Efficiency and Penalty Factors on Monoids of Strings

Mitrofan Choban, Ivan Budanaev

Abstract

In information theory, linguistics and computer science, metrics for measuring similarity between two given strings (sequences) are important. In this article we introduce efficiency, measure of similarity and penalty for given parallel decompositions of two strings. Relations between these characteristics are established. In this way, we continue the research from [3], [4].

Keywords: invariant distance, measure of similarity, Levenshtein distance, Hamming distance, Graev method, penalty.

1 Introduction

Let G be a semigroup and d be a metric on G. The metric d is called:

- left (respectively, right) invariant if $d(x a, x b) \leq d(a, b)$ (respectively, $d(a x, b x) \leq d(a, b))$ for all $x, a, b \in G$;
- invariant if it is both left and right invariant;
- strong invariant if $d(x a, x b)=d(a x, b x)=d(a, b)$ for all $x, a, b \in$ G;
- stable if $d(x y, u v) \leq d(x, u)+d(y, v)$ for all $x, y, u, v \in G$.

Example 1.1. Let G be the additive semigroup of non-negative real numbers and G^{+}be the subsemigroup of positive real numbers. We put $d(x, x)=0$ for each $x \in G, d(x, y)=1$ for any distinct numbers $x, y \in G^{+}$and $d(0, x)=d(x, 0)=2$ for any $x \in G^{+}$. Then d is an invariant metric on G. Since $1=d(2,5)=d(0+2,3+2)<d(0,3)=$ 2 , the metric d is not strong invariant.

[^0]The following assertion is well known.
Proposition 1. Let d be an invariant metric on a group G. Then the metric d is strong invariant and $d\left(x^{-1}, y^{-1}\right)=d(x, y)$ for all $x, y \in G$.

A monoid is a semigroup with an identity element. Fix a non-empty set A. The set A is called an alphabet. We put $\bar{A}=A \cup\{\varepsilon\}$. Let $L^{*}(A)$ be the set of all finite strings $a_{1} a_{2} \ldots a_{n}$ with $a_{1}, a_{2}, \ldots, a_{n} \in \bar{A}$. Let ε be the empty string. Consider the strings $a_{1} a_{2} \ldots a_{n}$ for which $a_{i}=$ ε for some $i \leq n$. If $a_{i} \neq \varepsilon$, for any $i \leq n$ or $n=1$ and $a_{1}=\varepsilon$, the string $a_{1} a_{2} \ldots a_{n}$ is called an irreducible string or canonical string. The set $\operatorname{Supp}\left(a_{1} a_{2} \ldots a_{n}\right)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \cap A$ is the support of the string $a_{1} a_{2} \ldots a_{n}$ and $l\left(a_{1} a_{2} \ldots a_{n}\right)=\left|\left\{i \leq n: a_{i} \neq \varepsilon\right\}\right|$ is the length of the string $a_{1} a_{2} \ldots a_{n}$. For two strings $a_{1} \ldots a_{n}$ and $b_{1} \ldots b_{m}$, their product (concatenation) is $a_{1} \ldots a_{n} b_{1} \ldots b_{m}$. If $n \geq 2, i<n$ and $a_{i}=\varepsilon$, then the strings $a_{1} \ldots a_{n}$ and $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$ are considered equivalent. In this case any string is equivalent to one unique canonical string. We identify the equivalent strings. The set $L(A)$ of all canonical strings is the family of all classes of equivalent strings. In this case $L^{*}(A)$ is a semigroup and $L(A)$ becomes a monoid with identity ε. The set $L(A)$ is not a subsemigroup of $L^{*}(A)$. Only the set $L(A) \backslash\{\varepsilon\}$ is a subsemigroup of the semigroup $L^{*}(A)$.

Let $\operatorname{Supp}(a, b)=\operatorname{Supp}(a) \cup \operatorname{Supp}(b) \cup\{\varepsilon\}$, and $\operatorname{Supp}(a, a)=$ $\operatorname{Supp}(a) \cup\{\varepsilon\}$. It is well known that any subset $L \subset L(A)$ is an abstract language over the alphabet A.

Let a, b be two strings. For any two representations $a=a_{1} a_{2} \ldots a_{n}$ and $b=b_{1} b_{2} \ldots b_{m}$ we put

$$
\begin{aligned}
d_{H}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{m}\right) & =\left|\left\{i: a_{i} \neq b_{i}, i \leq \min \{n, m\}\right\}\right| \\
& +\left|\left\{i: n<i \leq m, b_{i} \neq e_{i}\right\}\right| \\
& +\left|\left\{j: m<j \leq n, a_{j} \neq e_{i}\right\}\right| .
\end{aligned}
$$

The function d_{H} is called the Hamming distance on the space of strings [3], [4], [7].

Now we put:

$$
d_{G}(a, b)=\inf \left\{d_{H}(a, b): a=a_{1} a_{2} \ldots a_{n}, b=b_{1} b_{2} \ldots b_{n}\right\} .
$$

The function d_{G} is called the Graev - Markov distance on the space of strings [6], [9].

The V. I. Levenshtein's distance $d_{L}(a, b)$ between two strings $a=$ $a_{1} a_{2} \ldots a_{n}$ and $b=b_{1} b_{2} \ldots b_{m}$ is defined as the minimum number of insertions, deletions, and substitutions required to transform one string into the other [4], [8].

We put $A^{-1}=\left\{a^{-1}: a \in A\right\}, \varepsilon^{-1}=\varepsilon,\left(a^{-1}\right)^{-1}=a$ for any $a \in A$ and consider that $A^{-1} \cap \bar{A}=\emptyset$. Denote $\check{A}=A \cup A^{-1} \cup\{\varepsilon\}$. Let $\check{L}(A)$ $=L(\check{A})$ be the set of all strings over the set \check{A}. The strings over the set \check{A} are called words. A word $a=a_{1} a_{2} \ldots a_{n} \in \check{L}(A)$ is called an irreducible string if either $n=1$ and $a_{1} \in \check{A}$, or $n \geq 2, a_{i} \neq \varepsilon$ for any $i \leq n$ and $a_{j}^{-1} \neq a_{j+1}$ for each $j<n$.

Let $a=a_{1} a_{2} \ldots a_{n} \in \check{L}(A)$ and $n \geq 2$. Then:

- if $i \leq n$ and $a_{i}=\varepsilon$, then the words $a_{1} \ldots a_{n}$ and $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$ are considered equivalent;
- if $i<n$ and $a_{i}^{-1}=a_{i+1}$, then the words $a_{1} a_{2} \ldots a_{n}$ and $a_{1} \ldots a_{i-1} \varepsilon a_{i+2} \ldots a_{n}$ are considered equivalent.

In this case, any word $a_{1} a_{2} \ldots a_{n} \in \check{L}(A)$ is equivalent to one unique irreducible word from $\check{L}(A)$. We identify equivalent words. Classes of equivalence form free group $F(A)$ over A with unity ε. We have that $L(A)$ is a subsemigroup of the group $F(A)$.

Let $a=a_{1} a_{2} \ldots a_{n} \in F(A)$ be an irreducible word. The representation $a=x_{1} x_{2} \ldots x_{m} \in L^{*}(A)$ is called an almost irreducible representation of a if there exist $1 \leq i_{1}<i_{2}<\ldots<i_{n} \leq m$ such that $a_{j}=x_{i_{j}}$ for any $j \leq n$ and $x_{i}=\varepsilon$ for each $i \in\{1,2, \ldots, m\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$. If $a=$ $a_{1} a_{2} \ldots a_{n} \in L^{*}(A)$ is a representation of the string a, then $a_{1} a_{2} \ldots a_{n}$ is an almost irreducible word.

If $a=a_{1} a_{2} \ldots a_{n}$, then $a^{s}=a_{n} a_{n-1} \ldots a_{1}$ and $a^{-1}=a_{n}^{-1} a_{n-1}^{-1} \ldots a_{1}^{-1}$. The word a^{s} is the symmetric word of a and a^{-1} is the inverse word of a. If a and b are equivalent words, then the words a^{-1} and b^{-1} are equivalent, as well as the words a^{s} and b^{s}.

Hence the mappings ${ }^{s},,^{-1}: F(A) \longrightarrow F(A)$ are the group automorphisms. Obviously that $L(A)^{s}=L(A)$.

Let $a, b \in A$ and $a \neq b$, then we put $d_{H}(a, b)=d_{H}\left(a^{-1}, b^{-1}\right)=$ $d_{H}(a, \varepsilon)=d_{H}(\varepsilon, a)=d_{H}\left(a^{-1}, \varepsilon\right)=d_{H}\left(\varepsilon, a^{-1}\right)=1$. If $a \in A$ and $b \in$
A^{-1}, then $d_{H}(a, b)=d_{H}(b, a)=2$. For any $x \in \check{A}$ we put $d_{H}(x, x)=0$. Thus d_{H} is a metric on \breve{A}. For any two words $a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{m} \in$ $\check{L}(A)$ we put:

$$
\begin{aligned}
d_{H}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{m}\right) & =\Sigma\left\{d_{H}\left(a_{i}, b_{i}\right): i \leq \min \{n, m\}\right\} \\
& +\left|\left\{i: n<i \leq m, b_{i} \neq e_{i}\right\}\right| \\
& +\left|\left\{j: m<j \leq n, a_{j} \neq e_{i}\right\}\right| .
\end{aligned}
$$

For $a, b \in F(A)$ we put:

$$
\check{d}(a, b)=\inf \left\{d_{H}(a, b): a=a_{1} \ldots a_{n} \in \check{L}(A), b=b_{1} \ldots b_{n} \in \check{L}(A)\right\} .
$$

Remark 1.1. The function \check{d} is called the Graev - Markov distance on the free group [6]. The method of extensions of distances for free groups, used by us, was proposed by A. A. Markov [9] and M. I. Graev [6]. For metrics on free universal algebras it was extended in [2], for quasimetrics on free groups and varieties of groups it was examined in [5], [12].
M. I. Graev [6] has proved the following assertions:

G1. \check{d} is an invariant metric on $F(A)$ and $\check{d}(a, b)=d_{H}(a, b)$ for all $a, b \in A^{*}$.

G2. If ρ is an invariant metric on $F(A)$ and $\rho(x, y) \leq d_{H}(x, y)$ for any x, y in A^{*}, then $\rho(x, y) \leq \check{d}(x, y)$ for any $x, y \in F(A)$.

G3. For any two words $a, b \in F(A)$ there exist $m \geq 1$ and two almost irreducible representations $a=x_{1} x_{2} \ldots x_{m}$ and $b=y_{1} y_{2} \ldots y_{m}$ such that $\check{d}(a, b)=d_{H}\left(x_{1} x_{2} \ldots x_{m}, y_{1} y_{2} \ldots y_{m}\right)$.

Theorem 1.1. The distance d_{G} on a monoid $L(A)$ has the following properties:

1. d_{G} is a strong invariant metric on $L(A)$ and $d_{G}(x, y)=$ $d_{G}(z x, z y)=d_{G}(x z, y z)$ for all $x, y, z \in L(A)$.
2. $d_{G}(a, b)=d_{G}\left(a^{s}, b^{s}\right)$ for all $a, b \in L(A)$.
3. If ρ is an invariant metric on $L(A)$ and $\rho(x, y) \leq d_{G}(x, y)$ for all $x, y \in \bar{A}$, then $\rho(a, b) \leq d_{G}(a, b)$ for all $a, b \in L(A)$.
4. For any $a, b \in L(A)$ there exist $n \in \mathbb{N}, x_{1}, x_{2}, \ldots, x_{n} \in$ $\operatorname{Supp}(a, a)$ and $y_{1}, y_{2}, \ldots, y_{n} \in \operatorname{Supp}(b, b)$ such that $a=x_{1} x_{2} \ldots x_{n}$,
$b=y_{1} y_{2} \ldots y_{n}$ such that $n \leq l(a)+l(b)$ and $d_{G}(a, b)=\mid\left\{i: i \leq n, a_{i} \neq\right.$ $\left.b_{i}\right\} \mid=d_{H}\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)$.
5. $d_{G}(a, b)=d_{L}(a, b)=\check{d}(a, b) \leq d_{H}(a, b)$ for all $a, b \in L(A)$.

Proof. Fix $a, b \in L(A)$. Let $a=a_{1} a_{2} \ldots a_{n}, b=b_{1} b_{2} \ldots b_{n}$. If $n>l(a)+l(b)$, then there exists $i \leq n$ such that $a_{i}=$ $b_{i}=\varepsilon, a=a_{1} a_{2} \ldots a_{i-1} a_{i+1} \ldots a_{n}, \quad b=b_{1} b_{2} \ldots b_{i-1} b_{i+1}, \ldots b_{n}$ and $d_{H}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)=d_{H}\left(a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}, b_{1} \ldots b_{i-1} b_{i+1} \ldots b_{n}\right)$. Hence $d_{G}(a, b)=\inf \left\{d_{H}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right): a=a_{1} a_{2} \ldots a_{n}\right.$, $\left.b=b_{1} b_{2} \ldots b_{n}, n \leq l(a)+l(b)\right\}$. Since we have finite pairs of parallel representations $a=a_{1} a_{2} \ldots a_{m}, b=b_{1} b_{2} \ldots b_{m}$ of length $m \leq l(a)+l(b)$, there exist $n \in \mathbb{N}, x_{1}, x_{2}, \ldots, x_{n} \in \operatorname{Supp}(a, a)$ and $y_{1}, y_{2}, \ldots, y_{n} \in$ $\operatorname{Supp}(b, b)$ such that $a=x_{1} x_{2} \ldots x_{n}, b=y_{1} y_{2} \ldots y_{n}$ with $n \leq l(a)+l(b)$ and $d_{G}(a, b)=\left|\left\{i: i \leq n, a_{i} \neq b_{i}\right\}\right|=d_{H}\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)$. Thus, Assertion 4 is proved. Assertion 2 is obvious.

Fix $a, b \in L(A)$ and $c \in A$. It is clear that $d_{G}(c a, c b) \leq d_{G}(a, b)$. Assume that $d_{G}(c a, c b)<d_{G}(a, b)$. Then there exist representations $c a=x_{1} x_{2} \ldots x_{n}$ and $c b=y_{1} y_{2} \ldots y_{n}$ such that $n \leq l(a)+l(b)+2$ and $d_{G}(c a, c b)=d_{H}\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)$, where $A \cap\left\{x_{i}, y_{i}\right\} \neq \emptyset$ for each $i \leq n$. If $x_{1}=y_{1}$, then $x_{1}=y_{1}=c$. In this case $a=x_{2} \ldots x_{n}, b=y_{2} \ldots y_{n}$ and $d_{G}(a, b) \leq d_{H}\left(x_{2} \ldots x_{n}, y_{2} \ldots y_{n}\right)=$ $d_{H}\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)=d_{H}(c a, c b)<d_{H}(a, b)$, a contradiction. Hence $x_{1} \neq y_{1}$. In this case we have two possibilities: $x_{1}=c$, $y_{1}=\varepsilon$ or $x_{1}=\varepsilon, y_{1}=c$. We can assume that $x_{1}=c$ and $y_{1}=\varepsilon$. Let $1<j, y_{j}=c$ and $y_{i}=\varepsilon$ for each $i<j$. We put $u_{1}=v_{i}=\varepsilon$ for each $i \leq j, u_{i}=x_{i}$ for each $i \geq 2$ and $v_{k}=y_{k}$ for each $k>j$. Then $b=u_{1} u_{2} \ldots u_{n}, b=v_{1} v_{2} \ldots v_{n}$, $0=d_{H}\left(u_{1}, v_{1}\right)<d_{H}\left(x_{1}, y_{1}\right)=1, d_{H}\left(x_{j}, y_{j}\right) \leq 1, d_{H}\left(u_{j}, v_{j}\right) \leq$ 1 and $d_{H}\left(u_{i}, v_{i}\right)=d_{H}\left(x_{i}, y_{i}\right)$ for $i \in\{2,3, \ldots, j-1, j+1, \ldots, n\}$. Hence $d_{G}(a, b) \leq d_{H}\left(u_{1} u_{2} \ldots u_{n}, v_{1} v_{2} \ldots v_{n}\right) \leq d_{H}\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)=$ $d_{G}(c a, c b)<d(a, b)$, a contradiction. Hence $d_{G}(c a, c b)=d(a, b)$. From Assertion 2 it follows that $d_{G}(a c, b c)=d_{G}(a, b)$. Assertion 1 is proved.

We put $d(x, x)=0$ and $d(x, y)=1$ for any distinct strings $x, y \in$ $L(A)$. Let $I D(A)$ denote the family of all invariant metrics ρ on $L(A)$ with the property: $\rho(x, y) \leq d(x, y)$ for all $x, y \in \overline{(} A)$. Since $d \in I D(A)$, the set $I D(A)$ is non-empty. Now we put $d^{*}(a, b)=\sup \{\rho(a, b): \rho \in$
M. Choban, I. Budanaev
$I D(A)\}$. One can easily observe that $d^{*} \in I D(A), d(a, b) \leq d^{*}(a, b)$ for any $a, b \in L(A)$ and $d(x, y)=d^{*}(x, y)=1$ for all distinct $\left.x, y \in \overline{(} A\right)$.

Property 1. If $\rho \in I D(A)$, then

$$
\begin{aligned}
\rho\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right) & \leq\left|\left\{i \leq 1: x_{i} \neq y_{i}\right\}\right| \\
& =d_{H}\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)
\end{aligned}
$$

for any two strings $\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right) \in L(A)$.
This property follows from the conditions of invariance of metric d.
Property 2. $d_{G}=d^{*}=d_{L}$.
Since d_{G} and d^{*} are invariant distances on $L(A)$ and they are constructed with the conditions of extremity

$$
\begin{gathered}
d^{*}(a, b)=\sup \{\rho(a, b): \rho \in I D(A)\}, \\
d_{G}(a, b)=\inf \left\{d_{H}(a, b): a=a_{1} a_{2} \ldots a_{n}, b=b_{1} b_{2} \ldots b_{n}\right\},
\end{gathered}
$$

we have $d_{G}=d^{*}$. In [3], [4] it was proved that $d^{*}=d_{L}$. The equality $d_{G}(a, b)=\check{d}(a, b)$ for all $a, b \in L(A)$ follows from the Graev's assertion $G 3$ in the above Remark. This completes the proof of the theorem.

Example 1.2. The metrics d, $d_{G}=d_{L}=d^{*}$ are strong invariant on $L(A)$. On $L(A)$ there exists a metric $d_{r} \in I D(A)$ which is invariant, but not strong invariant. Fix a real number r for which $2^{-1} \leq r<1$. We put $d_{r}(x, x)=0$ for each $x \in L(A), d(x, y)=r$ for any distinct strings $x, y \in L(A) \backslash\{\varepsilon\}$ and $d(0, x)=d(x, 0)=1$ for any $x \in L(A) \backslash$ $\{\varepsilon\}$. Then d is an invariant metric on G. Fix $a \in A$. Since $r=d(a, a a)$ $=d(\varepsilon \cdot a, a \cdot a)<d(\varepsilon, a)=1$, the metric d_{r} is not strong invariant.

Remark 1.2. For the metric d_{H} we have $d_{H}(a, b) \leq \max \{l(a, l(b)\}$ for any strings $a, b \in L(A)$. The Hamming distance d_{H} is left invariant: $d_{H}(x a, x b)=d(a, b)$ for all strings $x, a, b \in L(A)$. Assume now that $x, y, z \in A, a=x y z x y z, b=y z x y$ and $c=x y z$. Then $d_{G}(a, b)=2$ and $6=d_{H}(a, b)<d_{H}(a c, b c)=9$. Therefore, metric d_{H} is not right invariant.

2 Efficiency and Penalty of Two Strings

The longest common substring and pattern matching in two or more strings is a well known class of problems. For any two strings $a, b \in$ $L(A)$ we find the decompositions of the form $a=v_{1} u_{1} v_{2} u_{2} \ldots v_{k} u_{k} v_{k+1}$ and $b=w_{1} u_{1} w_{2} u_{2} \ldots w_{k} u_{k} w_{k+1}$, which can be represented as $a=$ $a_{1} a_{2} \ldots a_{n}, b=b_{1} b_{2} \ldots b_{n}$ with the following properties:

- some a_{i} and b_{j} may be empty strings, i.e. $a_{i}=\varepsilon, b_{j}=\varepsilon$;
- if $a_{i}=\varepsilon$, then $b_{i} \neq \varepsilon$, and if $b_{j}=\varepsilon$, then $a_{j} \neq \varepsilon$;
- if $u_{1}=\varepsilon$, then $a=v_{1}$ and $b=w_{1}$;
- if $u_{1} \neq \varepsilon$, then there exists a sequence $1 \leq i_{1} \leq j_{1}<i_{2} \leq j_{2}<$ $\ldots<i_{k} \leq j_{k} \leq n$ such that:
$u_{1}=a_{i_{1}} \ldots a_{j_{1}}=b_{i_{1}} \ldots b_{j_{1}}, u_{2}=a_{i_{2}} \ldots a_{j_{2}}=b_{i_{2}} \ldots b_{j_{2}}, u_{k}=$ $a_{i_{k}} \ldots a_{j_{k}}=b_{i_{k}} \ldots b_{j_{k}}$;
- if $v_{1}=w_{1}=\varepsilon$, then $i_{1}=1$;
- if $v_{k+1}=w_{k+1}=\varepsilon$, then $j_{k}=n$;
- if $k \geq 2$, then for any $i \in\{2, \ldots, k\}$ we have $v_{i} \neq \varepsilon$ or $w_{i} \neq \varepsilon$.

In this case $l\left(u_{1}\right)+l\left(u_{2}\right)+\ldots+l\left(u_{k}\right)=\left|\left\{i: a_{i}=b_{i}\right\}\right|$.
The above decompositions forms are called parallel decompositions of strings a and b [3], [4]. For any parallel decompositions $a=v_{1} u_{1} \ldots v_{k} u_{k} v_{k+1}$ and $b=w_{1} u_{1} \ldots w_{k} u_{k} w_{k+1}$ the number

$$
\begin{aligned}
& E\left(v_{1} u_{1} \ldots v_{k} u_{k} v_{k+1}, w_{1} u_{1} \ldots w_{k} u_{k} w_{k+1}\right) \\
& \quad=\sum_{i \leq k+1}\left\{\max \left\{l\left(v_{i}\right), l\left(w_{i}\right)\right\}\right\}=d_{H}\left(x_{1} x_{2} \ldots x_{n}, y_{1} y_{2} \ldots y_{n}\right)
\end{aligned}
$$

is called the efficiency of the given parallel decompositions. The number $E(a, b)$ is equal to the minimum of efficiency values of all parallel decompositions of the strings a, b and is called the common efficiency of the strings a, b. It is obvious that $E(a, b)$ is well determined and $E(a, b)=d_{G}(a, b)$. We say that the parallel decompositions $a=v_{1} u_{1} v_{2} u_{2} \ldots v_{k} u_{k} v_{k+1}$ and $b=w_{1} u_{1} w_{2} u_{2} \ldots w_{k} u_{k} w_{k+1}$ are optimal if the following equality holds:

$$
E\left(v_{1} u_{1} v_{2} u_{2} \ldots v_{k} u_{k} v_{k+1}, w_{1} u_{1} w_{2} u_{2} \ldots w_{k} u_{k} w_{k+1}\right)=E(a, b) .
$$

This type of decompositions are associated with the problem of approximate string matching [10]. If the decompositions $a=v_{1} u_{1} \ldots v_{k} u_{k} v_{k+1}$ and $b=w_{1} u_{1} \ldots w_{k} u_{k} w_{k+1}$ are optimal and $k \geq 2$, then we may consider that $u_{i} \neq \varepsilon$ for any $i \leq k$.

Any parallel decompositions $a=a_{1} a_{2} \ldots a_{n}=v_{1} u_{1} v_{2} u_{2} \ldots v_{k} u_{k} v_{k+1}$ and $b=b_{1} b_{2} \ldots b_{n}=w_{1} u_{1} w_{2} u_{2} \ldots w_{k} u_{k} w_{k+1}$ generate a common subsequence $u_{1} u_{2} \ldots u_{k}$. The number $m\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)=l\left(u_{1}\right)+$ $l\left(u_{2}\right)+\ldots+l\left(u_{k}\right)$ is the measure of similarity of the decompositions [1], [11]. There exist parallel decompositions $a=v_{1} u_{1} v_{2} u_{2} \ldots v_{k} u_{k} v_{k+1}$ and $b=w_{1} u_{1} w_{2} u_{2} \ldots w_{k} u_{k} w_{k+1}$ for which the measure of similarity is maximal. The maximum value of the measure of similarity of all decompositions is denoted by $m^{*}(a, b)$. The maximum value of the measure of similarity of all optimal decompositions is denoted by $m^{\omega}(a, b)$. We can note that $m^{\omega}(a, b) \leq m^{*}(a, b)$. For any two parallel decompositions $a=a_{1} a_{2} \ldots a_{n}$ and $b=b_{1} b_{2} \ldots b_{n}$ as in [4], we define the penalty factors as

$$
\begin{gathered}
p_{r}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)=\left|\left\{i \leq n: a_{i}=\varepsilon\right\}\right|, \\
p_{l}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)=\left|\left\{j \leq n: b_{j}=\varepsilon\right\}\right|, \\
p\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)=\left|\left\{i \leq n: a_{i}=\varepsilon\right\}\right|+\left|\left\{j \leq n: b_{j}=\varepsilon\right\}\right| \\
=p_{r}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)+p_{l}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& M_{r}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right) \\
& \quad=m\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)-p_{r}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right) \\
& M_{l}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right) \\
& \quad=m\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)-p_{l}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right) \\
& M\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right) \\
& \quad=m\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)-p\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)
\end{aligned}
$$

as the measures of proper similarity.

Efficiency and Penalty Factors on Monoids of Strings

The number $d_{H}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right)=\left|\left\{i \leq n: a_{i} \neq b_{i}\right\}\right|$ is the Hamming distance between decompositions and it is another type of penalty: we have that $p\left(a_{1} \ldots a_{n}, b_{1} \ldots b_{n}\right) \leq d_{H}\left(a_{1} \ldots a_{n}, b_{1} \ldots b_{n}\right)$.

The assertions from the following theorem establish the main results.

Theorem 2.1. Let a and b be two non-empty strings, $a=a_{1} a_{2} \ldots a_{n}$ and $b=b_{1} b_{2} \ldots b_{n}$ be the initial optimal decompositions, and $a=$ $a_{1}^{\prime} a_{2}^{\prime} \ldots a_{q}^{\prime}$ and $b=b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}$ be the second decompositions, which are arbitrary. Denote by

$$
\begin{aligned}
m & =m\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right), & m^{\prime} & =m\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{n}^{\prime}, b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}\right), \\
p & =p\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right), & p^{\prime} & =p\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{n}^{\prime}, b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}\right), \\
p_{l} & =p_{l}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right), & p_{l}^{\prime} & =p_{l}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{n}^{\prime}, b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}\right), \\
p_{r} & =p_{r}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right), & p_{r}^{\prime} & =p_{r}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{n}^{\prime}, b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}\right), \\
r & =d_{H}\left(a_{1} a_{2} \ldots a_{n}, b_{1} b_{2} \ldots b_{n}\right), & r^{\prime} & =d_{H}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{n}^{\prime}, b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}\right),
\end{aligned}
$$

$$
\begin{aligned}
M & =m-p, & M^{\prime}=m^{\prime}-p^{\prime}, \\
M_{l} & =m-p_{l}, & M_{l}^{\prime}=m^{\prime}-p_{l}^{\prime}, \\
M_{r} & =m-p_{r}, & M_{r}^{\prime}=m^{\prime}-p_{r}^{\prime} .
\end{aligned}
$$

The following assertions are true:

1. $p^{\prime}-p=2\left(m^{\prime}-m\right)+2\left(r^{\prime}-r\right)$.
2. If the second decompositions are non optimal, then $M_{l}>M_{l}^{\prime}$ and $M_{r}>M_{r}^{\prime}$.
3. If the second decompositions are optimal, then $M_{l}=M_{l}^{\prime}$ and $M_{r}=M_{r}^{\prime}$ and the measures M_{l} and M_{r} are constant on the set of optimal parallel decompositions.
4. If $m^{\prime} \geq m$ and the second decompositions are non optimal, then $p^{\prime}>p, p_{l} \prime>p_{l}, p_{r}^{\prime}>p_{r}$ and $M>M^{\prime}$.
M. Choban, I. Budanaev
5. If $m^{\prime}=m$ and the second decompositions are optimal, then $p^{\prime}=$ $p, p_{l} I=p_{l}, p_{r}^{\prime}=p_{r}$ and $M^{\prime}=M$.
6. If $m^{\prime} \leq m$ and the second decompositions are non optimal, then $m^{\prime}-r^{\prime}<m-r$.

The proof of Theorem 2.1 follows from the next lemmas.

Lemma 1.

$$
\begin{aligned}
p_{r}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{q}^{\prime}, b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}\right) & =q-l(a), \\
p_{l}\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{q}^{\prime}, b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}\right) & =q-l(b), \\
p\left(a_{1}^{\prime} a_{2}^{\prime} \ldots a_{q}^{\prime}, b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}\right) & =2 q-l(a)-l(b) .
\end{aligned}
$$

Proof. Follows immediately from the definitions of penalty factors and parallel decompositions.

Lemma 2. $p^{\prime}-p=2\left(m^{\prime}-m\right)+2\left(r^{\prime}-r\right)$.
Proof. From Lemma 1 it follows that $p^{\prime}-p=(2 q-l(a)-l(b))-(2 n-$ $l(a)-l(b))=2(q-n)$. Since $q=m^{\prime}+r^{\prime}$ and $n=m+r$, the proof is complete.

Lemma 3. $p_{l}^{\prime}-p_{l}=p_{r}^{\prime}-p_{r}=\left(m^{\prime}-m\right)+\left(r^{\prime}-r\right)$.
Proof. We can assume that $l(a) \leq l(b)$. Then $p_{l}=(l(b)-l(a))+l_{r}$ and $p_{l}-p_{r}=l(b)-l(a)$. Hence $p_{l}-p_{r}=p_{l}^{\prime}-p_{r}^{\prime}$ and $p_{l}^{\prime}-p_{l}=p_{r}^{\prime}-p_{r}$. The equality $p^{\prime}-p=\left(p_{r}^{\prime}-p_{r}\right)+\left(p_{l}^{\prime}-p_{l}\right)$ and Lemma 2 complete the proof.

Lemma 4. Assume that $m^{\prime}>m$. Then:

1. $M>M^{\prime}, M_{l} \geq M_{l}^{\prime}$ and $M_{r} \geq M_{r}^{\prime}$.
2. $M_{l}>M_{l}^{\prime}$ and $M_{r}>M_{r}^{\prime}$ provided that the second decompositions are non optimal.
3. $M_{l}=M_{l}^{\prime}$ and $M_{r}=M_{r}^{\prime}$ provided that the second decompositions are optimal.

Efficiency and Penalty Factors on Monoids of Strings

Proof. Since the initial decompositions are optimal, we have $r^{\prime} \geq r$. Moreover, we have $r^{\prime}=r$ if and only if the second decompositions are optimal as well. By virtue of definitions, we have $n=m+r$ and q $=m^{\prime}+r^{\prime}$. Therefore $n<q$. From Lemma 2, it follows that $p^{\prime}-p=$ $2\left(m^{\prime}-m\right)+2\left(r^{\prime}-r\right)$ and $p<p^{\prime}$. Thus $p^{\prime}-p>m^{\prime}-m$ and $M=$ $m-p>m^{\prime}-p^{\prime}=M^{\prime}$.

Also, from Lemma 3, it follows that $p_{l}^{\prime}-p_{l}=p_{r}^{\prime}-p_{r}=\left(m^{\prime}-m\right)$ $+\left(r^{\prime}-r\right)$. Hence, $M_{l}=m-p_{l}=\left(m^{\prime}-p_{l}^{\prime}\right)+\left(r^{\prime}-r\right)=M_{l}^{\prime}+\left(r^{\prime}-r\right)$ and $M_{r}=m-p_{r}=\left(m^{\prime}-p_{r}^{\prime}\right)+\left(r^{\prime}-r\right)=M_{r}^{\prime}+\left(r^{\prime}-r\right)$. Since $r^{\prime} \geq r$ and $r^{\prime}=r$ if and only if the second decompositions are optimal, the proof is complete.

Corollary 2.1. The measures M_{l} and M_{r} are constant on the set of optimal parallel decompositions.

Lemma 5. Let $m^{\prime}=m$. Then:

1. $M \geq M^{\prime}, M_{l} \geq M_{l}^{\prime}$ and $M_{r} \geq M_{r}^{\prime}$.
2. $M_{l}>M_{l}^{\prime}$ and $M_{r}>M_{r}^{\prime}$ provided that the second decompositions are non optimal.
3. $M_{l}=M_{l}^{\prime}$ and $M_{r}=M_{r}^{\prime}$ provided that the second decompositions are optimal.

Proof. We have that $n=m+r$ and $q=m^{\prime}+r^{\prime}$. Since $r \leq r^{\prime}$, we have that $n \leq q$.

Assume that $M<M^{\prime}$. Then $m-p<m^{\prime}-p^{\prime}, p^{\prime}=2 q-l(a)-l(b)$ and $p=2 n-l(a)-l(b)$. Hence $m-2 n+l(a)+l(b)<m-2 q+l(a)+l(b)$, or $-2 n<-2 q$ and $n>q$, a contradiction.

From Lemma 3 it follows that $p_{l}^{\prime}-p_{l}=p_{r}^{\prime}-p_{r}=r^{\prime}-r$. Hence $p_{l}^{\prime} \geq p_{l}$ and $p_{r}^{\prime} \geq p_{r}$. If the second decompositions are non optimal, then $p_{l}^{\prime}>p_{l}$ and $p_{r}^{\prime}>p_{r}$. Assertions are proved.

Lemma 6. Assume that $m^{\prime}<m$ and the second decompositions are non optimal. Then $M_{l}>M_{l}^{\prime}$ and $M_{r}>M_{r}^{\prime}$.

Proof. Since the initial decompositions are optimal, we have $r^{\prime}>r$. By virtue of Lemma 3, we have $p_{l}^{\prime}-p_{l}=p_{r}^{\prime}-p_{r}=\left(m^{\prime}-m\right)+\left(r^{\prime}-r\right)$. Hence, $M_{l}=m-p_{l}=\left(m^{\prime}-p_{l}^{\prime}\right)+\left(r^{\prime}-r\right)=M_{l}^{\prime}+\left(r^{\prime}-r\right)$ and
$M_{r}=m-p_{r}=\left(m^{\prime}-p_{r}^{\prime}\right)+\left(r^{\prime}-r\right)=M_{r}^{\prime}+\left(r^{\prime}-r\right)$. Since $r^{\prime}-r>0$, the proof is complete.

Remark 2.1. From Assertions 1 and 3 of Theorem 2.1 it follows that on the class of all optimal decompositions of given two strings:

- the maximal measure of proper similarity is attained on the optimal parallel decomposition with minimal penalties (minimal measure of similarity);
- the minimal measure of proper similarity is attained on the optimal parallel decomposition with maximal penalties (maximal measure of similarity).

3 Computing algorithms

The algorithm of computing the Levenshtein distance for the case of a discrete metric was presented in [4]. Below we show a well known algorithm (see Algorithm 1, Annex 1) that permits to calculate the Graev-Markov-Levenshtein distance between two irreducible strings for any metric.

For any two non-empty strings there exist parallel decompositions with maximal measure of similarity and optimal decompositions on which measure of similarity is minimal. Pseudo-code of such algorithm is presented in Algorithm 2 (see Algorithm 2, Annex 2).

Algorithm 2 makes calls to functions LevenshteinDistance and BuildOPD. The first function computes distance function and builds the memoization matrix. The function BuildOPD uses the memoization matrix to generate optimal parallel decompositions. The pseudocode for these functions was presented in [4].

4 Conclusions

For any two non-empty strings there exist parallel decompositions with maximal measure of similarity and optimal decompositions on which measure of similarity is minimal. The following example shows that there exist some exotic non optimal parallel decompositions $a=$
$a_{1}^{\prime} a_{2}^{\prime} \ldots a_{q}^{\prime}$ and $b=b_{1}^{\prime} b_{2}^{\prime} \ldots b_{q}^{\prime}$, such that for optimal decompositions $a=a_{1} a_{2} \ldots a_{n}$ and $b=b_{1} b_{2} \ldots b_{n}$ we have $m^{\prime}<m, p^{\prime}<p$ and $M^{\prime}>M$.

Example 4.1. Let $a=A B C D E F$ and $b=C D E F E D$ be trivial non optimal decompositions of strings a, b, and $a=A B C D E F \varepsilon \varepsilon$ and $b=$ $\varepsilon \varepsilon C D E F E D$ be their optimal decompositions. Then $m^{\prime}=1, r^{\prime}=5, p^{\prime}$ $=p_{l}^{\prime}=p_{r}^{\prime}=0$ and $m=4, r=4, p=4, p_{l}=p_{r}=2$. In this example we have that $M_{l}^{\prime}=M_{r}^{\prime}=M^{\prime}=m^{\prime}-p^{\prime}=1-0=1>0=4-4=$ $m-p=M, m^{\prime}-r^{\prime}=-4<0=m-r, M_{l}=4-2=2>1=M_{l}^{\prime}$, $M_{r}=4-2=2>1=M_{r}^{\prime}$.
Example 4.2. Let $a=A A A A C C C$ and $b=C C C B B B B$ be trivial optimal decompositions of strings a, b, and $a=A A A A C C C \varepsilon \varepsilon \varepsilon \varepsilon$ and $b=\varepsilon \varepsilon \varepsilon \varepsilon C C C B B B B$ be their non-optimal decompositions. Then $m^{\prime}=$ $3, r^{\prime}=8, p^{\prime}=8$ and $m=0, r=7, p=p_{l}=p_{r}=0$. In this example we have that $-5=m^{\prime}-r^{\prime}>m-r=-7$ and $-5=m^{\prime}-p^{\prime}<m-p=0$.

The above examples show that Theorem 2.1 cannot be improved in the case of $m^{\prime}<m$.

Decompositions with minimal penalty and maximal proper similarity are of significant interest. Moreover, if we consider the problem of text editing and correction, the optimal decompositions are more favorable. Therefore, optimal decompositions are the best parallel decompositions and we may solve the string matching problems only on class of optimal decompositions.

To summarize the results, we established that optimal decompositions:

- describe the proper similarity of two strings;
- permit to obtain long common sub-sequences;
- permit to calculate the distance between strings;
- permit to appreciate changeability of information over time.

References

[1] V. B. Barahnin, V. A. Nehaeva and A. M. Fedotov, "Similarity Determination for Textual Documents Clusterization," Vestnik

Novosibirskogo Gos. Un-ta, Ser. Informactionnye tehnologii, vol. 6, no. 1, pp. 3-9, 2008. (in Russian).
[2] M. M. Choban, "The theory of stable metrics," Math. Balkanica, vol. 2, pp. 357-373, 1988.
[3] M. M. Choban and I. A. Budanaev, "Distances on Monoids of Strings and Their Applications," in Proceedings of the Conference on Mathematical Foundations of Informatics MFOI2016, (Chisinau, Republic of Moldova), 2016, pp. 144-159.
[4] M. M. Choban and I. A. Budanaev, "About Applications of Distances on Monoids of Strings," Computer Science Journal of Moldova, vol. 24, no. 3, pp. 335-356, 2016.
[5] M. M. Choban and L. L. Chiriac, "On free groups in classes of groups with topologies," Bul. Acad. Ştiinţe Repub. Moldova, Matematica, no. 2-3, pp. 61-79, 2013.
[6] M. I. Graev, "Free topological groups," Trans. Moscow Math. Soc., vol. 8, pp. 303-364, 1962 (Russian original: Izvestia Akad. Nauk SSSR, vol. 12, 279-323, 1948).
[7] R. W. Hamming, "Error Detecting and Error Correcting Codes," Bell System Technical Journal, vol. 29, no 2, pp. 147-160, 1952.
[8] V. I. Levenshtein, "Binary codes capable of correcting deletions, insertions, and reversals," DAN SSSR, vol. 163, no 4, pp. 845-848, 1965 (in Russian) (English translation: Soviet Physics - Doklady, vol. 10, no. 8, pp. 707-710, 1966).
[9] A. A. Markov, "On free topological groups," Trans. Moscow Math. Soc., vol. 8, pp. 195-272, 1962.
[10] G. Navarro, "A guided tour to approximate string matching," ACM Computing Surveys, vol. 33, no 1, pp. 31-88, 2001.
[11] S. B. Needleman and C. D. Wunsch, "A general method applicable to the search for similarities in the amino acid sequence of two proteins," Journal of Molecular Biology, vol. 48, no 3, pp. 443453, 1970.
[12] S. Romaguera, M. Sanchis and M. Tkachenko, "Free paratopological groups," Topology Proceed., vol. 27, no 2, pp. 613-640, 2003.

Mitrofan Choban
Tiraspol State University, Republic of Moldova
str. Iablochkin 5, Chisinau, Moldova
Phone: +373 69109553
E-mail: mmchoban@gmail.com
Ivan Budanaev
Doctoral School of Mathematics and Information Science
Institute of Mathematics and Computer Sciences
Tiraspol State University, Republic of Moldova
str. Academiei, 3/2, MD-2028, Chisinau, Moldova
E-mail: ivan.budanaev@gmail.com

ANNEX 1

```
Algorithm 1: Metric:
Given \(x, y \in F(A)\) compute \(\check{d}(x, y)\), for the case of metric.
    Data: \(x=x_{1} x_{2} \ldots x_{n}, y=y_{1} y_{2} \ldots y_{m}\), metric function \(\check{d}\) on \(\check{A}\).
    Parameters: costs of insertion and removal operations -
    cost \(_{\text {insert }}\) and cost \(_{\text {remove }}\) respectively.
    Result: \(d_{L}(x, y)\), and matrix \(D\).
    // initialize distance matrix
    for \(i \leftarrow 1\) to \(m\) do \(\mathrm{D}[\mathrm{i}, 0]=\mathrm{i}\);
    for \(j \leftarrow 1\) to \(n\) do \(\mathrm{D}[0, \mathrm{j}]=\mathrm{j}\);
    // initialize loop variables
    \(i:=1, j:=1\);
    for \(j \leftarrow 1\) to \(n\) do
        for \(i \leftarrow 1\) to \(m\) do
        if \(\operatorname{dist}\left(x_{i}, y_{j}\right)=0\) then
            \(\mathrm{d}[\mathrm{i}, \mathrm{j}]:=\mathrm{d}[\mathrm{i}-1, \mathrm{j}-1]\);
        else
            // Dynamic Programming recursive function
        \(\mathrm{d}[\mathrm{i}, \mathrm{j}]:=\min \left(\mathrm{d}[\mathrm{i}-1, \mathrm{j}]+\right.\) cost \(_{\text {remove }}, \min (\mathrm{d}[\mathrm{i}, \mathrm{j}-1]+\)
            cost \(\left.\left._{\text {insert }}, \mathrm{d}[\mathrm{i}-1, \mathrm{j}-1]+\operatorname{dist}\left(x_{i}, y_{i}\right)\right)\right) ;\)
10 return \(\mathrm{D}[\mathrm{m}, \mathrm{n}]\), D;
```


ANNEX 2

```
Algorithm 2: Maximal Measure of Similarity:
Finds maximum value of measure of similarity of \(x, y \in L(\bar{A})\).
    /* Helper functions to compute similarity and
        penalty factors */
    Function similarity ( \(a, b\) )
        \(\mathrm{n}=\max (\) length \((\mathrm{a})\), length \((\mathrm{b}))\)
        \(\operatorname{sim}=0\)
        for \(i \leftarrow 1\) to \(n\) do
            if \((\mathrm{a}[\mathrm{i}]==\mathrm{b}[\mathrm{i}]) \operatorname{sim}=\operatorname{sim}+1\)
        return sim;
    Function penalty (a,b)
    \(\mathrm{n}=\max (\) length \((\mathrm{a})\), length(b))
        pen \(=0\)
        for \(i \leftarrow 1\) to \(n\) do
            if \((\mathrm{a}[\mathrm{i}]==\varepsilon)\) pen \(=\) pen +1
            if \((\mathrm{b}[\mathrm{i}]==\varepsilon)\) pen \(=\) pen +1
        return pen;
    /* Main Algorithm Body */
    Data: \(x=x_{1} x_{2} \ldots x_{n}, y=y_{1} y_{2} \ldots y_{m}\).
    Result: Maximal measure of similarity of \(x\) and \(y\).
    // Calling Metric or QuasiMetric Functions
    d, D := LevenshteinDistance \((x, y)\);
    // Calling BackTracking function BuildOPD
    \(\mathrm{S}=\) BuildOPD(n,m,x,y,a,b,D);
    max_sim \(=0\)
    for ( \((a, b): S\) ) do
        \(\operatorname{sim}=\operatorname{similarity}(\mathrm{a}, \mathrm{b})-\operatorname{penalty}(\mathrm{a}, \mathrm{b})\)
        max_sim = max_sim \(<\) sim ? sim : max_sim
    return max_sim
```


[^0]: (C) 2018 by M. Choban, I. Budanaev

