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Abstract

Newton’s restricted problem of eight bodies is investigated. In
this paper an effective way of determining the stationary points
of differential equations describing this problem is exposed. Ana-
lytic and numerical calculations are done with the system Math-
ematica.
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1 Introduction

We consider the Newtonian problem of n bodies.This problem consists
in studying the motion of n bodies in the Newtonian gravitational field.
Its description is very simple [1], [2]. It is well-known that Newtonian
many-body problem is not integrable in general.

The development of new computer technologies has provided the
opportunity to otherwise approach the problem of n-bodies. Computer
algebra system Mathematica is a very powerful tool for doing both
symbolic and numeric calculations [4]. In many cases it turned out to
be possible to construct not only approximate but exact solutions of
differential equations of motion.

In this paper we study the existence of stationary solutions (the
equilibrium positions) in the restricted eight bodies problem with in-
complete symmetry, obtained with the help of symbolic calculus system
Mathematica (SCS Mathematica).
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2 Description of the configuration

Assume that in a non-inertial space P0xyz there is the motion of eight
bodies P0, P1, P2, P3, P4, P5, P6, P with the masses m0, m1, m2, m3,
m4, m5, m6, µ, which attract each other in accordance with the law of
universal attraction. We will investigate the planar dynamic pattern
formed by a square, in the vertices of which the bodies P1, P2, P3, P4

are placed. The body P0 is the center of the square and the bodies
P5, P6 are placed on the diagonal P1P3 of the square at equal distances
from P0. We consider that m5 = m6 and the configuration rotates
around the body P0 with the constant angular velocity ω, which is
determined from the model parameters. It will be studied the motion
of the infinitely small mass µ (the so-called passive gravitational body
with µ ≈ 0) in the gravitational field formed by the seven bodies P0, P1,
P2, P3, P4, P5, P6 that attract each other and attract the body P. As
we study the planar configuration, we have zj = 0, j = 0, 1, ..., 7. We
can assume that P1(1, 1), P2(−1, 1), P3(−1,−1), P4(1,−1), P5(α,α),
P6(−α,−α), f = 1, m0 = 1, m5 = m6, then out of the differential
equations of the motion the following conditions of existence of this
configuration are obtained: m1 = m3, m2 = m4 = f1 (m1, α), m5 =
m6 = f2 (m1, α), ω

2 = f3 (m1, α).

The differential equations of the motion of the point P in the grav-
itational field of the points P0, P1, P2, P3, P4, P5, P6 in the rotating
Cartesian coordinate system P0xyz have the form [1]:



























d2X
dt2

− 2ωdY
dt

= ω2X −
fm0X
r3

+ ∂R
∂X

,

d2Y
dt2

+ 2ωdX
dt

= ω2Y −
fm0Y
r3

+ ∂R
∂Y

,

d2Z
dt2

= −fm0Z
r3

+ ∂R
∂Z

,

(1)

where
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R = f
6
∑

j=1

mj

(

1
∆kj

−
XXj + Y Yj + ZZj

r3j

)

,

∆2

j = (Xj −X)2 + (Yj − Y )2 + (Zj − Z)2 ,

r2j = X2

j + Y 2

j + Z2

j , r2 = X2 + Y 2 + Z2,

j = 1, 2, ..., 6.

(2)

According to the definition of the stationary solutions of the dif-
ferential equations, the equilibrium positions (in case when they exist)
are solutions of the functional system of equations:



























u = 0, v = 0, w = 0,

ω2X + 2ωv −
fm0X
r3

+ ∂R
∂X

= 0,

ω2Y − 2ωu−
fm0Y
r3

+ ∂R
∂Y

= −
fm0Z
r3

+ ∂R
∂Z

= 0,

(3)

or in the deployed form



























































u = 0, v = 0, w = 0,

ω2x+ 2ωv −
fm0X
r3

− f
6
∑

j=1

mj

(

X −Xj

∆3

j

+
Xj

r3j

)

= 0,

ω2y − 2ωu− fm0Y
r3

− f
6
∑

j=1

mj

(

Y − Yj

∆3

j

+
Yj

r3j

)

= 0,

−
fm0Z
r3

− f
6
∑

j=1

mj

(

Z − Zj

∆3

j

+
Zj

r3j

)

= 0,

(4)



















∆2

j = (Xj −X)2 + (Yj − Y )2 + (Zj − Z)2 ,

r2j = X2

j + Y 2

j + Z2

j , r2 = X2 + Y 2 + Z2,

j = 1, 2, ..., 6.

(5)
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For simplicity as above it has been taken f = 1, m0 = 1. Replacing
in relations (4) (Xj , Yj , Zj = 0), Z = 0, m2 = m4 = f1(m1, α), m5 =
m6 = f2(m1, α) and ω2 = f3(m1, α), determined above for admissible
α and m1, we obtain the following system:























































































































































































u = 0, v = 0, w = 0,
f(x,y)=ω2x+2ωv − x

(x2+y2)
3

2

+

+m1

(

−1− x
(

(1+x)2+(1+y)2
)3/2 +

1− x
(

(1−x)2+(1−y)2
)3/2

)

+

+m4

(

1− x
(

(1−x)2+(1+y)2
)

3/2 +
−1− x

(

(1+x)2+(1−y)2
)

3/2

)

+

+m6

(

−α− x
(

(α+x)2+(α+y)2
)3/2 +

α− x
(

(α−x)2+(α−y)2
)3/2

)

= 0,

g(x,y)= ω2y − 2ωu−
y

(x2+y2)
3

2

+

+m1

(

−1− y
(

(1+x)2+(1+y)2
)

3/2 +
1− y

(

(1−x)2+(1−y)2
)

3/2

)

+

+m4

(

1− y
(

(1−x)2+(1+y)2
)

3/2 +
−1− y

(

(1+x)2+(1−y)2
)

3/2

)

+

+m6

(

−α− y
(

(α+x)2+(α+y)2
)3/2 +

α− y
(

(α−x)2+(α−y)2
)3/2

)

= 0.

(6)

3 Determination of equilibrium points

The equations in the system (6) have a rather complicated structure.
Its solving is quite cumbersome. If the solution of the system (6) is

185



Elena Cebotaru

determined, then the solution of the equilibrium position of differen-
tial equations describing the restricted problem of the eight bodies is
obtained. Using the graphical package of Mathematica for different pa-
rameter values α and m1, the graphs of the curves f(x, y) and g(x, y)
described by the equations in the system (6) have been constructed.
Obviously, the points of intersection of these curves in the plain P0xy

will be the equilibrium positions of the investigated system. We will
name the points that are on the lines passing through the center of the
configuration and any peak of the square as radial equilibrium position
(we will note them in the future by Ni). We will name the other points
as equilibrium bisectorial positions (we will note them in the future by
Si). For this we use the following algorithm:

Algorithm 1

• constructs the configuration and graphs of the curves f and g;

• calculates the coordinates of the equilibrium bisectorial points Si,
i = 1, ...4 and displays them on the computer screen;

• shows the position of the point S1.

This algorithm in the SCS Mathematica can be realised in the following
way:

Algorithm 1 in SCS Mathematica

graph[n−, a−] :=
Module[{m1 = n, α = a}, gf = f(x, y,m1, α); gg = g(x, y,m1, α);
cpx = ContourP lot[gf, {x, −2.5, 2.5}, {y, 2.5, 2.5}, Contours → {0},
ContourShading → False, P lotPoints → 100, ContourStyle →
{Black}, Axes → True, Frame → False];
cpy = ContourP lot[g, {x, −2.5, 2.5}, {y, −2.5, 2.5}, Contours → {0},
ContourShading → False, P lotPoints → 100, ContourStyle →
{Dashed}, Axes → True, Frame → False];
square = ListP lot[{{1, 1}, {1,−1}, {−1,−1}, {−1, 1}},
PlotStyle → {PointSize[0.02]}];
points = ListP lot[{{α, α}, {−α, −α}},
P lotStyle → {PointSize[0.02]}];
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M0 := Graphics[Text[′′P ′′

0
, {−0.15,−0.15}]];

M1 := Graphics[Text[′′P ′′

1
, {0.85, 1.05}]];

M2 := Graphics[Text[′′P ′′

2
, {−0.85, 1.05}]];

M3 := Graphics[Text[′′P ′′

3
, {−0.85,−1.05}]];

M4 := Graphics[Text[′′P ′′

4
, {0.85,−1.05}]];

M5 := Graphics[Text[′′P ′′

5
, {α − 0.1, α − 0.1}]];

M6 := Graphics[Text[′′P ′′

6
, {−α+ 0.1,−α + 0.1}]];

f1 = FiindRoot[{gf == 0, gg == 0}, {x, 1}, {y, 0}];
S1 := Graphics[Text[′′S′′

1
, {1.55,−0.25}]];Print[′′S′′

1
, f1];

f2 = FiindRoot[{gf == 0, gg == 0}, {x, 0}, {y,−1}];Print[′′S′′

2
, f2];

f3 = FiindRoot[{gf == 0, gg == 0}, {x,−1}, {y, 0}];Print[′′S′′

3
, f3];

f4 = FiindRoot[{gf == 0, gg == 0}, {x, 0}, {y, 1}];Print[′′S′′

4
, f4];

Show[points, square, cpx, cpy, p1, p2,M0,M1,M2,M3,M4,M5,
M6, S1,
P lotRange → {{−2, 2}, {−2, 2}},DisplayFunction →
$DisplayFunction,

AxesLabel → {x, y}, AspectRatio → Automatic,
PlotLabel →′′ m1 =

′′<> ToString[n];′′ α =′′<> ToString[a]′′′′]].
For m1 = 0.01 and α = 0.8584 the result of this program is dis-

played in Figure 1.

4 Concluding remarks

In [3] A. Wintner introduced the concept of central configuration. The
research configuration is of this type. The SCS Mathematica gives a
possibility to consider various particular cases in the Newtonian prob-
lem of n bodies more effectively. The SCS Mathematica offers the
opportunity to construct not only approximate but exact solutions of
differential equations of motion. It is well known that for investigating
the stability of stationary points, it is necessary to determine the equi-
librium points of the configuration. In the present article we described
an algorithm in the SCS Mathematica for determining the conditions
of existence of equilibrium points in the restricted problem of eight
bodies, and, in cases of equilibrium points’ existence, the method for
their building.
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Figure 1. graph[0.01,0.8584]
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