vol. 79, pp. 371–386, 2018.

[32] A. Jahanbani, “Upper bounds for the energy of graphs,” MATCH
Commun. Math. Comput. Chem., vol. 79, pp. 275–286, 2018.

[33] A. Jahanbani, “Some new lower bounds for energy of graphs,”
Applied Mathematics and Computation, vol. 296, no. C, pp. 233–
238, 2017.

[34] A. Jahanbani, “Lower bounds for the energy of graphs,” AKCE
International Journal of Graphs and Combinatorics, vol. 15, pp.
88–96, 2018.

299



Akbar Jahanbani

[35] A. Jahanbani and H. H. Raz, “On the Harmonic
energy and theHarmonic Estrada index of graphs,”
MATI., vol. 1, no. 1, pp. 1–20, 2019. Retrieved from
http://dergipark.gov.tr/mati/issue/38227/425047.

[36] J. Liu, “On the Harmonic index of triangle-free graphs,” Applied
Mathematics, vol. 4, pp. 1204–1206, 2013.

[37] A. Lupas, “Inequalities for the roots of a class of polynomials,”
Publ. Elektrotehn. Fak. Ser. Math. Fiz., vol. 594, pp. 79–85, 1977.

[38] R. Wu, Z. Tang, and H. Deng, “A Lower Bound for the Harmonic
Index of a Graph with Minimum Degree at Least Two,” Filomat.,
vol. 27, pp. 51–55, 2013.

[39] L. Zhong, “The harmonic index for graphs,” Appl. Math. Lett.,
vol. 25, pp. 561–566, 2012.

[40] L. Zhong, “The harmonic index on unicyclic graphs,” Ars Combi-
natoria, vol. 104, pp. 261–269, 2012.

[41] L. Zhong and K. Xu, “The harmonic index on bicyclic graphs,”
Utilitas Mathematica, vol. 90, pp. 23–32, 2013.

[42] B. Zhou and N. Trinajstic̀, “On a novel connectivity index,” J.
Math. Chem., vol. 46, pp. 1252–1270, 2009.

[43] B. Zhou and N. Trinajstic̀, “On general sum-connectivity index,”
J. Math. Chem., vol. 47, pp. 210–218, 2010.

Akbar Jahanbani Received June 10, 2018

Department of Mathematics,

Shahrood University of Technology,

Shahrood, Iran

E–mail: akbar.jahanbani92@gmail.com

300


