
Computer Science Journal of Moldova, vol.26, no.2(77), 2018

Invertible Graphs of Finite Groups
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Abstract

We investigate some properties of invertible graphs of finite
groups, which are newly defined in this paper. The main results
have been proved using finite group classification. For each finite
group, the size, the girth, the diameter, the clique number and
the chromatic number have been studied. These studies show
that the invertible graphs are weakly perfect. Specifically, for-
mulas for enumerating a total number of edges in the invertible
graph of the Symmetric group and Dihedral group have been de-
rived. Further, the relations between isomorphic, non-isomorphic
groups and their invertible graphs are presented.

Keywords: Self-inverse elements, Mutual inverse elements,
Weakly-perfect, Isomorphic graphs, Invertible graph.

1 Introduction

Abstract algebra is largely concerned with the study of abstract sets
and endowed with one or more binary operations. In this paper, we
consider one of the basic algebraic structures known as group. The
concept of finite group plays a fundamental role in the theory of group-
theoretic graphs. The aim of this paper is to discuss some of the inter-
connections which exist between graphs and groups. Many authors in
graph theory specify so many specific graph-theoretic properties, and
results have analogs for algebraic systems such as semi groups, groups,
rings, fields, etc. Our main purpose inthis paper is to describe some in-
teractions between finite graphs, and finite groups have been exploited
to give new results about group-theoretic graphs. The theory of group-
theoretic graphs has provided an interesting and powerful structural
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Invertible Graphs of Finite Groups

abstract approach to the study of the symmetries and non-symmetries
of various configurations in the modern design theory and communi-
cation science. In recent years, a theory of group-theoretic graphs has
found many applications in engineering and applied science, and many
articles have been published on group-theoretic graphs such as [1]-[5].

In the present investigation, we write about a group theoretic graph,
namely, invertible graph IG(G) of a basic algebraic structure G, a finite
group. However, finite group is a core in this paper. Our algebraic
approach here is realized on group theoretic graphs with group elements
and their corresponding binary operation. Although it is not quite
elementary, it is an important aspect in dealing with the inter relation
between simple graphs and finite groups.

For a finite group G, we denote by S(G) the set of all self inverse
elements, and by M(G) – the set of mutual inverse elements of G. In
this paper, we prove that there are some relations between G, S(G),
M(G) and IG(G). We classify the finite groups whose invertible graph
is one of connected, complete but not bipartite graphs. Also we prove
that IG(G) is never Eulerian. For any given finite group G, we estimate
the degree, the size, the girth, the diameter, the clique number and the
chromatic number. We also discuss isomorphic theorems with some
applications and structure of invertible graphs of finite abelian, non-
abelian and cyclic groups.

2 Definition and Notations

Now we recall some basic definitions and notations of group theory
from [6]. Let G be a finite group with identity e. Then the number of
elements in G is the order of G and is denoted by |G|. If a ∈ G, then
the order of a is |a| = | < a > |, where < a >= {an : n = 0,±1,±2, ...}
is a cyclic subgroup of G generated by a. If G =< a >, then G must
be a cyclic group.

Usually, Zn is the group of integers over addition modulo n, Un =
Z∗
n is the group of multiplicative inverse elements of modulo n, Z∗

p =
Zp − {0} is the multiplicative group of integers modulo p, Sn is the
symmetric group of degree n, Dn is the dihedral group of order 2n, Q8
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is the quaternion group. Further, we have G2p = {2, 4, 6, ..., 2(p−1)}, a
group of order p− 1 with respect to multiplication modulo 2p, a prime
p > 2.

Theorem 1. (Lagrange’s Theorem, [6]) If H is a subgroup of the finite
group G, then the order of H divides the order of G.

Theorem 2. [6] If a ∈ G and G is finite, then |a| divides |G|.

We use [7] and [8] for the standard terminology of simple and alge-
braic graphs, respectively. Let X be a finite simple graph. We denote
the vertex set and the edge set of X is V (X) and E(X), respectively.
If a ∈ V (X), then the degree of a denoted by deg(a). If a and b are two
adjacent vertices of X then we write a−b. A graph X in which any two
distinct vertices are adjacent is said to be complete. If any two vertices
a and b in X are connected by a path a = a0−a1− ...−an = b then X
is called connected graph. A path is a cycle if a = b. The length of a
path or a cycle is the number of distinct edges in it. A cycle of length
n is denoted by Cn.

3 Self and Mutual Inverse Elements of a Group

We introduce in this section the concepts of self and mutual inverse
elements of a finite group with a few examples. The results of this
section, though simple, are used throughout the paper.

Definition 1. Let (G, ∗) be a finite group with the identity e. Then an
element a ∈ G is called a self inverse element of G if a = a−1 , where
a−1 is the inverse of a in G. The set of self inverse elements of G is
S(G) and its cardinality is |S(G)|.

Next, an element a ∈ G is called a mutual inverse element of G if
there exists b ∈ G such that a∗ b = b∗a = e. The set of mutual inverse
elements of G is denoted by M(G). In particular, M(G) = {a ∈ G :
a 6= a−1}.

In the preceding definition, we have temporarily reverted to the ∗
notation for group operations to remind you that in a specific group,
the operation might be addition, multiplication, or something else.
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For any finite group G, S(G) is a subgroup of G and M(G) is not a
subgroup of G. If |G| > 2 and G is a finite cyclic group, then S(G) 6= G.
We are now ready to state and prove several results about S(G) of G.
The proof of the first theorem is implicit in our discussion of a finite
cyclic group.

Theorem 3. Let G be a finite cyclic group. Then

|S(G)| =

{

1, if |G| is odd

2, if |G| is even
.

Proof. For each finite cyclic group G, we have G = S(G) ∪M(G) and
S(G) ∩M(G) = φ. Now consider two cases on |G|.
Case 1. If |G| is odd, then we have to prove that |S(G)| = 1. Suppose
|S(G)| ≥ 2. Assume that |S(G)| = 2. Therefore, S(G) = {e, a : a2 =
e}. This implies that |a| = 2. By the Theorem 2, |a|||G|, which is a
contradiction to the fact that |G| is odd. Hence |S(G)| = 1.
Case 2. If |G| is even, then we shall show that |S(G)| = 2. Without
loss of generality we may assume that |S(G)| = 3. This implies that
every non-identity of S(G) has order 2. That is, a 6= b in S(G) such
that a = a−1 and b = b−1 ⇒ (ab) = (ab)−1, since G is abelian. It is
clear that ab ∈ S(G), and S(G) = {e, a, b, ab} which is a contradiction
to our assumption that |S(G)| = 3. Hence |S(G)| = 2.

We next observe one of the most important results of S(G). That
is, if G is not a cyclic group of even order, then |S(G)| ≥ 2. The
following examples illustrate this point.

Example 1. Since e = e−1, a = a−1, b = b−1 and c = c−1 in the Klein
group V4 = {e, a, b, c}, therefore, |S(V4)| = 4.

Example 2. |S(S3)| = 4, |S(D3)| = 4, |S(Q8)| = 2, |S(Z2 ×Z2)| = 4.

According to the above examples, the following consequences spec-
ify the orders of S(G) and M(G) in a given finite group G.

Corollary 1. Let G be a finite group of even order. Then |S(G)| and
|M(G)| are both even.
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Proof. It is obvious, since a finite group G can be written as disjoint
union of S(G) and M(G).

Corollary 2. Let G be a finite group of odd order. Then |S(G)| = 1
and |M(G)| = |G| − 1.

Proof. It is obviously true because |G| is odd if and only if S(G) =
{e}.

Example 3. |S(Z3 × Z3)| = 1, |S(Z3 × Z5)| = 1.

Remark 1. [9] If there is a one-to-one mapping a↔ a
′

of the elements
of a group G onto those of a group G

′

, and if a↔ a
′

and b↔ b
′

imply
ab↔ a

′

b
′

, then we say that G and G
′

are isomorphic and write G ∼= G
′

.
If we put a

′

= f(a) and b
′

= f(b) for a, b ∈ G, then f : G → G
′

is a
bijection satisfying f(ab) = a

′

b
′

= f(a)f(b).

Lemma 1. Let G and G
′

be any two finite groups. If G ∼= G
′

, then
S(G) ∼= S(G

′

). But converse is not true.

Proof. Suppose G ∼= G
′

. Then, by the Remark 1, there exists a group
isomorphism f from G onto G

′

with the relation f(a) = a
′

, for every
a ∈ G and a

′

∈ G
′

. Now define a map ϕ : S(G) → S(G
′

) by the
relation ϕ(s) = s

′

for every s in S(G). Let s, t ∈ S(G). If ϕ(s) = ϕ(t),
then s

′

= t
′

⇒ f(s) = f(t) ⇒ s = t, since f is one-to-one. By the
way ϕ was constructed, we see that ϕ is onto. The only condition
that remains to be checked is that ϕ is operation preserving. To do
this, let s and t belong to S(G). Then obviously s, t ∈ G. Therefore
ϕ(st) = f(st) = s

′

t
′

= f(s)f(t) = ϕ(s)ϕ(t). Hence S(G) ∼= S(G
′

). But
the converse of this result is not true. For example, S(U6) = {1, 5}
and S(U10) = {1, 9}. It is clear that S(U6) ∼= S(U10), but U6 is not
isomorphic to U10.

4 Properties of Invertible Graphs

This section introduces invertible graph of a finite group and a study
of its basic properties such as degree, size, connectedness and com-
pleteness. Further, we obtain a formula for finding the clique number,
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the chromatic number and hence prove that invertible graph is weakly
perfect.

We begin with the notion and definition of the invertible graph of
a finite group.

Definition 2. An undirected simple graph IG(G) is called invertible
graph of a finite group G whose vertex set is G and two distinct vertices
a and b in G are adjacent in IG(G) if and only if either a 6= b−1, or,
b 6= a−1, where a−1 is the inverse of the element a in G.

Before exploring the results and concepts of invertible graphs, in-
stead of a ∗ b, we shall write ab. The preceding definition can be vi-
sualized as shown in Figure 1. If f1(x) = x, f2(x) = 1 − x, f3(x) =
1

x
, f4(x) = 1 −

1

x
, f5(x) =

1

1− x
, f6(x) =

x

1− x
are functions from

R − {0, 1} to R − {0, 1}, then the set G = {f1, f2, f3, f4, f5, f6} is
a non-abelian group under composition of functions. Here S(G) =
{f1, f2, f3, f6}.

Figure 1. The Graph IG(G).

Theorem 4. For any finite group G, the invertible graph of G is a
connected graph.

Proof. It is obvious since e is the identity element of G, ae 6= e for
every a 6= e in G, so that the vertex e is adjacent with remaining all
the vertices of IG(G). Hence IG(G) is a connected graph.
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Theorem 5. Let a be an element of a finite group G. Then

deg(a) =

{

|G| − 1, if a ∈ S(G)

|G| − 2, if a /∈ S(G)
.

Proof. If a ∈ S(G), then there exists b 6= a in G such that ab = a−1b 6=
e. This implies that the vertex a is adjacent to all other vertices of
IG(G) if and only if a ∈ S(G), therefore it is easy to derive that the
degree of vertex a is |G| − 1.

If a /∈ S(G), then a has mutual inverse, say b 6= a−1 in G such that
ab = e = ba. It is clear that the vertex a is adjacent to all vertices of
IG(G) except b. However, if a /∈ S(G), then the vertex a is not adjacent
to exactly one vertex of the graph IG(G). Hence deg(a) = |G|− 2.

Theorem 6. [8] A connected graph is Eulerian if and only if the degree
of each vertex is even.

Corollary 3. The invertible graph IG(G) is never Eulerian.

Proof. By the Theorem 5, it is clear that the degree of each vertex in
IG(G) is either |G| − 1 or |G| − 2. If |G| is even, then |G| − 1 is odd.
On the other hand, if |G| is odd, then |G| − 2 is also odd. Hence in
both cases, we found that the degree of each vertex in IG(G) cannot
be even. Thus, by the Theorem 6, the result follows.

In view of the Theorem 5, the following Remark is obvious.

Remark 2. Let |G| > 3 and S(G) 6= G. Then the graph IG(G) is
never a regular, a cycle, a star and a triangle free graph.

Theorem 7. [8] The total number of edges of the simple graph of order
n is

(n
2

)

.

By combining Theorems 5 and 7, we can easily count the num-
ber of edges (size) in an invertible graph of a given finite group. For
convenience, we introduce the following theorem.

Theorem 8. For any finite group G, the size of invertible graph IG(G)

is
1

2
(|S(G)|(|G| − 1) + |M(G)|(|G| − 2)) .
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By using Theorem 8, we derive a formula for enumerating the total
number of edges in IG(Sn) and IG(Dn), respectively.

Theorem 9. The size of invertible graph of the symmetric group Sn,

n > 1, is
1

2
((n!)2−2n!+s(n)) , where s(n) is the number of self inverse

elements in Sn.

Proof. Let s(n) be the number of elements in Sn satisfying the relation
a = a−1, for every a ∈ Sn. Then s(n) satisfies the recurrence relation,
see [10], s(n+2) = s(n+1)+ (n+1)s(n), where s(1) = 1, s(2) = 2. In
view of the Theorem 8, the size of the graph IG(Sn) is |E(IG(Sn))| =
1

2
(s(n)(n!− 1) + (n!− s(n))(n!− 2)) =

1

2
((n!)2 − 2n! + s(n)).

Theorem 10. The size of invertible graph of the Dihedral group of
order 2n is

|E(IG(Dn))| =

{

1

2
(4n2 − 3n), if n is even

1

2
(4n2 − 3n+ 1), if n is odd

.

Proof. Let Dn = {1, a, a2, ..., an−1, b, ab, a2b, ..., an−1b : an = 1, b2 =
1, bab−1 = a−1}. In Dn, the n elements b, ab, a2b, .., an−1b always have
order 2. If n is even, then an/2 also has order 2. Therefore, the total
number of elements in Dn, n is even, satisfying the relation x = x−1

is n+ 2. Similarly, if n is odd, there are n + 1 self inverse elements in
Dn. However,

|S(Dn)| =

{

n+ 2, if n is even

n+ 1, if n is odd
and|M(Dn)| =

{

n− 2, if n is even

n− 1, if n is odd
.

By the Theorem 8, we have

|E(IG(Dn))| =

{

1

2
(4n2 − 3n), if n is even

1

2
(4n2 − 3n+ 1), if n is odd

.
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Corollary 4. The size of an invertible graph of a finite cyclic group G
is

|E(IG(G))| =

{

1

2
(|G| − 1)2, if n is even

1

2
(|G|2 − 2|G| + 2), if n is odd

.

Proof. Let G be a finite cyclic group. Then there are two cases for |G|.
Case 1. Let |G| be odd. Then |G| − 1 is even. In view of Theorem

8, the total number of non-adjacent edges in IG(G) is
1

2
(|G| − 1).

But the maximum number of edges in a simple graph of order |G| is
(

|G|
2

)

. So in this case the total number of edges in IG(G) is
(

|G|
2

)

-
1

2
(|G| − 1) =

1

2
(|G| − 1)2.

Case 2. Let |G| be even. Then, in view of Theorem 5, there are

exactly
|G|

2
−1 pairs of distinct vertices that satisfy the relation ab = e

in G. Therefore, the total number of non-adjacent pairs in IG(G) is
|G|

2
− 1. So in this case the total number of edges in IG(G) is

(|G|
2

)

-(
|G|

2
− 1) =

1

2
(|G|2 − 2|G| + 2).

By using Theorem 8, the following short table illustrates the way
we can easily determine the size of an invertible graph of some finite
groups.

Group G Z∗
p G2p U(2k) S3

Size of
IG(G)

1

2
(p2 − 4p+ 5)

1

2
(p2 − 4p+ 5) 2k−1(2k − 2) + 2 14

Theorem 11. Let S(G) 6= G. Then IG(G) is never a complete graph.

Proof. Suppose on the contrary that, IG(G) is a complete graph. Then

by the Theorem 7, the size of IG(G) is
(

|G|
2

)

=
|G|

2
(|G| − 1) , but in

view of Theorem 8, we arrived at a contradiction to the completeness
of IG(G).
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Our next theorem shows how the bi-implication of S(G) = G and
completeness of IG(G) are intertwining.

Theorem 12. The invertible graph IG(G) is complete if and only if
S(G) = G.

Proof. Necessity. Suppose that IG(G) is a complete graph of a finite
group G. Then any two vertices a and b in G are adjacent in IG(G).
Consequently ab 6= e, for every a, b ∈ G. This implies that a 6= b−1 and
b 6= a−1. Therefore a = a−1 and b = b−1. That is, a, b ∈ S(G). This
shows that G ⊆ S(G), also since S(G) ⊆ G. Hence S(G) = G .
Sufficiency. Let S(G) = G. Suppose IG(G) is not a complete graph.
Then there exist distinct vertices a and b in G such that ab = e and
ba = e. This implies that a−1 = b and b−1 = a. It is clear that
a, b 6∈ S(G). Therefore, S(G) 6= G, which is a contradiction to our
hypothesis, and hence IG(G) is complete.

We are now ready to prove a number of useful consequences of
Theorem 12.

Corollary 5. The graph IG(G) is complete if and only if G is isomor-
phic to one of the groups, Z2 × Z2, U4, U6, U8, U12 and V4.

Proof. It is true from the fact that the Klein four-group V4 is isomorphic
to Z2 × Z2, U8, U12. Also the group Z2 is isomorphic to U4, U6.

Corollary 6. The invertible graph of G is complete if and only if |G| =
2.

Proof. We have, |G| = 2 ⇔ G = {e, a : a2 = e} ⇔ G = S(G).

Before going to further properties of invertible graph, let us consider
the following example for the description of the result in the Theorem
12.

Example 4. The invertible graph of the group (P (X),∆) is complete.
Let X = {a, b, c} and let A = {a}, B = {b}, C = {c} so that A = {b, c},
B = {a, c} and C = {a, b}. Then P (X) = {φ,A,B,C,A,B,C,X} is
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an abelian group with respect to the symmetric difference ∆ of sets and
S(P (X)) = P (X) but P (X) is not a Klein four-group. The Figure 2
shows the complete invertible graph of the group (P (X),∆).

Figure 2. The invertible graph of (P (X),∆).

Theorem 13. [8] A simple graph is bipartite if and only if it does not
have any odd cycle.

Theorem 14. If |G| is composite, then IG(G) is not a bipartite graph.

Proof. Assume that |G| is composite. Suppose IG(G) is a bipartite
graph. Then there exists a bipartition (S(G),M(G)). Without loss of
generality we assume that e 6∈ M(G). Since |G| is composite, so there
exists at least one self-inverse element s 6= e in S(G). Ifm ∈M(G) such
that m−1 6= m , then clearly es 6= e , sm 6= e and me 6= e. Therefore,
the triads (s, e,m) of the graph IG(G) form a triangle. This violates
the condition in the Theorem 13 for a bipartite graph. Hence IG(G)
is not a bipartite graph.

Theorem 15. Let |G| > 3. Then the girth of invertible graph IG(G)
is 3.

Proof. We know that the girth of a simple graph is the length of a
smallest cycle. Here there exist two cases.
Case 1. Suppose S(G) = G and |G| > 3. Then, by the Theorem 12,
IG(G) is complete. Therefore IG(G) has a smallest cycle of length 3.
Hence, gir(IG(G)) = 3.
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Case 2. Suppose S(G) 6= G and |G| > 3. The vertex e in IG(G)
is adjacent to all other vertices. For this reason we can choose two
vertices a 6= e and b 6= e in IG(G) such that a−1 = a and b−1 6= b.
Then ab 6= ab−1 ⇒ ab 6= a−1b−1 ⇒ ab 6= (ba)−1 ⇒ ab 6= e, since
S(G) 6= G. This implies that ea 6= e, ab 6= e and be 6= e, so the graph
IG(G) always has a three cycle e − a − b − e, which is the smallest.
Hence, gir(IG(G)) = 3.

For distinct vertices x and y of a simple graph X, the diameter of X
is diam(X) = max{d(x, y) : x, y ∈ V (X)}, where d(x, y) is the length
of the shortest path from x to y in X.

Theorem 16. If |G| > 1 , then the diameter of invertible graph is
either 1 or 2.

Proof. Let G be a finite group with |G| > 1. Then we consider the
following two cases on S(G).
Case 1. Suppose S(G) = G. In view of Theorem 12, IG(G) is com-
plete, hence diam(IG(G)) = 1.
Case 2. Suppose S(G) 6= G. Then, IG(G) is never a complete graph.
Let us assume that a and b are any two vertices in IG(G). However, if
the vertex a 6= e is adjacent to vertex b 6= e, then trivially d(a, b) = 1.
Otherwise, if a is not adjacent to b in IG(G), then clearly d(a, b) > 1,
where a 6= e and b 6= e, but in the graph IG(G) there always exists a
path a−e−b of the shortest length 2. It follows that diam(IG(G)) = 2.

From Case 1 and Case 2 we conclude that the diameter of invertible
graph is either 1 or 2.

A clique in a simple graph X is a complete subgraph. A clique
Y in X is called maximal if no vertex set outside of Y is adjacent to
all members of Y . The size of the largest clique in X is called the
clique number ω(X). Simply, ω(X) is the maximum number of pair
wise adjacent vertices. For any simple graph X, 1 ≤ ω(X) ≤ |V (X)|.

Theorem 17. Let G be a finite group. Then the clique number of

IG(G) is ω(IG(G)) =
1

2
(|G| + |S(G)|).
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Proof. If s ∈ S(G), then clearly the vertex s is adjacent to all other
vertices of IG(G) since sa 6= e for every a in G. Therefore, the pair

of non-adjacent vertices in IG(G) is of degree
1

2
|M(G)|, and hence the

total number of mutually adjacent vertices in IG(G) is |G|−
1

2
|M(G)| =

1

2
(|G|+ |S(G)|), which is ω(IG(G)).

Theorem 18. Let G be a finite cyclic group. Then the clique number

of IG(G) is ω(IG(G)) =

{

1

2
(|G| + 1), if |G| is odd

1

2
(|G| + 2), if |G| is even

.

Proof. We know that the order of invertible graph IG(G) of a finite
cyclic group G is |G|. We need the following two cases on |G|.
Case 1. |G| is odd. Trivially any two distinct vertices a and b are
non adjacent if and only if ab = e. It follows that any vertex a is non-
adjacent with exactly one vertex b, and hence total number of such
vertices in IG(G) is |G| − 1. It is clear that, the pair of non-adjacent

vertices in IG(G) is of degree
1

2
(|G| − 1), and hence the total number

of mutually adjacent vertices in IG(G) is |G|−
1

2
(|G|−1) =

1

2
(|G|+1),

which is the size of a maximum clique.
Case 2. |G| is even. So in this case the pair of non-adjacent vertices in

IG(G) is of degree
1

2
(|G|−2). Hence total number of mutually adjacent

vertices in IG(G) is |G| −
1

2
(|G| − 2) =

1

2
(|G|+2), which is the size of

a maximum clique. This completes the proof of the theorem.

Example 5. The following table shows the values of ω(IG(G)) for
some non-cyclic groups G.

Non-cyclic group V4 Q8 S3 D3 D4

ω(IG(G)) 4 5 5 5 7

Definition 3. A simple graph X is n-colorable if there exists a colour-
ing of X which uses n colours. The minimum number of colors required

138



Invertible Graphs of Finite Groups

to color a graph X is called the chromatic number and is denoted by
χ(X). Note that ω(X) ≤ χ(X) ≤ |V (X)|. If χ(X) = ω(X), then the
graph X is called weakly-perfect.

Definition 4. In a simple graph X, the set of pair-wise non-adjacent
vertices is called an independent set of vertices.

Theorem 19. Let G be a finite group. Then the chromatic number of

IG(G) is χ(IG(G)) =
1

2
(|G| + |S(G)|).

Proof. Case 1. Suppose that S(G) 6= G. In this case a ∈M(G) if and
only if a is not adjacent with exactly one vertex in IG(G). Therefore,
the maximum independent set of IG(G) is of size 2, moreover, total

number of such independent sets in IG(G) is
1

2
|M(G)|. For all these

vertices we need
1

2
|M(G)| colors, since each independent set in IG(G)

is uniquely colorable. But, vertices in S(G) are adjacent with all the
vertices in M(G), and thus we require for S(G) more colors distinct
from these colors. Hence, the minimum number of colors required to
colour the invertible graph is

χ(IG(G)) =
1

2
|M(G)| + |S(G)| =

1

2
(|G| + |S(G)|),

since G = S(G) ∪M(G) and S(G) ∩M(G) = φ.
Case 2. Suppose S(G) = G. Then, trivially, |M(G)| = 0. But, by the
Theorem 12 the graph IG(G) is complete, therefore the required result

is obviously true. That is, χ(IG(G)) =
1

2
(|G| + |S(G)|).

Theorem 20. Let G be a finite cyclic group. Then the chromatic
number of IG(G) is

χ(IG(G)) =

{

1

2
(|G|+ 1), if |G| is odd

1

2
(|G|+ 2), if |G| is even

.

Proof. Case 1. Suppose that |G| = 2. Then obviously, IG(G) ∼= K2,
and hence χ(IG(G)) = 2.
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Case 2. Suppose that |G| > 2. Then IG(G) is never a complete graph
since S(G) 6= G for any finite cyclic group G with |G| > 2. Now we
shall show the required result with the help of the following two sub-
cases.
Subcase 1. Suppose that |G| is even. Then, |S(G)| = 2, since G is
cyclic. Therefore the order of the independent set in the graph IG(G)

is
1

2
(|G| − 2). In fact each independent set is uniquely colorable, it

means that for all these vertices we need
1

2
(|G| − 2) colors. How-

ever two vertices in S(G) are adjacent with remaining all vertices in
IG(G), thus minimum number of colors to color the invertible graph

is
1

2
(|G| − 2) + 2 =

1

2
|G|+ 1.

Subcase 2. Suppose that |G| is odd. Then, |S(G)| = 1, since G is

cyclic. Therefore the order of independent set in IG(G) is
1

2
(|G| − 1).

Here one vertex in S(G) is adjacent with all other vertices of IG(G),
thus we require one more color from these colors. Hence,

χ(IG(G)) =
1

2
(|G| − 1) + 1 =

1

2
(|G|+ 1).

By combining Theorems 17 and 19, we can easily prove that the
invertible graph of any finite group is weakly perfect.

Theorem 21. For any finite cyclic group G, the graph IG(G) is weakly
perfect.

Proof. It follows directly from Theorems 17 and 19, since ω(IG(G)) =
χ(IG(G)) .

5 Isomorphic properties of IG(G)

In this section, we examine isomorphic properties of invertible graphs
of finite groups in detail and determine their important characteristics.
We begin with a few examples.
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Example 6. The isomorphic groups and their invertible graphs are
traced in Figure 3.

Figure 3. Z2 × Z3
∼= Z6 ⇔ IG(Z2 × Z3) ∼= IG(Z6).

Example 7. Figure 4 shows that groups are not isomorphic and their
invertible graphs are also not isomorphic.

Figure 4. Z2 × Z2 6∼= Z4 ⇔ IG(Z2 × Z2) 6∼= IG(Z4).

Example 8. Figure 5 shows that groups are not isomorphic but
their invertible graphs are isomorphic. Consider the cyclic group
G = {I,A,B,C,D,E, F,G,H} with respect to addition modulo 9 and
G

′

= {I
′

, A
′

, B
′

, C
′

,D
′

, E
′

, F
′

, G
′

,H
′

} is an abelian but not cyclic

group with respect to addition modulo 3, where A =

[

1 −1
1 −1

]

, B =
[

2 −2
2 −2

]

, C =

[

3 −3
3 −3

]

,D =

[

4 −4
4 −4

]

, E =

[

5 −5
5 −5

]

, F =

[

6 −6
6 −6

]

,
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G =

[

7 −7
7 −7

]

,H =

[

8 −8
8 −8

]

, I
′

=

[

0 0
0 0

]

, A
′

=

[

1 −1
1 −1

]

, ϕ :

G → G
′

, C
′

=

[

x+ 1 −(x+ 1)
x+ 1 −(x+ 1)

]

,D
′

=

[

2x+ 1 −(2x+ 1)
2x+ 1 −(2x+ 1)

]

, E
′

=
[

x+ 2 −(x+ 2)
x+ 2 −(x+ 2)

]

, F
′

=

[

2x+ 2 −(2x+ 2)
2x+ 2 −(2x+ 2)

]

, G
′

=

[

2x −2x
2x −2x

]

,H
′

=
[

2 −2
2 −2

]

and x is an indeterminate over Z3. Under the mapping

ϕ : G → G
′

such that ϕ(I) = I
′

, ϕ(A) = A
′

, ϕ(B) = B
′

, ϕ(C) = C
′

,
ϕ(D) = D

′

, ϕ(E) = E
′

, ϕ(F ) = F
′

, ϕ(G) = G
′

, ϕ(H) = H
′

. Hence,
the fact that G is not isomorphic to G

′

implies that IG(G) ∼= IG(G
′

).

Figure 5. G 6∼= G
′

⇒ IG(G) ∼= IG(G
′

).

As the above examples suggest, the invertible graphs of isomorphic
groups are isomorphic but converse need not to be true. So, the next
theorem completely characterises all isomorphic invariable graphs.

Theorem 22. Let G and G
′

be finite groups. If G ∼= G
′

, then IG(G) ∼=
IG(G

′

). But the converse is not true.

Proof. Suppose that G ∼= G
′

. Then there is a group isomorphism f
from G onto G

′

such that f(a) = a
′

, for every element a in G and a
′

in G
′

. Now, define a map ϕ from IG(G) to IG(G
′

) by the relation
ϕ(a) = f(a), for every vertex a ∈ G. By Remark 1, ϕ is a bijection.
Now let us prove that ϕ preserves adjacency. For this let ab 6= e, then
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f(ab) 6= f(e). That implies f(a)f(b) 6= f(e). That is, ϕ(a)ϕ(b) 6= e
′

.
So the vertex ϕ(a) is adjacent to the vertex ϕ(b) in IG(G

′

). Similarly, if
a is not adjacent to b in IG(G), then ϕ(a) is also not-adjacent to ϕ(b)
in IG(G

′

). This shows that IG(G) ∼= IG(G
′

). The converse of this
statement is false, as the Example 8 shows. That is, if IG(G) ∼= IG(G

′

),
it does not necessarily follow that G ∼= G

′

.

Let G be a finite group. Then an isomorphism from G onto G
is called a group automorphism and set of all automorphisms of G is
denoted by Auto(G). Further, an isomorphism from a simple graph X
to itself is called graph automorphism of X, and the set of all graph
automorphisms forms a group under the operation of composition. This
group is also denoted by Auto(X) and is called automorphism group
of a graph X.

The following result is an analogous result between Auto(G) and
Auto(IG(G)).

Theorem 23. If G is a finite group, then Auto(G) ⊆ Auto(IG(G)).
But the converse is not true.

Proof. Let ψ ∈ Auto(G). Then ψ : G → G
′

is a group isomorphism
from G onto itself. We shall now show that ψ ∈ Auto(IG(G)). Suppose
vertices a and b in G are adjacent in IG(G). Then, either ab 6= e, or,
ba 6= e. ⇒ ψ(ab) 6= e, or, ψ(ba) 6= e. ⇒ ψ(a)ψ(b) 6= e, or, ψ(b)ψ(a) 6=
e.⇒ The vertex ψ(a) is adjacent to the vertex ψ(b) in IG(G).

This shows that ψ is a graph isomorphism from IG(G) onto itself.
It is clear that ψ ∈ Auto(IG(G)). Hence, Auto(G) ⊆ Auto(IG(G)).
But, the converse of this result is not true. For this we consider the
group Z5 = {0, 1, 2, 3, 4} with respect to addition modulo 5. Define a
map ψ : Z5 → Z5 by ψ(0) = 0, ψ(1) = 2, ψ(2) = 3 and ψ(3) = 4.
It is clear that Auto(Z5) ⊆ IG(Z5). But ψ(1 ⊕5 2) = ψ(Z3) = 4 and
ψ(1)⊕5 ψ(2) = 2⊕5 3 = 0. Therefore, ψ(1⊕5 2) 6= ψ(1)⊕5 ψ(2) so that
ψ is not a homomorphism of group Z5.
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