
Computer Science Journal of Moldova, vol.26, no.2(77), 2018

Efficiency and Penalty Factors on Monoids of

Strings

Mitrofan Choban, Ivan Budanaev

Abstract

In information theory, linguistics and computer science, met-
rics for measuring similarity between two given strings (se-
quences) are important. In this article we introduce efficiency,
measure of similarity and penalty for given parallel decomposi-
tions of two strings. Relations between these characteristics are
established. In this way, we continue the research from [3], [4].

Keywords: invariant distance, measure of similarity, Leven-
shtein distance, Hamming distance, Graev method, penalty.

1 Introduction

Let G be a semigroup and d be a metric on G. The metric d is called:

• left (respectively, right) invariant if d(xa, xb) ≤ d(a, b) (respec-
tively, d(ax, bx) ≤ d(a, b)) for all x, a, b ∈ G;

• invariant if it is both left and right invariant;

• strong invariant if d(xa, xb) = d(ax, bx) = d(a, b) for all x, a, b ∈
G;

• stable if d(xy, uv) ≤ d(x, u) + d(y, v) for all x, y, u, v ∈ G.

Example 1.1. Let G be the additive semigroup of non-negative real
numbers and G+ be the subsemigroup of positive real numbers. We
put d(x, x) = 0 for each x ∈ G, d(x, y) = 1 for any distinct numbers
x, y ∈ G+ and d(0, x) = d(x, 0) = 2 for any x ∈ G+. Then d is an
invariant metric on G. Since 1 = d(2, 5) = d(0 + 2, 3 + 2) < d(0, 3) =
2, the metric d is not strong invariant.

c©2018 by M. Choban, I. Budanaev

99

M. Choban, I. Budanaev

The following assertion is well known.

Proposition 1. Let d be an invariant metric on a group G. Then the
metric d is strong invariant and d(x−1, y−1) = d(x, y) for all x, y ∈ G.

A monoid is a semigroup with an identity element. Fix a non-empty
set A. The set A is called an alphabet. We put Ā = A∪{ε}. Let L∗(A)
be the set of all finite strings a1a2 . . . an with a1, a2, . . . , an ∈ Ā. Let
ε be the empty string. Consider the strings a1a2 . . . an for which ai =
ε for some i ≤ n. If ai 6= ε, for any i ≤ n or n = 1 and a1 = ε, the
string a1a2 . . . an is called an irreducible string or canonical string. The
set Supp(a1a2 . . . an) = {a1, a2, . . . , an}∩A is the support of the string
a1a2 . . . an and l(a1a2 . . . an) = |{i ≤ n : ai 6= ε}| is the length of the
string a1a2 . . . an. For two strings a1 . . . an and b1 . . . bm, their product
(concatenation) is a1 . . . anb1 . . . bm. If n ≥ 2, i < n and ai = ε, then
the strings a1 . . . an and a1 . . . ai−1ai+1 . . . an are considered equivalent.
In this case any string is equivalent to one unique canonical string. We
identify the equivalent strings. The set L(A) of all canonical strings
is the family of all classes of equivalent strings. In this case L∗(A)
is a semigroup and L(A) becomes a monoid with identity ε. The set
L(A) is not a subsemigroup of L∗(A). Only the set L(A) \ {ε} is a
subsemigroup of the semigroup L∗(A).

Let Supp(a, b) = Supp(a) ∪ Supp(b) ∪ {ε}, and Supp(a, a) =
Supp(a)∪{ε}. It is well known that any subset L ⊂ L(A) is an abstract
language over the alphabet A.

Let a, b be two strings. For any two representations a = a1a2 . . . an
and b = b1b2 . . . bm we put

dH(a1a2 . . . an, b1b2 . . . bm) =|{i : ai 6= bi, i ≤ min{n,m}}|

+|{i : n < i ≤ m, bi 6= ei}|

+|{j : m < j ≤ n, aj 6= ei}|.

The function dH is called the Hamming distance on the space of strings
[3], [4], [7].

Now we put:

dG(a, b) = inf{dH(a, b) : a = a1a2 . . . an, b = b1b2 . . . bn}.

100

Efficiency and Penalty Factors on Monoids of Strings

The function dG is called the Graev – Markov distance on the space of
strings [6], [9].

The V. I. Levenshtein’s distance dL(a, b) between two strings a =
a1a2 . . . an and b = b1b2 . . . bm is defined as the minimum number of
insertions, deletions, and substitutions required to transform one string
into the other [4], [8].

We put A−1 = {a−1 : a ∈ A} , ε−1 = ε, (a−1)−1 = a for any a ∈ A

and consider that A−1 ∩ Ā = ∅. Denote Ǎ = A∪A−1 ∪ {ε}. Let Ľ(A)
= L(Ǎ) be the set of all strings over the set Ǎ. The strings over the
set Ǎ are called words. A word a = a1a2 . . . an ∈ Ľ(A) is called an
irreducible string if either n = 1 and a1 ∈ Ǎ, or n ≥ 2, ai 6= ε for any
i ≤ n and a−1

j 6= aj+1 for each j < n.

Let a = a1a2 . . . an ∈ Ľ(A) and n ≥ 2. Then:

- if i ≤ n and ai = ε, then the words a1 . . . an and a1 . . . ai−1ai+1 . . . an
are considered equivalent;

- if i < n and a−1

i = ai+1, then the words a1a2 . . . an and
a1 . . . ai−1εai+2 . . . an are considered equivalent.

In this case, any word a1a2 . . . an ∈ Ľ(A) is equivalent to one unique
irreducible word from Ľ(A). We identify equivalent words. Classes of
equivalence form free group F (A) over A with unity ε. We have that
L(A) is a subsemigroup of the group F (A).

Let a = a1a2 . . . an ∈ F (A) be an irreducible word. The representa-
tion a = x1x2 . . . xm ∈ L∗(A) is called an almost irreducible representa-
tion of a if there exist 1 ≤ i1 < i2 < ... < in ≤ m such that aj = xij for
any j ≤ n and xi = ε for each i ∈ {1, 2, ...,m} \ {i1, i2, ..., in}. If a =
a1a2 . . . an ∈ L∗(A) is a representation of the string a, then a1a2 . . . an
is an almost irreducible word.

If a= a1a2 . . . an, then as = anan−1 . . . a1 and a−1 = a−1
n a−1

n−1
. . . a−1

1
.

The word as is the symmetric word of a and a−1 is the inverse word
of a. If a and b are equivalent words, then the words a−1 and b−1 are
equivalent, as well as the words as and bs.

Hence the mappings ·s, ·−1 : F (A) −→ F (A) are the group auto-
morphisms. Obviously that L(A)s = L(A).

Let a, b ∈ A and a 6= b, then we put dH(a, b) = dH(a−1, b−1) =
dH(a, ε) = dH(ε, a) = dH(a−1, ε) = dH(ε, a−1) = 1. If a ∈ A and b ∈

101

M. Choban, I. Budanaev

A−1, then dH(a, b) = dH(b, a) = 2. For any x ∈ Ǎ we put dH(x, x) = 0.
Thus dH is a metric on Ǎ. For any two words a1a2 . . . an, b1b2 . . . bm ∈
Ľ(A) we put:

dH(a1a2 . . . an, b1b2 . . . bm) =Σ{dH(ai, bi) : i ≤ min{n,m}}

+|{i : n < i ≤ m, bi 6= ei}|

+|{j : m < j ≤ n, aj 6= ei}|.

For a, b ∈ F (A) we put:

ď(a, b) = inf{dH(a, b) : a = a1 . . . an ∈ Ľ(A), b = b1 . . . bn ∈ Ľ(A)}.

Remark 1.1. The function ď is called the Graev – Markov distance
on the free group [6]. The method of extensions of distances for free
groups, used by us, was proposed by A. A. Markov [9] and M. I. Graev
[6]. For metrics on free universal algebras it was extended in [2], for
quasimetrics on free groups and varieties of groups it was examined
in [5], [12].

M. I. Graev [6] has proved the following assertions:

G1. ď is an invariant metric on F (A) and ď(a, b) = dH(a, b) for all
a, b ∈ A∗.

G2. If ρ is an invariant metric on F (A) and ρ(x, y) ≤ dH(x, y) for
any x, y inA∗, then ρ(x, y) ≤ ď(x, y) for any x, y ∈ F (A).

G3. For any two words a, b ∈ F (A) there exist m ≥ 1 and two
almost irreducible representations a = x1x2 . . . xm and b = y1y2 . . . ym
such that ď(a, b) = dH(x1x2 . . . xm, y1y2 . . . ym).

Theorem 1.1. The distance dG on a monoid L(A) has the following
properties:

1. dG is a strong invariant metric on L(A) and dG(x, y) =
dG(zx, zy) = dG(xz, yz) for all x, y, z ∈ L(A).

2. dG(a, b) = dG(a
s, bs) for all a, b ∈ L(A).

3. If ρ is an invariant metric on L(A) and ρ(x, y) ≤ dG(x, y) for
all x, y ∈ Ā, then ρ(a, b) ≤ dG(a, b) for all a, b ∈ L(A).

4. For any a, b ∈ L(A) there exist n ∈ N, x1, x2, . . . , xn ∈
Supp(a, a) and y1, y2, . . . , yn ∈ Supp(b, b) such that a = x1x2 . . . xn,

102

Efficiency and Penalty Factors on Monoids of Strings

b = y1y2 . . . yn such that n ≤ l(a) + l(b) and dG(a, b) = |{i : i ≤ n, ai 6=
bi}| = dH(x1x2 . . . xn, y1y2 . . . yn).

5. dG(a, b) = dL(a, b) = ď(a, b) ≤ dH(a, b) for all a, b ∈ L(A) .

Proof. Fix a, b ∈ L(A). Let a = a1a2 . . . an , b = b1b2 . . . bn.
If n > l(a) + l(b), then there exists i ≤ n such that ai =
bi = ε, a = a1a2 . . . ai−1ai+1 . . . an, b = b1b2 . . . bi−1bi+1, . . . bn
and dH(a1a2...an, b1b2...bn) = dH(a1...ai−1ai+1...an, b1...bi−1bi+1...bn).
Hence dG(a, b) = inf{dH(a1a2 . . . an, b1b2 . . . bn) : a = a1a2 . . . an ,
b = b1b2 . . . bn, n ≤ l(a) + l(b)}. Since we have finite pairs of parallel
representations a = a1a2 . . . am, b = b1b2 . . . bm of lengthm ≤ l(a)+l(b),
there exist n ∈ N, x1, x2, . . . , xn ∈ Supp(a, a) and y1, y2, . . . , yn ∈
Supp(b, b) such that a = x1x2 . . . xn, b = y1y2 . . . yn with n ≤ l(a)+ l(b)
and dG(a, b) = |{i : i ≤ n, ai 6= bi}| = dH(x1x2 . . . xn, y1y2 . . . yn).
Thus, Assertion 4 is proved. Assertion 2 is obvious.

Fix a, b ∈ L(A) and c ∈ A. It is clear that dG(ca, cb) ≤ dG(a, b).
Assume that dG(ca, cb) < dG(a, b). Then there exist representations
ca = x1x2 . . . xn and cb = y1y2 . . . yn such that n ≤ l(a) + l(b) + 2
and dG(ca, cb) = dH(x1x2 . . . xn, y1y2 . . . yn), where A ∩ {xi, yi} 6= ∅
for each i ≤ n. If x1 = y1, then x1 = y1 = c. In this case
a = x2 . . . xn, b = y2 . . . yn and dG(a, b) ≤ dH(x2 . . . xn, y2 . . . yn) =
dH(x1x2 . . . xn, y1y2 . . . yn) = dH(ca, cb) < dH(a, b), a contradiction.
Hence x1 6= y1. In this case we have two possibilities: x1 = c,
y1 = ε or x1 = ε, y1 = c. We can assume that x1 = c and
y1 = ε. Let 1 < j, yj = c and yi = ε for each i < j. We
put u1 = vi = ε for each i ≤ j, ui = xi for each i ≥ 2 and
vk = yk for each k > j. Then b = u1u2 . . . un, b = v1v2 . . . vn,
0 = dH(u1, v1) < dH(x1, y1) = 1, dH(xj , yj) ≤ 1, dH(uj , vj) ≤
1 and dH(ui, vi) = dH(xi, yi) for i ∈ {2, 3, ..., j − 1, j + 1, ..., n}.
Hence dG(a, b) ≤ dH(u1u2...un, v1v2...vn) ≤ dH(x1x2...xn, y1y2...yn) =
dG(ca, cb) < d(a, b), a contradiction. Hence dG(ca, cb) = d(a, b). From
Assertion 2 it follows that dG(ac, bc) = dG(a, b). Assertion 1 is proved.

We put d(x, x) = 0 and d(x, y) = 1 for any distinct strings x, y ∈
L(A). Let ID(A) denote the family of all invariant metrics ρ on L(A)
with the property: ρ(x, y) ≤ d(x, y) for all x, y ∈ (̄A). Since d ∈ ID(A),
the set ID(A) is non-empty. Now we put d∗(a, b) = sup{ρ(a, b) : ρ ∈

103

M. Choban, I. Budanaev

ID(A)}. One can easily observe that d∗ ∈ ID(A), d(a, b) ≤ d∗(a, b) for
any a, b ∈ L(A) and d(x, y) = d∗(x, y) = 1 for all distinct x, y ∈ (̄A).

Property 1. If ρ ∈ ID(A), then

ρ(x1x2 . . . xn, y1y2 . . . yn) ≤|{i ≤ 1 : xi 6= yi}|

=dH(x1x2 . . . xn, y1y2 . . . yn)

for any two strings (x1x2 . . . xn, y1y2 . . . yn) ∈ L(A).

This property follows from the conditions of invariance of metric d.

Property 2. dG = d∗ = dL.

Since dG and d∗ are invariant distances on L(A) and they are con-
structed with the conditions of extremity

d∗(a, b) = sup{ρ(a, b) : ρ ∈ ID(A)},

dG(a, b) = inf{dH(a, b) : a = a1a2 . . . an , b = b1b2 . . . bn},

we have dG = d∗. In [3], [4] it was proved that d∗ = dL. The equality
dG(a, b) = ď(a, b) for all a, b ∈ L(A) follows from the Graev’s assertion
G3 in the above Remark. This completes the proof of the theorem.

Example 1.2. The metrics d, dG = dL = d∗ are strong invariant on
L(A). On L(A) there exists a metric dr ∈ ID(A) which is invariant,
but not strong invariant. Fix a real number r for which 2−1 ≤ r < 1.
We put dr(x, x) = 0 for each x ∈ L(A), d(x, y) = r for any distinct
strings x, y ∈ L(A) \ {ε} and d(0, x) = d(x, 0) = 1 for any x ∈ L(A) \
{ε}. Then d is an invariant metric on G. Fix a ∈ A. Since r = d(a, aa)
= d(ε · a, a · a) < d(ε, a) = 1, the metric dr is not strong invariant.

Remark 1.2. For the metric dH we have dH(a, b) ≤ max{l(a, l(b)} for
any strings a, b ∈ L(A). The Hamming distance dH is left invariant:
dH(xa, xb) = d(a, b) for all strings x, a, b ∈ L(A). Assume now that
x, y, z ∈ A, a = xyzxyz, b= yzxy and c = xyz. Then dG(a, b) = 2
and 6 = dH(a, b) < dH(ac, bc) = 9. Therefore, metric dH is not right
invariant.

104

Efficiency and Penalty Factors on Monoids of Strings

2 Efficiency and Penalty of Two Strings

The longest common substring and pattern matching in two or more
strings is a well known class of problems. For any two strings a, b ∈
L(A) we find the decompositions of the form a = v1u1v2u2 . . . vkukvk+1

and b = w1u1w2u2 . . . wkukwk+1, which can be represented as a =
a1a2 . . . an, b = b1b2 . . . bn with the following properties:

- some ai and bj may be empty strings, i.e. ai = ε, bj = ε;

- if ai = ε, then bi 6= ε, and if bj = ε, then aj 6= ε;

- if u1 = ε, then a = v1 and b = w1;

- if u1 6= ε, then there exists a sequence 1 ≤ i1 ≤ j1 < i2 ≤ j2 <

. . . < ik ≤ jk ≤ n such that:

u1 = ai1 . . . aj1 = bi1 . . . bj1 , u2 = ai2 . . . aj2 = bi2 . . . bj2 , uk =
aik . . . ajk = bik . . . bjk ;

- if v1 = w1 = ε, then i1 = 1;

- if vk+1 = wk+1 = ε, then jk = n;

- if k ≥ 2, then for any i ∈ {2, . . . , k} we have vi 6= ε or wi 6= ε.

In this case l(u1) + l(u2) + . . . + l(uk) = |{i : ai = bi}|.

The above decompositions forms are called parallel decomposi-
tions of strings a and b [3], [4]. For any parallel decompositions
a = v1u1 . . . vkukvk+1 and b = w1u1 . . . wkukwk+1 the number

E(v1u1 . . . vkukvk+1, w1u1 . . . wkukwk+1)

=
∑

i≤k+1

{max{l(vi), l(wi)}} = dH(x1x2 . . . xn, y1y2 . . . yn)

is called the efficiency of the given parallel decompositions. The num-
ber E(a, b) is equal to the minimum of efficiency values of all par-
allel decompositions of the strings a, b and is called the common ef-
ficiency of the strings a,b. It is obvious that E(a, b) is well deter-
mined and E(a, b) = dG(a, b). We say that the parallel decompositions
a = v1u1v2u2 . . . vkukvk+1 and b = w1u1w2u2 . . . wkukwk+1 are optimal
if the following equality holds:

E(v1u1v2u2 . . . vkukvk+1, w1u1w2u2 . . . wkukwk+1) = E(a, b).

105

M. Choban, I. Budanaev

This type of decompositions are associated with the problem of approx-
imate string matching [10]. If the decompositions a = v1u1 . . . vkukvk+1

and b = w1u1 . . . wkukwk+1 are optimal and k ≥ 2, then we may con-
sider that ui 6= ε for any i ≤ k.

Any parallel decompositions a = a1a2 . . . an = v1u1v2u2 . . . vkukvk+1

and b = b1b2 . . . bn = w1u1w2u2 . . . wkukwk+1 generate a common sub-
sequence u1u2 . . . uk. The number m(a1a2 . . . an, b1b2 . . . bn) = l(u1) +
l(u2) + . . . + l(uk) is the measure of similarity of the decompositions
[1], [11]. There exist parallel decompositions a = v1u1v2u2 . . . vkukvk+1

and b = w1u1w2u2 . . . wkukwk+1 for which the measure of similarity is
maximal. The maximum value of the measure of similarity of all decom-
positions is denoted by m∗(a, b). The maximum value of the measure
of similarity of all optimal decompositions is denoted by mω(a, b). We
can note that mω(a, b) ≤ m∗(a, b). For any two parallel decompositions
a = a1a2 . . . an and b = b1b2 . . . bn as in [4], we define the penalty factors
as

pr(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai = ε}|,

pl(a1a2 . . . an, b1b2 . . . bn) = |{j ≤ n : bj = ε}|,

p(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai = ε}|+ |{j ≤ n : bj = ε}|

= pr(a1a2 . . . an, b1b2 . . . bn) + pl(a1a2 . . . an, b1b2 . . . bn)

and

Mr(a1a2 . . . an, b1b2 . . . bn)

= m(a1a2 . . . an, b1b2 . . . bn)− pr(a1a2 . . . an, b1b2 . . . bn)

Ml(a1a2 . . . an, b1b2 . . . bn)

= m(a1a2 . . . an, b1b2 . . . bn)− pl(a1a2 . . . an, b1b2 . . . bn)

M (a1a2 . . . an, b1b2 . . . bn)

= m(a1a2 . . . an, b1b2 . . . bn)− p(a1a2 . . . an, b1b2 . . . bn)

as the measures of proper similarity.

106

Efficiency and Penalty Factors on Monoids of Strings

The number dH(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai 6= bi}| is the
Hamming distance between decompositions and it is another type of
penalty: we have that p(a1 . . . an, b1 . . . bn) ≤ dH(a1 . . . an, b1 . . . bn).

The assertions from the following theorem establish the main re-
sults.

Theorem 2.1. Let a and b be two non-empty strings, a = a1a2 . . . an
and b = b1b2 . . . bn be the initial optimal decompositions, and a =
a′1a

′
2 . . . a

′
q and b = b′1b

′
2 . . . b

′
q be the second decompositions, which are

arbitrary. Denote by

m = m(a1a2 . . . an, b1b2 . . . bn), m′ = m(a′1a
′
2 . . . a

′
n, b

′
1b

′
2 . . . b

′
q),

p = p(a1a2 . . . an, b1b2 . . . bn), p′ = p(a′1a
′
2 . . . a

′
n, b

′
1b

′
2 . . . b

′
q),

pl = pl(a1a2 . . . an, b1b2 . . . bn), p′l = pl(a
′
1a

′
2 . . . a

′
n, b

′
1b

′
2 . . . b

′
q),

pr = pr(a1a2 . . . an, b1b2 . . . bn), p′r = pr(a
′
1a

′
2 . . . a

′
n, b

′
1b

′
2 . . . b

′
q),

r = dH(a1a2 . . . an, b1b2 . . . bn), r′ = dH(a′1a
′
2 . . . a

′
n, b

′
1b

′
2 . . . b

′
q),

M = m− p, M ′ = m′ − p′,

Ml = m− pl, M ′
l = m′ − p′l,

Mr = m− pr, M ′
r = m′ − p′r.

The following assertions are true:

1. p′ − p = 2(m′ −m) + 2(r′ − r).

2. If the second decompositions are non optimal, then Ml > M ′
l and

Mr > M ′
r.

3. If the second decompositions are optimal, then Ml = M ′
l and

Mr = M ′
r and the measures Ml and Mr are constant on the set

of optimal parallel decompositions.

4. If m′ ≥ m and the second decompositions are non optimal, then
p′ > p, pl′ > pl, p

′
r > pr and M > M ′.

107

M. Choban, I. Budanaev

5. If m′ = m and the second decompositions are optimal, then p′ =
p, pl′ = pl, p

′
r = pr and M ′ = M .

6. If m′ ≤ m and the second decompositions are non optimal, then
m′ − r′ < m− r.

The proof of Theorem 2.1 follows from the next lemmas.

Lemma 1.

pr(a
′
1a

′
2 . . . a

′
q, b

′
1b

′
2 . . . b

′
q) = q − l(a),

pl(a
′
1a

′
2 . . . a

′
q, b

′
1b

′
2 . . . b

′
q) = q − l(b),

p(a′1a
′
2 . . . a

′
q, b

′
1b

′
2 . . . b

′
q) = 2q − l(a)− l(b).

Proof. Follows immediately from the definitions of penalty factors and
parallel decompositions.

Lemma 2. p′ − p = 2(m′ −m) + 2(r′ − r).

Proof. From Lemma 1 it follows that p′− p = (2q− l(a)− l(b))− (2n−
l(a) − l(b)) = 2(q − n). Since q = m′ + r′ and n = m+ r, the proof is
complete.

Lemma 3. p′l − pl = p′r − pr = (m′ −m) + (r′ − r).

Proof. We can assume that l(a) ≤ l(b). Then pl = (l(b) − l(a)) + lr
and pl− pr = l(b)− l(a). Hence pl− pr = p′l− p′r and p′l− pl = p′r− pr.
The equality p′ − p = (p′r − pr) + (p′l − pl) and Lemma 2 complete the
proof.

Lemma 4. Assume that m′ > m. Then:

1. M > M ′, Ml ≥M ′
l and Mr ≥M ′

r.

2. Ml > M ′
l and Mr > M ′

r provided that the second decompositions
are non optimal.

3. Ml = M ′
l and Mr = M ′

r provided that the second decompositions
are optimal.

108

Efficiency and Penalty Factors on Monoids of Strings

Proof. Since the initial decompositions are optimal, we have r′ ≥ r.
Moreover, we have r′ = r if and only if the second decompositions are
optimal as well. By virtue of definitions, we have n = m + r and q

= m′ + r′. Therefore n < q. From Lemma 2, it follows that p′ − p =
2(m′ − m) + 2(r′ − r) and p < p′. Thus p′ − p > m′ − m and M =
m− p > m′ − p′ = M ′.

Also, from Lemma 3, it follows that p′l − pl = p′r − pr = (m′ −m)
+ (r′− r). Hence, Ml = m− pl = (m′− p′l) + (r′− r) = M ′

l + (r′− r)
and Mr = m− pr = (m′− p′r) + (r′− r) = M ′

r + (r′− r). Since r′ ≥ r

and r′ = r if and only if the second decompositions are optimal, the
proof is complete.

Corollary 2.1. The measures Ml and Mr are constant on the set of
optimal parallel decompositions.

Lemma 5. Let m′ = m. Then:
1. M ≥M ′, Ml ≥M ′

l and Mr ≥M ′
r.

2. Ml > M ′
l and Mr > M ′

r provided that the second decompositions
are non optimal.

3. Ml = M ′
l and Mr = M ′

r provided that the second decompositions
are optimal.

Proof. We have that n = m+ r and q = m′ + r′. Since r ≤ r′, we have
that n ≤ q.

Assume that M < M ′. Then m− p < m′ − p′, p′ = 2q − l(a)− l(b)
and p = 2n−l(a)−l(b). Hence m−2n+l(a)+l(b) < m−2q+l(a)+l(b),
or −2n < −2q and n > q, a contradiction.

From Lemma 3 it follows that p′l − pl = p′r − pr = r′ − r. Hence
p′l ≥ pl and p′r ≥ pr. If the second decompositions are non optimal,
then p′l > pl and p′r > pr. Assertions are proved.

Lemma 6. Assume that m′ < m and the second decompositions are
non optimal. Then Ml > M ′

l and Mr > M ′
r.

Proof. Since the initial decompositions are optimal, we have r′ > r.
By virtue of Lemma 3, we have p′l− pl = p′r− pr = (m′−m)+ (r′− r).
Hence, Ml = m − pl = (m′ − p′l) + (r′ − r) = M ′

l + (r′ − r) and

109

M. Choban, I. Budanaev

Mr = m− pr = (m′ − p′r) + (r′ − r) = M ′
r + (r′ − r). Since r′ − r > 0,

the proof is complete.

Remark 2.1. From Assertions 1 and 3 of Theorem 2.1 it follows that
on the class of all optimal decompositions of given two strings:

- the maximal measure of proper similarity is attained on the opti-
mal parallel decomposition with minimal penalties (minimal mea-
sure of similarity);

- the minimal measure of proper similarity is attained on the opti-
mal parallel decomposition with maximal penalties (maximal mea-
sure of similarity).

3 Computing algorithms

The algorithm of computing the Levenshtein distance for the case of
a discrete metric was presented in [4]. Below we show a well known
algorithm (see Algorithm 1, Annex 1) that permits to calculate the
Graev-Markov-Levenshtein distance between two irreducible strings for
any metric.

For any two non-empty strings there exist parallel decompositions
with maximal measure of similarity and optimal decompositions on
which measure of similarity is minimal. Pseudo-code of such algorithm
is presented in Algorithm 2 (see Algorithm 2, Annex 2).

Algorithm 2 makes calls to functions LevenshteinDistance and
BuildOPD. The first function computes distance function and builds
the memoization matrix. The function BuildOPD uses the memoiza-
tion matrix to generate optimal parallel decompositions. The pseu-
docode for these functions was presented in [4].

4 Conclusions

For any two non-empty strings there exist parallel decompositions
with maximal measure of similarity and optimal decompositions on
which measure of similarity is minimal. The following example shows
that there exist some exotic non optimal parallel decompositions a =

110

Efficiency and Penalty Factors on Monoids of Strings

a′1a
′
2 . . . a

′
q and b = b′1b

′
2 . . . b

′
q, such that for optimal decompositions

a = a1a2 . . . an and b = b1b2 . . . bn we havem′ < m, p′ < p andM ′ > M .

Example 4.1. Let a = ABCDEF and b = CDEFED be trivial non
optimal decompositions of strings a, b, and a = ABCDEFεε and b =
εεCDEFED be their optimal decompositions. Then m′ = 1, r′ = 5, p′

= p′l = p′r = 0 and m = 4, r = 4, p = 4, pl = pr = 2. In this example
we have that M ′

l = M ′
r = M ′ = m′ − p′ = 1 − 0 = 1 > 0 = 4 − 4 =

m − p = M , m′ − r′ = −4 < 0 = m − r, Ml = 4 − 2 = 2 > 1 = M ′
l ,

Mr = 4− 2 = 2 > 1 = M ′
r.

Example 4.2. Let a = AAAACCC and b = CCCBBBB be trivial
optimal decompositions of strings a, b, and a = AAAACCCεεεε and
b = εεεεCCCBBBB be their non-optimal decompositions. Then m′ =
3, r′ = 8, p′ = 8 and m = 0, r = 7, p = pl = pr = 0. In this example
we have that −5 = m′−r′ > m−r = −7 and −5 = m′−p′ < m−p = 0.

The above examples show that Theorem 2.1 cannot be improved in
the case of m′ < m.

Decompositions with minimal penalty and maximal proper similar-
ity are of significant interest. Moreover, if we consider the problem
of text editing and correction, the optimal decompositions are more
favorable. Therefore, optimal decompositions are the best parallel de-
compositions and we may solve the string matching problems only on
class of optimal decompositions.

To summarize the results, we established that optimal decomposi-
tions:

• describe the proper similarity of two strings;

• permit to obtain long common sub-sequences;

• permit to calculate the distance between strings;

• permit to appreciate changeability of information over time.

References

[1] V. B. Barahnin, V. A. Nehaeva and A. M. Fedotov, “Similar-
ity Determination for Textual Documents Clusterization,” Vestnik

111

M. Choban, I. Budanaev

Novosibirskogo Gos. Un-ta, Ser. Informactionnye tehnologii, vol.
6, no. 1, pp. 3–9, 2008. (in Russian).

[2] M. M. Choban, “The theory of stable metrics,” Math. Balkanica,
vol. 2, pp. 357–373, 1988.

[3] M. M. Choban and I. A. Budanaev, “Distances on Monoids of
Strings and Their Applications,” in Proceedings of the Confer-
ence on Mathematical Foundations of Informatics MFOI2016,
(Chisinau, Republic of Moldova), 2016, pp. 144–159.

[4] M. M. Choban and I. A. Budanaev, “About Applications of
Distances on Monoids of Strings,” Computer Science Journal of
Moldova, vol. 24, no. 3, pp. 335–356, 2016.

[5] M. M. Choban and L. L. Chiriac, “On free groups in classes
of groups with topologies,” Bul. Acad. Ştiinţe Repub. Moldova,
Matematica, no. 2-3, pp. 61–79, 2013.

[6] M. I. Graev, “Free topological groups,” Trans. Moscow Math. Soc.,
vol. 8, pp. 303–364, 1962 (Russian original: Izvestia Akad. Nauk
SSSR, vol. 12, 279–323, 1948).

[7] R. W. Hamming, “Error Detecting and Error Correcting Codes,”
Bell System Technical Journal, vol. 29, no 2, pp. 147–160, 1952.

[8] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” DAN SSSR, vol. 163, no 4, pp. 845–848,
1965 (in Russian) (English translation: Soviet Physics – Doklady,
vol. 10, no. 8, pp. 707–710, 1966).

[9] A. A. Markov, “On free topological groups,” Trans. Moscow Math.
Soc., vol. 8, pp. 195–272, 1962.

[10] G. Navarro, “A guided tour to approximate string matching,”
ACM Computing Surveys, vol. 33, no 1, pp. 31–88, 2001.

[11] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” Journal of Molecular Biology, vol. 48, no 3, pp. 443–
453, 1970.

[12] S. Romaguera, M. Sanchis and M. Tkachenko, “Free paratopolog-
ical groups,” Topology Proceed., vol. 27, no 2, pp. 613–640, 2003.

112

Efficiency and Penalty Factors on Monoids of Strings

Mitrofan Choban, Ivan Budanaev, Received May 5, 2018

Mitrofan Choban
Tiraspol State University, Republic of Moldova
str. Iablochkin 5, Chisinau, Moldova
Phone: +373 69109553
E–mail: mmchoban@gmail.com

Ivan Budanaev
Doctoral School of Mathematics and Information Science
Institute of Mathematics and Computer Sciences
Tiraspol State University, Republic of Moldova
str. Academiei, 3/2, MD-2028, Chisinau, Moldova
E–mail: ivan.budanaev@gmail.com

ANNEX 1

Algorithm 1: Metric:
Given x, y ∈ F (A) compute ď(x, y), for the case of metric.

Data: x = x1x2 . . . xn, y = y1y2 . . . ym, metric function ď on Ǎ.
Parameters: costs of insertion and removal operations -

costinsert and costremove respectively.
Result: dL(x, y), and matrix D.
// initialize distance matrix

1 for i← 1 to m do D[i,0]=i;
2 for j ← 1 to n do D[0,j]=j;
// initialize loop variables

3 i := 1, j := 1;
4 for j ← 1 to n do

5 for i← 1 to m do

6 if dist(xi, yj) = 0 then

7 d[i, j] := d[i-1, j-1];
8 else

// Dynamic Programming recursive function

9 d[i,j] := min(d[i-1, j] + costremove, min(d[i, j-1] +
costinsert, d[i-1, j-1] + dist(xi, yi)));

10 return D[m, n], D;

113

M. Choban, I. Budanaev

ANNEX 2

Algorithm 2: Maximal Measure of Similarity:
Finds maximum value of measure of similarity of x, y ∈ L(Ā).

/* Helper functions to compute similarity and

penalty factors */

1 Function similarity (a,b)
2 n = max(length(a), length(b))
3 sim = 0
4 for i← 1 to n do

5 if (a[i] == b[i]) sim = sim + 1
6 return sim;

7 Function penalty (a,b)
8 n = max(length(a), length(b))
9 pen = 0

10 for i← 1 to n do

11 if (a[i] == ε) pen = pen + 1
12 if (b[i] == ε) pen = pen + 1

13 return pen;

/* Main Algorithm Body */

Data: x = x1x2 . . . xn, y = y1y2 . . . ym.
Result: Maximal measure of similarity of x and y.
// Calling Metric or QuasiMetric Functions

14 d, D := LevenshteinDistance(x, y);
// Calling BackTracking function BuildOPD

15 S = BuildOPD(n,m,x,y,a,b,D);
16 max sim = 0
17 for ((a,b): S) do

18 sim = similarity(a,b) - penalty(a,b)
19 max sim = max sim < sim ? sim : max sim

20 return max sim

114

