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Imbrication algebras – algebraic structures of

nesting order
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Abstract

This paper is about “imbrication algebras”, universal alge-
bras with one binary operator in their signature, the operator
for formation of ordered pairs, called here “pairing operator”,
and with the “characteristic property of ordered pairs” as their
sole axiom. These algebras have been earlier introduced by the
first author as reducts of “aggregate algebras”, universal algebras
proposed as models for a set theory convenient for formalization
of data structures. The term “aggregate” is used to generalize
three fundamental notions of set theory: set, atom and ordered
pair. Thus, this paper initiates the research of aggregate algebras
by narrowing the focus to one type of their main reducts – the
reduct which deals with ordered pairs.
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1 Introduction

The full name of the algebras, which are the subject matter of current
paper, is intended to be “imbrication order algebras”. In [1], (p. 87),
where this kind of algebraic structures was introduced, these algebras
were referenced shorter, as “order algebras”. In this paper, we will
prefer for them another short term – “imbrication algebras”. The main
reason why different short forms of the same term are preferred in
different situations is that the term denotes a very general notion, which
manifests as different phenomena in more concrete settings.
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The term “imbrication” is often used in linguistics and computer
science interchangeably with the term “nesting”. However, this term
is also extensively used with a meaning different from “nesting” – a
meaning conveyed by the words: “overlapping”, “interlacing”, “inter-
weaving”. The second meaning is more relevant to the topic of the
paper [1], and the first meaning of “imbrication”, that of “nesting”, is
perfectly relevant to the topic of current paper.

Whereas nesting is a phenomenon which might have a large number
of manifestations, we will focus on one kind of such manifestations –
the nesting of ordered pairs, and we will put this in precise terms in
the next section.

2 The imbrication algebras

It is a wide practice to refer to a symbol of an operation as “operator”,
and this practice is convenient for universal algebra, since the signature
consists of operation symbols, i.e. “operators”. There is also a prac-
tice to refer as “operator” to a mapping from a space to another space
(e.g. “linear operator”), and this practice is convenient because it uses
one term – “operator”, rather than two terms – “operation” and “op-
erator”. In this second case, the expression “symbol of the operator”
stands for what is called “operator” in the first case.

An ordered pair (a, b) can be treated as the result of application
of a binary operation, which we will prefer to call “operator”, both
because it can be treated as an action upon symbols, a “syntactic op-
erator” (see subsection 2.2), and because the ordered pairs make up
a “space”, to be more precise – a plane. We will call this operator
“pairing operator”, because a function which encodes an ordered pair
of natural numbers into one natural number is usually called “pairing
function” (Cantor defined one of the first pairing functions – the “Can-
tor’s pairing function”). We will treat (a, b) as the result of application
of the pairing operator to the objects a and b, and since in the nota-
tion “(a, b)” a symbol of operation or operator (like here “f(a, b)”)
is missing, we will consider the “empty symbol” as the symbol of the
pairing operator.
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Definition 1. An imbrication algebra is a universal algebra with a
sole operator’s symbol in its signature, the empty symbol, and with the
universal closure of the formula below as its single axiom:

(x, y) = (x′, y′) → x = x′ & y = y′.

The axiom of the imbrication algebras is the property owned by
ordered pairs defined in one set theory or another. No matter how
these are defined, this property is called “characteristic property of the
ordered pairs”. Whereas in set theory this is treated as a property of
ordered pairs, in algebra this should be treated as a property of the
pairing operator. Going forward, the universal closure of the formula
above will be referenced as “pairing axiom”.

Even though in ZF set theory, the ordered pair is a notion defined
through the notion of set, there are also set theories, like Bourbaki’s
set theory, where the pairing operator is in the signature and it has the
pairing axiom.

The first example of an imbrication algebra given in this paper is the
universe (of discourse) of ZF set theory (usually denoted as V ), which
needs to be equipped with a pairing operator (like the one defined by
Kuratowski, see next paragraph), to form a universal algebra. This
imbrication algebra has a proper class as its support, and thus, this is
a “large algebra”. There are many large imbrication algebras – such
are the universes (of discourse) of various set theories equipped with
a pairing operator, which, by definition of the notion of ordered pair,
must satisfy the pairing axiom.

There are many pairing operators in set theory, among which the
best known is the Kuratowski’s paring operator, used to define an or-
dered pair (x, y) as {{x}, {{x, y}}. It is easy to check that any two
pairing operators which equip V define the same imbrication algebra.

2.1 The class of imbrication algebras

According to one of several equivalent definitions (see e.g. [4], p. 219),
a class of universal algebras of same signature (“similar algebras”) is
a quasivariety, if it contains a one-element algebra and is closed under
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isomorphisms, subalgebras and reduced products. A quasivariety is also
closed under products, subdirect products, and ultrafilter products.

The following property of quasivarieties is important for any con-
structive approach used in algebra: if a class of universal algebras is a
quasivariety, then proceeding from a subset of this class, regarded as
a “generating basis”, one can construct other algebras by applying the
operations over algebras mentioned in previous sentence.

The next proposition could be named “theorem” because of its high
importance to this domain of research.

Proposition. The class of imbrication algebras is a quasi-variety.

Proof. The pairing axiom is equivalent to the conjunction of the uni-
versal closures of the following two formulas:

(x, y) = (x′, y) → x = x′,

(x, y) = (x, y′) → y = y′.

Unlike the pairing axiom, these two formulas are quasi-identities, i.e.
each of them has the form of an implication, the antecedent of which is a
conjunction of equations of two terms (here, there is only one equation
in conjunction), and the consequent of which is one such equation.
According to the Theorem 2.25 of [4], since any imbrication algebra
satisfies a set of quasi-identities, this class is a quasi-variety.

Q.E.D.

2.2 Application domains of imbrication algebras

We have mentioned above important examples of implication algebras
– the universes of set theories equipped with a pairing operator. In this
section, we will discuss about two domains, which can be considered
as “native land” of the imbrication algebras – domains, where imbrica-
tion algebras can be used as an apparatus. One of these domains is the
syntax of languages, natural or artificial, and the other is “brain infor-
matics” – a discipline preoccupied by modeling mental phenomena, in
particular, mental structures. One can say that the mental structures
are constructed also according to a certain kind of “syntax”. Thus, it
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sounds appropriate to say that imbrication algebras relate to syntax,
and pairing operator is a “syntactic operator”.

Imbrication algebras reflect a special kind of order – the order,
which appears as a result of using balanced distribution of brackets
(we prefer round brackets, parentheses) for the complete disambigua-
tion of an expression. Notice, that in previous sentence, two words are
emphasized – “balanced” and “complete”. The word “balanced” is em-
phasized because the nesting order appears for balanced, and only for
balanced, brackets – i.e. the balance is essential for nesting. The word
“complete” is emphasized because a distribution of balanced brackets
enclosing two, and only two, subterms is essential for the nesting order
called “imbrication”.

To completely disambiguate an expression of form “a1 ∗ ... ∗ an”,
where “*” is an operator, one needs to apply, in steps, a process of
enclosing a pair of adjacent terms – subexpressions processed in this
manner at a previous step, a process which can be called “pairing”. The
imbrication algebras can be described as algebras reflecting complete
disambiguation by using pairing, and not partial disambiguation done
by the use of an arbitrary distribution of balanced parentheses.

Whereas an application domain of imbrication algebras is the syn-
tax of languages (natural or artificial), these algebras are most use-
ful for the practice of grouping the subexpressions of an expression.
The process of grouping (in particular, of grouping done by pairing)
is sometimes referenced as “association” like in the term “left (right)
association rule”. For generality sake, we will refer to a balanced dis-
tribution of brackets as “association pattern”. Thus, left association
or right association are association patterns.

In [2], an approach to data called “Atomification-Aggregation-
Association approach” (see also [3]) denoted as “A3” was introduced to
serve as an alternative to currently widely used “Entity-Relationship”
approach denoted as “ER”. The A3 approach was proposed as a data
model for “mental content” – a concept which makes sense in brain
informatics. The A3 approach presupposes that all data structures are
built by iterative application of three mental operations, one of which
associates one entity to another entity (the order is important) and,
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in this manner, builds an “association pair” (an association pair is an
association pattern – the simplest association pattern).

The imbrication algebras explicate the algebraic aspect of the data
structures built by iterative application of the “association operation”
of A3 approach. We will refer to such structures simply, as “associa-
tions”. The fact that an entity is associated with another entity can be
imaged graphically by representing the entities as small cirles connected
by arrows. In such a representation, when an entity is associated with
itself, the arrow has a source coinciding with the target, and the direc-
tion of the arrow does not matter, so that one can drop the arrowhead
and just use a non-oriented loop.

However, associations differ from those data structures which can
be represented by directed graphs, since an association can, in turn,
be associated with another association, like in the diagram in Figure 1,
where the loop in b is associated with the node c and this association
pair is, in turn, the target of another association. Since the kind of
graphs which allow such “imbrication” differs from “directed graphs”,
they require a name and we will refer to them as “association graphs”.

Figure 1. The diagram of the association ((c, (a, b)), ((b, b), c))
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3 Imbrication algebras and the order theory

It is common to treat the preorder (also called quasi-order), as a binary
relation, and this treatment is considered as the widest explication
of the conception of order. However the notion of “cyclic order”, a
kind of order known to humanity since the expression “clockwise” and
“counter-clockwise” were coined, cannot be explicated in terms of pre-
order. Therefore, the algebraists use a ternary relation to explicate the
conception of cyclic order. Since there might exist also other kinds of
order which cannot be expressed like preorder, the term “order theory”
was coined to cover all phenomena called “order”. However, there does
not seem to exist a discipline “under this name” with a unified approach
to the conception of order.

As earlier mentioned, the imbrication algebras were introduced in
[1], where these were referenced as “order algebras”. The reason for
using the word “order” within this compound term was that in [1] these
algebras were treated as reducts of “aggregate algebras” – a kind of
algebraic structures intended for algebraization of a special set theory.
The term “order algebra” was used in that paper for two reasons: (a)
the term refers to an algebra with one operator – that of formation
of the ordered pair and (b) the notion of ordered pair is used in all
definitions of order within the aggregate algebras, where you can also
use the concept of set.

In the “aggregate theory” of [1], alongside the paring operator,
there are also the operator of formation of a singleton {x}, and the
operation of union of two sets. The aggregate theory can be extended
by introducing the operation of union for a family of sets, so that the
theory treats arbitrary (i.e. also infinite) aggregates. Thus, the notion
of preoder can be easily expressed in terms of aggregate theory, and
thus all the theories about the “classical” explication of order in terms
of a binary relation can have the aggregate theory as a foundation.

The pairing operator adds a new type of order to aggregate theory
– the imbrication order. This is the order of nesting in expressions and
the order of the ordered binary trees. There can be defined also other
orders – orders, which “mix up” the classic order and the imbrication
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order. This raises hopes that the aggregate theory can serve as an
appropriate foundation for the discipline called “order theory”.

As an exercise, one can try to explicate in terms of imbrication
algebra, without involving set theoretic operations, the conception of
“clockwise order”. An explication of this is given by the association
((...((1,2),3),...), 12), but one should expect that this kind of order can
also be defined by any other of 11 associations obtained from this one
by a circular substitution. There can be used also other association
patterns for explication of clockwise order. The choice of one explica-
tion or another is necessarily a matter of convention, similar to how
the Kuratowski’s definition of ordered pair is a matter of convention.

4 Imbrication algebras and Jónsson-Tarski al-

gebras

For an ordered pair a = (u, v), denote u as a+ and v as a× (these are the
original notations used in [5]). One can temporarily call “projections”
the two maps, x 7→ x+ and x 7→ x×, even though the expressions
like “left (right) projection” or “first (second) projection” make little
sense. The “characteristic property of ordered pairs” guarantees that
the projections are univocal maps, where they are defined, but nothing
in the definition of imbrication algebra guarantees that the projections
are defined for all elements of the algebra.

Definition 2. An imbrication algebra with both projections defined for
all its elements is called Jónsson-Tarski algebra.

The algebras introduced in [5] and called here “Jónsson-Tarski al-
gebras” are examples of a proper subclass of the class of imbrication
algebras which is known to mathematical community.

5 Algebraic closure of pairing operator

Let A be any fixed non-empty set. We consider the binary operator,
the value of which for any elements x, y ∈ A (taken in this order) is
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the object denoted (x, y) (it is supposed that the symbols ”(”, ”, ” and
”)” are not elements of the set A). It is evident that the object (x, y)
(x, y ∈ A) can be treated as an ordered pair, if we accept the following
axiom postulating the properties of such objects:

(∀x1, x2, y1, y2 ∈ A)((x1, y1) = (x2, y2) ⇔ x1 = x2&y1 = y2). (1)

We define
A(0) = A, (2)

A(n) =

n−1
⋃

i=0

{(x, y)|x ∈ A(i), y ∈ A(n−1−i)} (n = 1, 2, . . . ). (3)

For each non-empty set A formulae (2) and (3) define inductively
the sequence

A(0), A(1), . . . , A(n), . . . (4)

of non-empty sets. Due to this, the axiom (2) can be extended from
the set A = A(0) onto the set

A =

∞
⋃

n=0

A(n), (5)

i.e. the following axiom can be accepted:

(∀x1, x2, y1, y2 ∈ A)((x1, y1) = (x2, y2) ⇔ x1 = x2&y1 = y2). (6)

Due to formulae (2)-(6) the following three propositions are true.

Proposition 1. For each non-empty set A, if (x1, y1) = (x2, y2)
(x1, x2, y1, y2 ∈ A), then there exist the single non-negative integers
i and j, such that x1, x2 ∈ A(i) and y1, y2 ∈ A(j).

Proposition 2. For each non-empty set A the sequence (4) consists
of non-empty pair-wise non-intersecting sets.

Proposition 3. For each non-empty set A the set A is an infinite set.

Proceeding from formulae (2)-(6), we can define for each non-empty
set A the A-associated magma

MA = (A, ◦), (7)
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such that

x ◦ y = (x, y) (8)

for all x, y ∈ A.

Now we establish the basic characteristics of the A-associated
magma MA = (A, ◦), i.e. those ones, that are true for each non-empty
set A.

Theorem 1. For each non-empty set A the binary operation in the

A-associated magma MA = (A, ◦) is a surjection ◦ : A×A →
∞
⋃

n=1
A(n).

Proof. Let A be any non-empty set.

Due to formula (5), for any elements x, y ∈ A there exist the single
non-negative integers i and j, such that x ∈ A(i) and y ∈ A(j).

Due to formulae (3) and (8), we get that x ◦ y = (x, y) ∈ A(i+j+1).

Since i and j are non-negative integers, then i+ j + 1 is a positive

integer. Thus, x ◦ y ∈
∞
⋃

n=1
A(n) for all x, y ∈ A, i.e. the inclusion

Val ◦ ⊆
∞
⋃

n=1
A(n) holds.

Let z be any element of the set
∞
⋃

n=1
A(n). Then (see Proposition 2)

there exists the single positive integer n, such that z ∈ A(n).

Due to Proposition 2, and formulae (3) and (8), there exists the
single non-negative integer i ≤ n − 1, such that z = (x, y) = x ◦ y,

where x ∈ A(i) and y ∈ A(n−1−i). Thus, z ∈ Val ◦ for any z ∈
∞
⋃

n=1
A(n),

i.e. the inclusion
∞
⋃

n=1
A(n) ⊆ Val ◦ holds.

Inclusions Val ◦ ⊆
∞
⋃

n=1
A(n) and

∞
⋃

n=1
A(n) ⊆ Val ◦ imply that the

identity Val ◦ =
∞
⋃

n=1
A(n) holds, i.e. the mapping ◦ : A×A →

∞
⋃

n=1
A(n)

is some surjection.

Q.E.D.
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Theorem 2. For each non-empty set A the A-associated magma
MA = (A, ◦) is a cancellative magma.

Proof. Let A be any non-empty set.

Formulae (6) and (8) imply that for any x, y, z ∈ A

x ◦ y = x ◦ z ⇔ (x, y) = (x, z) ⇔ x = x&y = z ⇔ y = z,

i.e. MA = (A, ◦) is a left-cancellative magma.

Similarly, formulae (6) and (8) imply that for any x, y, z ∈ A

x ◦ y = z ◦ y ⇔ (x, y) = (z, y) ⇔ x = z&y = y ⇔ x = z,

i.e. MA = (A, ◦) is a right-cancellative magma.

Thus, the A-associated magma MA = (A, ◦) is a left-cancellative
and a right-cancellative, both. Due to this factor, the A-associated
magma MA = (A, ◦) is a cancellative magma.

Q.E.D.

Theorems 1 and 2 imply that the following proposition is true.

Proposition 4. For each non-empty set A the A-associated magma
MA = (A, ◦) is not a quasigroup.

Remark 1. In proof of Theorem 1 it has been pointed that for any
i, j = 0, 1, . . . , if x ∈ A(i) and y ∈ A(j), then x ◦ y = (x, y) ∈ A(i+j+1).
This factor implies that for any fixed non-negative integers i and n,
such that n ≤ i, if a ∈ A(i) and b ∈ A(n), then each of the equations
a ◦ x = b and y ◦ a = b has no solutions in the A-associated magma
MA = (A, ◦).

6 The interrelation between elements of the

set A and finite binary trees

Let A be any fixed non-empty set.

Each element w ∈ A can be uniquely presented by the rooted la-
beled finite binary tree Dw, designed by the following procedure (V is
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the set of vertices, v(R) is the root, E is the set of arcs, f : V → A is
the labeling mapping):

L-TREE

Input: a string w ∈ A.

Output: the tree Dw.

begin;

V := {v(R)};

f(v(R)) := w;

E := ∅;

M1: if V = ∅

then HALT,

else go to M2;

M2: select v ∈ V ;

V := V \ {v};

if f(v) ∈ A

then go to M1,

else (in this case f(v) = (uL, uR), where uL, uR ∈ A)

V := V ∪ {vL, vR};

E := E ∪ {(v, vL), (v, vR)};

f(vL) := uL;

f(vR) := uR;

go to M1;

end;

It is evident that the procedure L-TREE is some variant of a top-
down parser. Due to formulae (2)-(5), it terminates for any element
w ∈ A, and its output is the tree Dw.

Remark 2. In any tree Dw (w ∈ A) each vertex either has two sons
(if it is an internal vertex), or has no sons (if it is a leaf).

We set

DA = {Dw|w ∈ A}. (9)

Due to formulae (2)-(6), the following two propositions are true.
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Proposition 5. For each non-empty set A an element Dw ∈ DA is a
rooted labeled binary tree with n (n = 2, 3, . . . ) leafs if and only if there
are n appearances of elements of the set A in the string w.

Proposition 6. For each non-empty set A the following formula holds

(∀w1, w2 ∈ A)(w1 6= w2 ⇔ Dw1
6= Dw2

). (10)

Remark 3. Formulae (9) and (10) imply that for each non-empty set
A, the sets A and DA have the same cardinality.

The more subtle characteristics of the structure of the set A can be
established as follows.

Let D̃w (w ∈ A) be the rooted unlabeled binary tree that can be
obtained by erasing all labels of vertices in the tree Dw. It is evident
that for each non-empty set A, the unlabeled rooted binary tree D̃w

(w ∈ A) can be treated as the structure of the string w ∈ A.

We set

D̃A = {D̃w|w ∈ A}. (11)

and define the mapping ψA : DA → D̃A by the identity:

ψA(Dw) = D̃w (w ∈ A). (12)

Formulae (11), (12), and Proposition 6 imply that for each non-
empty set A, the elements of the factor-set DA/ kerψA define the sets
of all strings w ∈ A with the same structure D̃w.

Remark 4. For each non-empty set A, the set D̃A is a countable set,
since it is the set of all non-empty finite rooted binary trees, such that
each vertex either has two sons, or has no sons. Due to this factor, in
what follows, we will omit the subscript A, i.e. we will write D̃, since
for any non-empty sets A1 and A2 the identity D̃A1

= D̃A2
holds.

Due to Proposition 5, we can define on the set D̃ the partition
π = {Bn|n = 2, 3, . . . } as follows: Bn (n = 2, 3, . . . ) consists of all
elements of the set D̃ that are unlabeled rooted binary trees with n
leafs. It is well known that the following proposition is true.
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Proposition 7. For any n = 2, 3, . . .

|Bn| = Cn−1,

where Cn−1 is the Catalan number.

Remark 5. The Catalan numbers can be computed by formula:

Cn =
1

n+ 1

(

2n

n

)

(n = 1, 2, . . . ).

The structure of the strings w ∈ A has been identified above with
the finite rooted unlabeled binary trees D̃w ∈ D̃. Another (equivalent)
model for the structure of the strings w ∈ A can be designed as follows.

Let B = A∪{ , }, and delB(w) (w ∈ A) be the string obtained from
the string w by deleting all letters b ∈ B. We set

delB(A) = {delB(w)|w ∈ A}.

The language delB(A) can be characterized as follows.

Proposition 8. For any non-empty set A the language delB(A) is
some proper non-empty sub-language of the Dyck language LD(2) over
the 2-letters alphabet.

Proof. The Dyck language LD(2) over the 2-letters alphabet {α, β} is
the context-free language that can be generated, for example, by the
following two production rules (S is the single non-terminal symbol,
and λ is the empty symbol): S → λ and S → αSβS.

Identifying the symbol α with the opening parentheses (, and the
symbol β with the closing parentheses ), we get that delB(A) ⊆ LD(2).

Since () ∈ delB(A), we get that delB(A) 6= ∅.
Since ()() ∈ LD(2) and ()() 6∈ delB(A), we get that delB(A) ⊂ LD(2).
Q.E.D.

7 Applications of the A-associated magma

Let A be any non-empty set.
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We illustrate briefly, how the A-associated magmaMA = (A, ◦) can
be used as some conceptual model in mathematics and its applications.

Example 1. The operation ◦ can be naturally extended on the power
set B(A) as follows:

X ◦ Y = {(x, y)|x ∈ X&y ∈ Y } (13)

for any subsets X,Y ∈ B(A).

It is evident that formula (13) defines the operation of the Cartesian
product on the set A.

Thus, the operation of the Cartesian product can be treated as
some binary operation over some magma that satisfies Theorems 1 and
2, and Proposition 4.

Example 2. Let ⋄ be any binary operation defined on the set A.
i.e. M⋄ = (A, ⋄) is any magma with the carrier A. The A-associated
magma MA = (A, ◦) can be treated as the formal presentation for the
magma M⋄ = (A, ⋄) of all possible results for the operation ⋄ over the
strings of elements of the set A as follows.

Let a1, . . . , an ∈ A (n ≥ 2). We can select any finite rooted unla-
beled binary tree D̃ ∈ D̃ with n leafs, and label the leafs, from left to
right, by the elements a1, . . . , an. Thus, we have defined the order for
the execution of operation ⋄ over the string a1 ⋄ · · · ⋄ an.

Using down-top parsing, we can label all internal vertices of the
selected tree due to the following rule: if for the internal vertex v its
left son vL is labeled by the element b1 ∈ A and its right son vR is
labeled by the element b2 ∈ A, then the vertex v is labeled by the
element b1 ⋄ b2 ∈ A.

It is evident that the label of the root of the selected tree is the
result of the operation ⋄ over the string a1 ⋄ · · · ⋄ an, when the order
for execution of this operation is defined by the selected finite rooted
unlabeled binary tree D̃ ∈ D̃ with n leafs, when the leafs are labeled,
from left to right, by the elements a1, . . . , an.

Example 3. Any Merkle tree [7] is a rooted complete finite labeled
binary tree, such that each vertex either has two sons, or has no sons.
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The leafs of a Merkle tree are labeled by some data. Any internal vertex
of a Merkle tree is labeled due to the following rule: if for the internal
vertex v its left son vL is labeled by the element b1 and its right son vR
is labeled by the element b2, then the vertex v is labeled by the element
HASH(b1, b2). Thus, the root of a Merkle tree is labeled by the hash
of all the data in the tree.

The Merkle trees are applied for resolving various Problems in
Cryptography, such as consistency and audit proofs, data synchroniza-
tion, etc. Currently an incremental construction of the Merkle trees,
i.e. uncomplete and growing Merkle trees, are applied for time-stamps
based on a public-key cryptosystems [8].

Let A be the set of all strings that are either data, or hash values
for some fixed hash-function HASH, and the binary operation ⋄ on
the set A is computing the hash-value for concatenation of two strings.
Then we get the situation, that has been considered in Example 2.

8 Conclusions

Same as above, in this final section, “A” is the denotation of an ar-
bitrary “fixed” set, and “A” denotes both a superset of “A” and the
magma with this superset as its support – a magma, which is referenced
as “A-associated magma”. These denotations introduced in section 5
will be used with the same meaning here.

This paper presents the results of a first attempt to characterize
the imbrication algebras in terms of universal algebra. Among these
results, the most noteworthy is elucidation of a number of deep internal
links between any imbrication algebra and the infinite magma A.

The importance of the A-associated magma is that it can serve as
a theoretical basis for the research of various algebraic systems with a
single binary operation – algebraic systems, which are also referenced
as “(algebraic) binary structures”. Also, taking into account the estab-
lished here interrelationship between the elements of the superset A of
the set A and the finite binary trees, one can expect that imbrication
algebras can serve as a theoretical foundation for the implementation
of provers and solvers, intended to deal with various binary structures.
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The development of the structure of provers and solvers can be en-
visioned as one of the main directions of future research. In this regard,
many problems arise naturally – problems, which have an importance
on their own. Some of such problems are listed immediately below.

Firstly, this is the problem of software implementation of tokeniza-
tion and parsing. The set A, which is “fixed” in this paper, can be
either finite or countable, and it is natural to assume that the elements
of the set A are always presented as consecutive positive binary in-
tegers. Therefore, the problem of tokenization can be formulated as
follows: Is it true that, for any finite or countable set A, and a given
string w, the string w consists only of symbols ”0”, ”1”, ”(”, ”, ” and
”)”? In case of an affirmative answer, the problem of parsing can be
formulated like this: for any finite or countable set A, and any given
string w, is it true that w ∈ A? Possibly, the most effective is such an
interaction of the two modules, when the parsing module calls, when
necessary, the tokenization module.

Secondly, this is the problem of software implementation of checking
of the parsing equivalence for the strings w1, w2 ∈ A. This problem
can be formulated like this: given an arbitrary finite or countable set
A, and two strings w1, w2 ∈ A, is it true that D̃w1

= D̃w1
?

Thirdly, this is the problem of software implementation for genera-
tion of all solutions of an equation in a given magma.

Fourthly, this is the problem of software implementation for gener-
ating all generalized Merkle trees (for the fixed hash function) of the
given height, with the same label of the root.
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