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Abstract

The degree subtraction matrix DS(G) of a graph G is intro-
duced, whose (j, k)-th entry is dg(v;) — dg(vg), where dg(vj)
is the degree of a vertex v; in G. If G is a non-regular graph,
then DS(G) has exactly two nonzero eigenvalues which are purely
imaginary. Eigenvalues of the degree subtraction matrices of a
graph and of its complement are the same. The degree subtrac-
tion energy of (G is defined as the sum of absolute values of eigen-
values of DS(G) and we express it in terms of the first Zagreb
index.

Keywords: Degree of a vertex, degree subtraction matrix,
eigenvalues, energy, first Zagreb index.

1 Introduction

In the study of spectral graph theory, we use the spectrum of cer-
tain matrices associated with the graph, such as the adjacency matrix,
Laplacian matrix and other related matrices. Some useful information
about the graph can be obtained from the spectrum of these various
matrices [4], [5].

The ordinary energy of a graph G is defined as the sum of the abso-
lute values of the eigenvalues of its adjacency matrix [10]. It is closely
related with the total m-electron energy of molecules [13]. This moti-
vates the researchers to introduce different matrices associated with the
graph and study the various energies. Several graph energies, such as,
Laplacian energy [15], distance energy [16], Randié¢ energy [8],[17], skew
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energy [1],[20], incidence energy [8], degree sum energy [21], distance-
based energies [9], [19], [22] etc. have been introduced to study the
properties of graphs.

In this paper we introduce the degree subtraction matrix of a graph
and study the eigenvalues and energy, related to this matrix.

Let G be a simple graph without loops and multiple edges on n
vertices and m edges. Let V(G) = {v1,v9,...,v,} be the vertex set
and F(G) be the edge set of G. The edge between the vertices u and
v is denoted by uv. The degree of a vertex v; in G is the number of
edges incident to it and is denoted by d; = dg(v;). If the degrees of
all vertices of a graph are the same, then the graph is called a reqular
graph. The degree subtraction matriz (DS-matrix) of a graph G is a
square matrix of order n, defined as DS(G) = [d;1], where

da(vj) —da(ve) if j#k
dj =
0 it = k.

Then DS-polynomial of a graph G is the characteristic polynomial
of degree subtraction matrix of G and is donoted by ¢(G : n). That
is ¢(G : n) = det(nl, — DS(G)), where I, is an identity matrix of
order n. The roots of the equation ¢(G : 1) = 0 are called the DS-
eigenvalues of G and they are labeled as 11,72,...,n,. Since DS(G)
is a skew symmetric matrix, its eigenvalues are purely imaginary or
zero. Two graphs are said to be DS-cospectral if they have the same
DS-eigenvalues. The DS-energy of a graph G, denoted by Eps(G) is
difined as

Eps(G) =Y |njl. (1)
=1

The Eq. (1) is in full analogy with the ordinary graph energy defined
as [10]

Ex(G) =) Il
j=1
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where A1, Ao, ..., A\, are the eigenvalues of the adjacency matrix of G.
Details on graph energies can be found in the books [12],[18] and the
references cited therein.

U1 v V2 U3 U4

v [0 —2 -1 —1

w2 0 1 1

- D5(G) = v3 |1 =1 0 0
V3 V4 (0 1 -1 0 0

Figure 1. Graph and its DS-matrix

The DS-polynomial of a graph given in Fig. 1 is ¢(G : 1) = n* +
8n? and the DS-eigenvalues are i2v/2, 0, 0, —i2y/2, where i = /—1.
Therefore, Epg(G) = 4v/2.

The first Zagreb index is defined as [14]:

My=M(G)= Y [de@)P= > [da(u)+de(v)].

ueV(G) weE(G)

The first Zagreb index is one of the most studied degree-based topo-
logical index. For details, see the recent surveys [2],[3] and the refer-
ences cited therein.

2 DS-eigenvalues

We need the following Lemma.
Lemma 1. [5] If Q is a nonsingular square matriz, then

M N
P Q

Theorem 1. Let G be a graph having n wvertices, m edges and first
Zagreb index My(G). Then the DS-polynomial of G is

= |QIIM ~ NQ 1P,

$(G 1) =" + (nM(G) — 4m?)n" 2. (2)
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Proof. Let vi,v2,...,v, be the vertices of G and let dg(v;) = d; be
the degree of a vertex v; in G, j = 1,2,...,n. Then the characteristic
polynomial of DS-matrix of G is

o(G:m) = det(nl — DS(G))

n —dy +dy —di+ds --- —di+d,
—do + dy n —dy+ds - —do+d,
— —ds +dy —ds+dy n < —d3+d, (3)
—d, +dy —d,+dy —d,+d3 --- n

Subtract the first row from the rows 2,3,...,n of (3) to obtain (4).

n —dy + do —dy+d3 - —dy + d,
—das+di—n n+di —do —ds + dy —dy + dy
—ds+dy—n —d3+dy n+dy—ds --- —d3 + dy . (4)
—d,+dy—n —d,+dy —dp+dy - m+d—dy,

Subtract the first column from columns 2,3, ..., n of (4) to obtain (5).

Ul —di+do—n —di+ds—n -+ —ditd,—n
—dy+di —n 2n n e n
—dz +di — 1 n 2n n . (5
—dy +d1 — 1 Ui Ui e 2n

Subtract the second column from columns 3,4,...,n in (5) to obtain
(6).
n —di+dy—n dzg—dy - dyp—dy
—dytdi—n 2 e
—d3+dy —n n 7 e 0 . (6)
_dn + dl - 77 ?’, 0 P T,
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Add rows 3,4, ...,n to the second row in (6) to obtain (7).

n —dy+dy—mn dzg—dy -+ dyp—d2
—2m+ndy — (n—1)n nn 0 0
—d3 +di =1 n nooo 0
: (7)
_dn+d1_n Ui O n
| M N
= AL
where
M o= n —dy +dy — 1
—2m+nd; — (n—1)n nn oo
N — [dg—dg d4—d2 dn_d2:| ’
0 0 0 2x (n—2)
[ —ds+di—n 7
—dy+di—n 7
P = . ) and
L _dn + dl -nn (n—2)x2
'77 0O --- 0
0n -~ 0
Q = |.
L0 0 ] o)m2)

By Lemma 1, and taking into account that ) d; = 2m and noting
j=1
that
X = =M (G) + 2m(dy + d2) — ndide — 2mn + din + don + (n — 2)dan

and Y = (2m — dy — d2)n — (n — 2)dan, the Eq. (7) reduces to
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¢(G )
= 0 [ —2m + nd?— (n—1)n - —;7(712 ! } B N%I"_2P‘
. .on=2 n —di +do—1n 11X Y
=0 [—2m+nd1—(n—1)n nn }_E[O 0”
= "4 (nMy(G) — 4m?)n" 2.
]

Corollary 1. Let G be a regular graph on n vertices. Then the DS-
polynomial of G is

(G :m)=n"
By Theorem 1 we have the following result.

Theorem 2. Let G be a graph having n vertices, m edges and first
Zagreb index My (G). Then the DS-eigenvalues of G are 0 (n—2 times)
and +iy/nM(G) — 4m?2, where i = /—1.

By Theorem 2 we observe that, if GG is a non-regular graph, then it
has exactly two non-zero DS-eigenvalues.
In the following, G denotes the complement graph of G.

Theorem 3. Ifn;, 7 = 1,2,...,n are the DS-eigenvalues of G, then
-1, 7 =1,2,...,n are the DS-eigenvalues of G.

Proof. For any vertex u of a graph G of order n, dg(u) = n — 1 —

dg(uw). This implies that DS(G) = —DS(G). Consequently, if the DS-
eigenvalues of a graph G are n;, j = 1,2,...,n, then the DS-eigenvalues
of@are—nj,jzl,l...,n. O
Theorem 4. For any graph G, ¢(G : 1) = ¢(G : n).
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Proof. Case 1: If G is regular, then G is also regular. Therefore by the
Corollary 1, ¢(G : n) = ¢(G : ).

Case 2: If G is non-regular, then G also non-regular. Therefore by
Theorem 2, both G and G have exactly two non-zero DS-eigenvalues.
Further by Theorem 3, if ;, j = 1,2,...,n are the DS-eigenvalues of
G, then —n;, j =1,2,...,n are the DS-eigenvalues of G. Also the sum
of all DS-eigenvalues is zero. This implies that ¢(G : 1) = ¢(G : ). O

Theorem 5. Let G be a graph on n vertices and m edges. Let § and A
be the minimum and mazximum vertex degrees of G respectively. Then
forj=1,2,...,n,

nd —2m < n; <nA —2m.

Proof. If the vertices of G are labeled as vy, vs,...,v,, then the sum of
the elements of j-th row in DS-matrix is nd; — 2m, where d; = dg(v;).
It is well known that the eigenvalues of any matrix lie between the
minimum row sum and maximum row sum. Hence

min{nd; — 2m} < n; < max{nd; — 2m}.

This implies
nd —2m < n; <nA —2m.

O

By Theorem 4, G and G are DS-cospectral graphs. By Theorem
2, if G1 and G9 are two different graphs having the same number of
vertices and the same number of edges, and if M;(G;) = M;(G2), then
(1 and G5 are DS-cospectral.

3 DS-Energy

From Theorem 2 and by the definition of DS-energy via Eq. (1), we
have the following theorem.
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Theorem 6. Let G be a graph having n vertices, m edges and first
Zagreb index My (G). Then

Eps(G) = 2¢/nM;(G) — 4m2. (8)

By Theorem 3, we have the following corollary.

Corollary 2. For any graph G, Eps(G) = Eps(G).

If G is a regular graph, then by the Corollary 1, Eps(G) = 0.
For fixed n and m, the Eq. (8) depends on the nature of M;(G).

Theorem 7. Let Gy and Go be two different graphs having equal num-
ber of vertices and equal number of edges.

(i) IfMl(Gl) > Ml(GQ), then Eps(Gl) > Eps(Gg).

(11) If Ml(Gl) == Ml(Gg), then Eps(Gl) == Eps(Gg).

Let p = |2m/n]. Then the first Zagreb index M;(G) satisfies the
inequalities:

22p+1)m —p(p+ )n < M;(G) §m<n2i21 —I—n—2> . (9

The right hand side of the Eq. (9) is due to de Caen [7], whereas
the left hand side inequality is due to Das [6].
Using Eqgs. (8) and (9) we have the following result.

Theorem 8. Let G be a graph with n vertices and m edges. Let p =
|2m/n|. Then

2¢/2(2p + )mn — p(p + 1)n2 — 4m?2

Let S,, be the star and P, be the path on n vertices. Among all
n-vertex trees, the star S, has maximum value and the path P, has
minimum value of the first Zagreb index [11]. If T}, is an n-vertex tree,
different from the star and path, then M;(S,) > Mi(T},) > Mi(FP,).
Using this result and Eq. (8) we have the following result.
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Theorem 9. If T, is an n-vertex tree, different from the star S, and
path P,, then EDS(Sn) > EDS(Tn) > EDS(Pn)-

If v and v are the adjacent vertices of GG, then G — uv is the graph
obtained from G by removing the edge uv. If u and v are non-adjacent
vertices of GG, then the graph G + uwv is obtained from G by adding an
edge uv.

Theorem 10. Let G be a graph having n vertices, m edges and first
Zagreb index M1 (G). Let u,v,w be three distinct vertices of G such that
u 1s adjacent to v and u is not adjacent to w. Let H = G — uv + uw.
Then

Eps(H) = 2¢/nMi(G) — 4m2 + 2n[dg(w) — dg(v) + 1]. (10)

Further,

(i) if dg(w) —dg(v) +1 =0, then Eps(H) = Eps(Q)
(ii) if dg(w) —dg(v) +1 > 0, then Eps(H) > Eps(G)
(iii) of dg(w) —dg(v) +1 < 0, then Eps(H) < Eps(G).

Proof. Let dyi,ds,...,d, be the degrees of the vertices of G. Without
loss of generality, let dg(u) = dy, dg(v) = dy and dg(w) = d3. There-
fore, dg(u) = di, dg(v) = do — 1 and dy(w) = d3 + 1. Hence by
Theorem 6,

Eps(H) = 2y/nM;(H) — 4m?2

= 2 |n|di+(d2—1)*+(dz+1)*+ En:(dc(vj))2 — 4m?
j=4

= 2/nM;(G) —4m?2 + 2n(d3 — da + 1)

= 2y/nM;i(G) — 4m? + 2n[dg(w) — de(v) + 1].

The results (i), (ii), and (iii) follow from Egs. (8) and (10). O
Proof of the Theorem 11 is analogous to that of Theorem 10.
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Theorem 11. Let G be a graph having n vertices, m edges and first
Zagreb index My(G). Let u,v,w,z be the four distinct vertices of G
such that u s adjacent to v and w s not adjacent to x. Let H =
G —uv +wz. Then

Eps(H) = 2y/nM;(G) — 4m?2 + 2n[dg(w) + dg(z) — dg(u) — dg(v) + ?]. |
11

Further,
(i) if dg(w) +dg(z) — dg(u) —dg(v) +2 =0, then Eps(H) = Eps(G)
(ii) if dg(w) + dg(x) — dg(u) —dg(v) +2 > 0, then Eps(H) > Eps(Q)
(iii) if dg(w)+dg(z) —dg(u) —dg(v)+2 < 0, then Eps(H) < Eps(G).

Theorem 12. Let G be a graph having n vertices vi,vs,...,v, and m
edges and first Zagreb index My(G). Let G’ be the subgraph of G on
k > 1 vertices v1,vs,...,v, and m' edges. Let H be the graph obtained
from G by removing the edges of G'. Then

k
Eps(H) =2 nM(G) — 4m? — 271];[616*(%‘)610/ ()] (12)

+nMyi(G") + 4m’(2m — m/)

Further,
(i) if —2n i [(de(vj))(dgr (vi))] + nMi(G') 4+ 4m/ (2m — m’) = 0, then

J=1

Eps(H) = EDS(G)
(i) if —2n Y [(da(vy))(der (vi))] + nMi(G') +4m/ (2m —m') > 0, then

7=1
EDs(H) > Eps(G)
k

(iii) of —2n > [(da(v)))(der (v5))] +nM (G') +4m! (2m —m') < 0, then

7j=1
EDs(H) < Eps(G).

Proof. Let v1,v9,...,v; be the vertices of a subgraph G’ of G, k > 1.
Therefore dy (v;) = da(vj) — dar(vj), for j =1,2,...,k and dg(v;) =
dc(vj), for j = k+1,k+2,...,n. Also, if m’ is the number of edges
of G, then H has m — m' edges. By Eq. (8)
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| Sty —dotep? + 3 ot
= =1 j=k+1
—4(m —m')?
0 | 35 () — 2 32 [da(v;)dgr ()]
— 9 1J=1 J=1
k
+ Y [der (v)]? | — 4(m? — 2mm/ + m’?)
j=1
k
| mA(@) — am? = 2n 3 () (e (0)]

7j=1
+nMy(G') + 4m/ (2m — m/)

The results (i), (ii), and (iii) follow from the Egs. (8) and (12). O

Corollary 3. Let G be a graph having n vertices vi,vs,...,0, and m
edges and first Zagreb index M1(G). Let ey, eq, ..., ey be the k indepen-
dent edges of G, 1 < k < [n/2], where ej = vy;_1v25, j = 1,2,... k.
Let H be the graph obtained from G by removing its k independent
edges €;, j = 1,2,..., k. Then

2k
Eps(H) =2 an(G) — 4m? + 2n (k? — ng(l)j)) + 4k‘(2m — k?)
j=1

Further,

(i) if 2n (k‘ - 21 d(;(?)j)> +4k(2m — k) =0, then Eps(H) = Eps(G)
(ii) if 2n (k‘ - Zk d(;(vj)> +4k(2m —k) > 0, then Eps(H) > Eps(G)
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(iil) of 2n | k — % dg(vj) | +4k(2m—Ek) < 0, then Eps(H) < Eps(G)
~
(iv) if n = 2k, Zhen Eps(H) = Eps(G).

Proof. Follows from Theorem 12 by taking G’ = kK», a k-matching.
O

Corollary 4. Let G be a graph having n vertices vi,vs,...,0, and m
edges and first Zagreb index My (G). Let Vi = {v1,ve,...,vx} be a k-
element subset of the vertex set of the graph G, k > 2 such that every
pair of vertices of Vi is adjacent in G. Let H be the graph obtained
from G by deleting all the edges connecting pairs of vertices from V.
Then

nML(G) — 4m? +2(k — 1) [2mk — 0 5, do(vy)]
+k(n —k)(k—1)2 ‘

Epg(H) =2

Further,
() if 20k — 1) |2mk — né de(v;)
Eps(H) = Eps(G)
(i) if 20k — 1) [2mk - né de(v;)
Eps(H) > Eps(G)

+ k(n — k)(k — 1)2 = 0, then

+ k(n — k)(k — 1) > 0, then

(iii) of 2(k — 1) [2mk —n i dg(vj)

J=1

+ k(n — k)(k —1)%2 < 0, then

EDs(H) < Eps(G)
(iV) an = k?, then EDS(H) = EDS(G).

Proof. Follows from Theorem 12 by taking G’ = K}, a complete graph
on k vertices. O

Corollary 5. Let G be a graph having n vertices vi,ve,...,V, and m
edges and first Zagreb index My(G). Let Cy be the cycle of G, where
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the vertices vy, va, . ..,v, are on Cy, k > 1. Let H be the graph obtained
from G by removing the edges of Cy. Then

k
EDS(H):Q an(G)—4m2—|—4n ]{T—ng(l)j) —|—4k7(2m—k‘).
j=1

Further,

(i) if 4n [k‘ i dg(vj)| +4k(2m — k) =0, then Eps(H) = Eps(G)

(i) if 4n [k: Xk: )| +4k(2m — k) > 0, then Eps(H) > Eps(G)
k

(iil) if 4n [ z dg v])] +4k(2m — k) < 0, then Eps(H) < Eps(G)
(iv) if k =n, then Eps(H) = Eps(G).

Proof. Follows from Theorem 12 by taking G’ = Cj, a cycle on k
vertices. O

Algorithm: Computation of DS-energy using adjacency matrix.
1. Start
2. Declare: A[n][n], d[n], r, s, n, m; N =0, S =0 as integers.
3. Declare: Result as floating point.

Read n, A[r][s]
4. Compute the degree of each vertex

for r =1 to n increment by 1

d[r] «+—0

for s =1 to n increment by 1

d[r] «— d[r] + Alr][s]

Display: Degree of vertex d[r]

The square of degree of a vertex, d[r] * d[r]
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5. Compute: The sum of each row
S+— S+d[r].
Sum of squares of each row sum as N = N + d[r| = d[r]
and number of edges m = 5/2.

6. Display: Sum of squares of each row sum N and number
of edges m.

7. Compute the Result
Result = 2 xsqrt(n« N — 4 xm*m)

8. Display: the Result.

9. Stop

Terms:
n - Total number of vertices in a given graph.
m - Total number of edges in a given graph.
A - Adjacency Matrix.

d - Degree of a vertex.

In the above algorithm, the outer loop iterates r times and the
inner loop iterates s times. Hence the statements inside the inner loop
will be executed rs times. This means that the outer and inner loops
are dependent on problem size n. Hence the time complexity of the
algorithm is O(n?).
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