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Finite automata over magmas: models and

some applications in Cryptography
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Abstract

In the paper the families of finite semi-automata and rever-
sible finite Mealy and Moore automata over finite magmas are
defined and analyzed in detail. On the base of these models it is
established that the set of finite quasigroups is the most accepta-
ble subset of the set of finite magmas at resolving model problems
in Cryptography, such as design of iterated hash functions and
stream ciphers. Defined families of finite semi-automata and re-
versible finite automata over finite T -quasigroups are investigated
in detail. It is established that in this case models time and space
complexity for simulation of the functioning during one instant
of automaton time can be much lower than in general case.

Keywords: magmas, quasigroups, T -quasigroups, iterated
hash functions, stream ciphers.

1 Introduction

Challenges of Modern Cryptography have stimulated the development
of algebraic models for stream ciphers and computationally secure ite-
rated hash function.

Many efforts have been devoted to the elaboration and analysis of
these models, presented via finite, respectively, reversible automata and
semi-automata over associative finite algebraic systems (short survey
of these results is presented in [1], for example).

Much fewer success has been achieved for applications of finite non-
associative algebraic systems at resolving model problems of Crypto-
graphy (it is worth to point that some interesting results, connected

c©2018 by V.V. Skobelev, V.G. Skobelev

77



V.V. Skobelev, V.G. Skobelev

with applications of finite quasigroups and rings in the coding and de-
sign of crypto-schemes are presented in [2]).

Possibly, this situation is justified by the fact that the classifica-
tion of these algebraic systems is not complete at present, and their
properties demand further deeper studying. Nevertheless the following
question naturally arises:

Whether the set of finite quasigroups is the most acceptable subset of

the set of finite magmas at resolving model problems in Cryptography,

such as design of iterated hash functions and stream ciphers?

In the given paper we show that the answer to this question is YES.

Informally speaking, the expediency for applications of finite qua-
sigroups at resolving model problems of Cryptography is caused by the
following two factors.

Firstly, the binary operation in a quasigroup is reversible.

Secondly, the lack of requirements for associativity, commutativity,
and existence of the unit element imply high complexity for resolving
problems of identification formulated in terms of quasigroups.

A rather complete survey of applications of finite quasigroups for
the design of authentication schemes, stream ciphers, and the unidi-
rectional functions, is submitted in [3, 4].

In the present paper, the notions and definitions in Quasigroup
Theory are the same as in [5, 6, 7]. The paper is organized as follows. In
Section 2 necessary notions and definitions are introduced. In Section 3
models of families of finite semi-automata and automata over finite
magmas are defined and analyzed. It is established that the set of finite
quasigroups is the most acceptable subset of the set of finite magmas at
resolving such model problems of Cryptography, as design of iterated
hash functions and stream ciphers. In Section 4 defined models of
families of finite semi-automata and automata are investigated over
finite T -quasigroups. Section 5 consists of some conclusions.
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2 Basic notions

By time and space complexity we mean the asymptotic worst-case com-
plexity under logarithmic weight [8].

Let Q (|Q| ≥ 2) be fixed finite set, and SQ be the symmetric group
over the set Q. It is well known that for any substitution ξ ∈ SQ the
upper bounds of time and space complexity for computing the value
ξ(a) (ξ ∈ SQ, a ∈ Q) are equal, correspondingly, to

Tξ = O(|Q| log |Q|) (|Q| → ∞), (1)

Vξ = O(|Q| log |Q|) (|Q| → ∞). (2)

Similarly, for any binary operation ◦ : Q × Q → Q the upper bounds
of time and space complexity for computing the value a ◦ b (a, b ∈ Q)
are equal, correspondingly, to

T◦ = O(|Q| log |Q|) (|Q| → ∞), (3)

V◦ = O(|Q|2 log |Q|) (|Q| → ∞). (4)

LetMQ be the set of all magmas M = (Q, ◦), where ◦ : Q×Q→ Q,
Aut(M) (M = (Q, ◦) ∈ MQ) be the set of all automorphisms of M,
i.e. the set of all bijections ϕ : Q→ Q, such that ϕ(a ◦ b) = ϕ(a) ◦ϕ(b)
(a, b ∈ Q). The following subsets of the set MQ are considered, as a
rule:

SQ – the set of all semigroups S = (Q, ◦), i.e. ◦ is some associative
operation;

S
(l)
Q – the set of all left-cancellative semigroups S = (Q, ◦), i.e.

S ∈ SQ, and if a ◦ b = a ◦ c (a, b, c ∈ Q), then b = c;

S
(r)
Q – the set of all right-cancellative semigroups S = (Q, ◦), i.e.

S ∈ SQ, and if b ◦ a = c ◦ a (a, b, c ∈ Q), then b = c;

S
(lr)
Q = S

(l)
Q ∩S

(r)
Q – the set of all cancellative semigroups;

S
(m)
Q – the set of all monoids S = (Q, ◦), i.e. S ∈ SQ, and exists

an identity element in Q;
GQ – the set of all groups G = (Q, ◦), i.e. ◦ is some invertible

associative operation, and there exists an identity element in Q;
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G
(A)
Q – the set of all Abelian groups G = (Q, ◦), i.e. G ∈ GQ, and ◦

is commutative operation;

QQ – the set of all quasigroups Q = (Q, ◦), i.e. ◦ is some invertible
operation;

Q
(T )
Q – the set of all T -quasigroups Q = (Q, ◦), i.e. Q ∈ QQ, and

there exist G = (Q,+) ∈ G
(A)
Q , (ϕ,ψ) ∈ Aut(G) × Aut(G), and an

element c ∈ Q, such that a ◦ b = ϕ(a) + ψ(b) + c (a, b ∈ Q).

It is well known that the following inclusions hold:

{

SQ ⊇ S
(l)
Q ⊇ S

(lr)
Q , SQ ⊇ S

(r)
Q ⊇ S

(lr)
Q , S

(lr)
Q ⊇ GQ ⊇ G

(A)
Q ,

SQ ⊇ S
(m)
Q ⊇ GQ, QQ ⊇ Q

(T )
Q , QQ ⊇ S

(lr)
Q .

(5)

For any non-empty either finite, or infinite set Q in the setMQ there

can be defined in the usual way the subset M
(l)
Q of all left-cancellative

magmas, the subset M
(r)
Q of all right-cancellative magmas, and the

subsetM
(lr)
Q of all cancellative magmas. It is evident thatM

(lr)
Q ⊇ S

(lr)
Q ,

and the following proposition is true.

Proposition 1. If the set Q is infinite, then QQ ⊂ M
(lr)
Q , while if the

set Q is finite, then QQ = M
(lr)
Q .

It has been assumed that only a finite set Q is considered. By this
reason, each time when the set QQ is considered, we deal in essence

with the set M
(lr)
Q .

A finite automaton is a system M = (S,X, Y, δ, λ), where S, X and
Y are respectively the finite set of states, the finite input alphabet and
the finite output alphabet, δ : S × X → S is the transition mapping
and λ : S ×X → Y is the output mapping. We remind that a system
M = (S,X, δ) (i.e. the output alphabet Y and the output mapping λ
are omitted) is called a semi-automaton. The mappings δ and λ can
be extended on the set S ×X∗ by identities:

{

δ(s,Λ) = s, δ(s,wx) = δ(δ(s,w), x)

λ(s,Λ) = Λ, λ(s,wx) = λ(s,w)λ(δ(s,w), x)
(6)
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for all s ∈ S, w ∈ X∗ and x ∈ X.

Any initial automaton (M,sin) (where sin ∈ S is some fixed initial
state) implements the mapping F(M,sin) : X

∗ → Y ∗ defined by identity

F(M,sin)(w) = λ(sin, w) (w ∈ X∗).

A finite automaton M = (S,X, Y, δ, λ) is reversible if and only if
for each sin ∈ S the mapping F(M,sin) is a bijection. Let the mapping
λs : X → Y (s ∈ S) be defined by identity λs(x) = λ(s, x) (x ∈ X). It
is evident that the following proposition is true.

Proposition 2. A finite automaton M = (S,X, Y, δ, λ) is reversible if

and only if for each its state s ∈ S the mapping λs is a bijection.

Thus, there exists an effective algorithm for checking whether the
analyzed finite automaton M = (S,X, Y, δ, λ) is reversible.

The following two models are considered for a finite automaton
M = (S,X, Y, δ, λ). as a rule:

1) a Mealy automaton if for the output mapping λ both variables
s ∈ S and x ∈ X are essential;

2) a Moore automaton if for the output mapping λ the variable
x ∈ X is dummy (by this reason it is usually supposed that λ : S → Y

for a Moore automaton).

If an automaton M = (S,X, Y, δ, λ) is considered as a dynamic
system it is supposed that its functioning is carried out according to
the following recurrence relations: st+1 = δ(st, xt), yt+1 = λ(st, xt) (for
a Mealy automaton) and yt+1 = λ(st+1) (for a Moore automaton).

3 Analysis of models of finite semi-automata

and automata over magmas

When defining a finite automaton over any magma it is convenient to
assume that the basic set of the magma is the set of states, as well
as the input and output alphabets of the automaton. Accepting this
assumption the following finite automata models over the set MQ can
be defined.
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For any magma M ∈ MQ, where M = (Q, ◦), it can be defined the
2-elements family of semi-automata

FM = {M (i) = (Q,Q, δ
(i)
M)}i∈{l,r},

where the transition mappings δ
(i)
M (i = 1, 2) are defined as follows:

δ
(i)
M(q, x) =

{

x ◦ q, if i = l,

q ◦ x, if i = r.
(7)

Here and everywhere further the symbol q denotes a state and the
symbol x denotes an input symbol.

Formula (7) implies that the upper bounds of time and space
complexity for simulation of the functioning of any semi-automaton
M ∈ FM during one instant of the semi-automaton time are defined
according to formulae (3) and (4).

Let ΓM be the transition diagram of a semi-automaton M ∈ FM.
It is evident that the following proposition is true.

Proposition 3. The transition diagram ΓM (M ∈ FM) is the labelled

directed complete |Q|-graph with the loop at each vertex, such that the

labels of all arcs terminated in any vertex are pair-wise different if and

only if M ∈ M
(lr)
Q , i.e. when M ∈ QQ.

For any ordered pair of magmas (M1,M2) ∈ MQ × MQ, where
Mj = (Q, ◦j) (j = 1, 2), it can be defined the 4-elements family of
Mealy automata

FM1,M2 = {M (i,j) = (Q,Q,Q, δ
(i)
M1

, λ
(j)
M2

)}i,j∈{l,r},

where the transition mappings δ
(i)
M1

(i ∈ {l, r}) are defined in accor-
dance with formula (7) applied to the magma M1, and the output

mappings λ
(j)
M2

(j ∈ {l, r}) are defined as follows:

λ
(j)
M2

(q, x) =

{

x◦2q, if j = l,

q◦2x, if j = r.
(8)
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Formulae (7) and (8) imply that the upper bounds of time and space

complexity for computing each of the values δ
(i)
M1

(q, x) (i ∈ {l, r}) and

λ
(j)
M2

(q, x) (j ∈ {l, r}) are defined according to formulae (3) and (4).

Thus, the upper bounds of time and space complexity for simulation
of the functioning of any automatonM ∈ FM1,M2 during one instant of
the automaton time are also defined according to formulae (3) and (4).

For any ordered pair (M, ξ) ∈ MQ×SQ, where M = (Q, ◦), it can
be defined the 2-elements family of Moore automata

FM,ξ = {M (i) = (Q,Q,Q, δ
(i)
M, ξδ

(i)
M)}i∈{l,r},

where the transition mappings δ
(i)
M1

(i ∈ {l, r}) are defined in accor-

dance with formula (7), and the output mappings ξδ
(i)
M (i ∈ {l, r}) are

defined as follows:

ξδ
(i)
M(q, x) = ξ(δ

(i)
M(q, x)). (9)

It has been established above that the upper bounds of time and

space complexity for computing the value δ
(i)
M(q, x) (i ∈ {l, r}) are

defined according to formulae (3) and (4). Formula (9) implies that if

the value δ
(i)
M(q, x) (i ∈ {l, r}) has been computed previously, then the

upper bounds of time and space complexity for computing the value

ξδ
(i)
M(q, x) are defined according to formulae (1) and (2).

The comparison of formulae (1) and (2) according to formulae (3)
and (4) implies that the upper bounds of time and space complexity for
simulation of the functioning of any automaton M ∈ FM,ξ during one
instant of the automaton time are also defined by formulae (3) and (4).

Let’s analyze what restrictions can be imposed on the structure
of the models defined above in order to apply them successfully at
resolving model problems of Cryptography.

It is evident that any iterated hash function is, in its essence, some
finite semi-automaton. The structure of such semi-automaton has been
investigated in [9] (and shortly presented in [1]) as follows.

Let K be some finite set, k,m ∈ N+ (k ≤ m) be fixed integers, and
Fk,m be the set of all mappings f : Kk × Km → Kk, such that the
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following two equalities:

|{x ∈ Km|f(q,x) = q′′}| = |K|m−k, (10)

{x ∈ Km|f(q,x) = q′′} ∩ {x ∈ Km|f(q′,x) = q′′} = ∅ (11)

hold for all q,q′,q′′ ∈ Kk (q 6= q′).

Any mapping f ∈ Fk,m defines the strongly connected semi-
automaton Mf = (Kk,Km, f), which, in its turn, defines the family
of iterated hash functions {Hf,q0

}q0∈K
k , where Hf,q0

: (Km)+ → Kk is
the mapping, such that Hf,q0

(w) = f(q0,w) (w ∈ (Km)+).

Let p
(1)
f,q0,t

(q) (f ∈ Fk,m;q0,q ∈ Kk; t ∈ N+) be probability that

an input string u randomly selected in the set (Km)t is some solution

of the equation Hf,q0
(u) = q, and p

(2)
f,q0,t

(f ∈ Fk,m,q0 ∈ Kk, t ∈ N+)

be probability that for two different input strings u and u′ randomly
selected in the set (Km)t the equality Hf,q0

(u) = Hf,q0
(u′) holds. The

following two theorems are true:

Theorem 1. [9]. For any mapping f ∈ Fk,m and any q0,q ∈ Kk

equality p
(1)
f,q0,t

(q) = |K|−k holds for all t ∈ N+.

Theorem 2. [9]. For any mapping f ∈ Fk,m and any q0 ∈ Kk equality

p
(2)
f,q0,t

= |K|−k(1− (|K|mt − 1)−1(|K|k − 1) holds for all t ∈ N+.

Theorems 1 and 2 characterize computational security for any fa-
mily {Hf,q0

}q0∈K
k (f ∈ Fk,m) of iterated hash functions. It is evident

that these values of probabilities are the best least estimations that can
be established theoretically on the base of probabilistic approach.

Formulae (10) and (11) imply that if K = Q and k = m = 1, then
F1,1 is the set of all invertible binary operations on the set Q. Hence, if
K = Q and k = m = 1, then {Mf}f∈F1,1 is the set of all semi-automata
on the set QQ with the transition mapping defined by formula (7).
Thus, the following theorem is proved.

Theorem 3. For any quasigroup Q ∈ QQ each semi-automaton

M (i) = (Q,Q, δ
(i)
Q ) ∈ FQ (i ∈ {l, r}) defines the family {H

δ
(i)
Q
,q0
}q0∈Q
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of iterated hash functions, such that equalities

p
(1)

δ
(i)
Q
,q0,t

(q) = |Q|−1 (q0, q ∈ Q)

and

p
(2)

δ
(i)
Q
,q0,t

= |Q|−1(1− (|Q|t − 1)−1(|Q| − 1) (q0 ∈ Q)

hold for all t ∈ N+.

Summing up, we conclude that if the transition mapping can be
defined only by formula (7) then for the design of families of Crypto-
graphic iterated hash functions the set of semi-automata defined on the
set QQ is the most acceptable subset of the set of all semi-automata
defined on the set MQ.

Taking this factor into account, we can restrict ourselves to consider
the families of finite Mealy automata

FQ1,Q2 = {M (i,j) = (Q,Q,Q, δ
(i)
Q1
, λ

(j)
Q2

)}i,j∈{l,r} (Q1,Q2 ∈ QQ)

and the families of finite Moore automata

FQ,ξ = {M (i) = (Q,Q,Q, δ
(i)
Q , ξδ

(i)
Q )}i∈{l,r} (Q ∈ QQ, ξ ∈ SQ).

Since the binary operation in any quasigroup is invertible and any
ξ ∈ SQ is a bijection, then formulae (8), (9) and Proposition 2 imply
that the following proposition is true.

Proposition 4. Any family FQ1,Q2 (Q1,Q2 ∈ QQ) of finite Mealy

automata and any family FQ,ξ (Q ∈ QQ, ξ ∈ SQ) of finite Moore auto-

mata consists of reversible automata.

Propositions 1 and 4 imply that if the transition mapping can be
defined only by formula (7) and the output mapping can be defined
only by formula (8) (correspondingly, by formula (9)), then at the
resolving the problem of the design of stream ciphers the set of all finite
Mealy (correspondingly, Moore) automata defined on the set QQ is the
maximal admissible subset of the set of all Mealy (correspondingly,
Moore) automata defined on the set MQ.
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Let us analyze computational security of a stream cipher presented
by some finite automatonM ∈ FQ1,Q2∪FQ,ξ (Q1,Q2,Q ∈ QQ; ξ ∈ SQ).

It is evident that the initial state of the automaton M can be some
fragment of the session key. By induction on the length of an input
sequence it can be proved that the following theorem is true.

Theorem 4. For any finite automaton

M ∈ FQ1,Q2 ∪ FQ,ξ (Q1,Q2,Q ∈ QQ; ξ ∈ SQ)

the number of pre-images for each output string of the length l ∈ N+

equals to |Q|.

The established estimation does not depend on the length of the
output sequence. By this reason, any stream cipher presented by the
single automaton M ∈ FQ1,Q2 ∪ FQ,ξ (Q1,Q2,Q ∈ QQ; ξ ∈ SQ) with
the initial state being the secret session key is not computationally
secure. It is possible to eliminate this situation as follows.

Let G1 and G2 be some pseudo random generators that generate
integers, correspondingly, 1, . . . , |Q|, and 1, . . . , k. The stream cipher
can be defined as the system C = (M,G1,G2) with the initializations
of pseudo-random generators G1 and G2 being the secret session key.
The stream cipher C is functioning as follows.

The generators G1 and G2 generate some integers i1 and i2. The
finite automatonM is initialized at its i1-th state and the current input
sequence fragment of the length i2 is transformed. These actions are
repeated until all input sequence would be processed.

Theorem 4 implies that the following theorem is true.

Theorem 5. Let M ∈ FQ1,Q2 ∪ FQ,ξ (Q1,Q2,Q ∈ QQ; ξ ∈ SQ)
and the pseudo random generators G1 and G2 generate integers, cor-

respondingly, 1, . . . , |Q| and 1, . . . , k. Then for the stream cipher

C = (M,G1,G2) with the initializations of pseudo-random generators

G1 and G2 being the secret session key the number of pre-images for

each output string of the length l ∈ N+ is not less than |Q|k
−1l.

Since k > 0 is some fixed integer, then |Q|k
−1l → ∞ when l → ∞.

Thus, any stream cipher C = (M,G1,G2) with the initializations of
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pseudo-random generators G1 and G2 being the secret session key can
be considered as computationally secure stream cipher.

Computational security of stream ciphers defined by the considered
finite automata can be significantly increased if instead of the single
automaton M ∈ FQ1,Q2 ∪ FQ,ξ (Q1,Q2,Q ∈ QQ; ξ ∈ SQ) to deal
with the set S = {M1, . . . ,Mn} (n ≥ 2) of finite automata, where

Mj ∈ F
Q

(j)
1 ,Q

(j)
2

∪ FQ(j),ξ(j) (Q
(j)
1 ,Q

(j)
2 ,Q(j) ∈ QQ; ξ

(j) ∈ SQ).

Indeed, let G3 be some pseudo random generator that generates in-
tegers 1, . . . , n. This generator selects the automaton M ∈ S for trans-
formation of the current input sequence fragment. Then the stream
cipher C = (S,G1,G2,G3) with the initializations of pseudo-random
generators G1, G2 and G3 being the secret session key can be desig-
ned. It is evident that for this stream cipher the number of pre-images
for each output string of the length l ∈ N+ is some integer from the
interval [|Q|k

−1l, |Q|k
−1nl].

It is worth to note that even for the fixed integer n (n ≥ 2) searching
of the sets S that maximize the number of pre-images for each output
string is a hard problem.

Summing up, we conclude that if the transition mapping can be
defined only by formula (7) and the output mapping can be defined
only either by formula (8) or by formula (9), then at the resolving the
problem of the design of stream ciphers the set of all finite Mealy and
Moore automata defined on the set QQ is the most acceptable subset
of the set of all finite automata defined on the set MQ.

4 Finite semi-automata and automata over

quasigroups

Families of finite semi-automata and automata, defined on abstract
finite quasigroups, have been investigated in detail in [10]. The most
important of these results have been presented in Section 3 from a little
different point of view.

In [11] families of finite semi-automata and automata defined on
finite T -quasigroups have been investigated in detail. In this case the
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basic idea has been as follows.

Any Abelian group G = (Q,+) ∈ G
(A)
Q generates 3-parametric fa-

mily of T -quasigroups

FG = {(Q,+, ϕ, ψ, c)}ϕ,ψ∈Aut(G),c∈Q,

where (Q,+, ϕ, ψ, c) denotes the T -quasigroup (Q, ◦) ∈ Q
(T )
Q , such that

a ◦ b = ϕ(a) + ψ(b) + c. The following theorem is true.

Theorem 6. [11]. Any Abelian group G = (Q,+) ∈ G
(A)
Q generates

3-parametric family FG = {(Q,+, ϕ, ψ, c)}ϕ,ψ∈Aut(G),c∈Q of pair-wise

different T -quasigroups.

Thus, the family FG (G ∈ G
(A)
Q ) can be considered as the set of all

T -quasigroups generated by the Abelian group G.

It is evident that any set FG (G ∈ G
(A)
Q ) can be used as some base for

designing families of finite semi-automata, and families of finite Mealy
and Moore automata, such that the transition mapping is defined by
formula (7) and the output mapping is defined, correspondingly, by
formula (8) or by formula (9).

For finite semi-automata and automata designed in a such way the
upper bounds of time and space complexity for simulation of the functi-
oning during one instant of automaton time can be lowered (in compa-
rison with formulae (3) and (4)) as follows.

Let |Q| = pr11 . . . prmm , where m ≥ 1, ri ≥ 1 (i = 1, . . . ,m), and pi
(i = 1, . . . ,m) be pair-wise different prime integers. Then any Abelian

group G = (Q,+) ∈ G
(A)
Q can be uniquely presented as the direct sum

of cyclic subgroups of prime-power order

G ∼=

m
⊕

i=1





ki
⊕

j=1

(Z
p
dij
j

,+ij)



 , (12)

where dij (i = 1, . . . ,m; j = 1, . . . , ki) are fixed positive integers, such
that 1 ≤ di1 ≤ · · · ≤ diki and ri = di1 + · · · + diki for all i = 1, . . . ,m;

Z
p
dij
j

= {0, 1, . . . , p
dij
j − 1}, and by +ij it is denoted a module p

dij
j
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addition for all i = 1, . . . ,m and j = 1, . . . , ki. The following theorem
is true.

Theorem 7. [11]. Let G = (Q,+) ∈ G
(A)
Q , where |Q| = pr11 . . . prmm ,

m ≥ 1, ri ≥ 1 (i = 1, . . . ,m), and pi (i = 1, . . . ,m) are pair-wise diffe-

rent prime integers. For any T -quasigroup (Q, ◦) = (Q,+, ϕ, ψ, c) ∈ FG

time and space complexity for computing the value a ◦ b (a, b ∈ Q) are

equal, correspondingly, to

T◦ = O(max{p
dij
i dij log pi|i = 1, . . . ,m ∧

∧ j = 1, . . . , ki}) (

m
∑

i=1

pi → ∞∨
m
∑

i=1

ri → ∞), (13)

V◦ = O(m ·max{dij log pi|i = 1, . . . ,m ∧

∧ j = 1, . . . , ki}) (

m
∑

i=1

pi → ∞∨
m
∑

i=1

ri → ∞). (14)

Comparing formulae (13) and (14) according to formulae (3) and (4)
we conclude that for finite semi-automata and automata designed on
T -quasigroups (Q, ◦) = (Q,+, ϕ, ψ, c) ∈ FG time and space complexity
for simulation of the functioning during one instant of automaton time
can be much lower than in general case.

Considering finite semi-automata and automata on T -quasigroups
(Q, ◦) = (Q,+, ϕ, ψ, c) ∈ FG it is necessary to mark the following cir-
cumstance especially.

It is well known that any elliptic curve γ over any finite field defi-
nes the Abelian group Gγ = (Gγ ,+γ), where Gγ is the set of all points
of γ including specified point O that serves as the neutral element of
the group Gγ . Families of finite Mealy and Moore automata defined by
recurrence relations on the group Gγ have been considered in [1]. It has
been established that identification for these automata is a hard pro-
blem. Thus, these finite automata can be used at resolving information
protection problems.
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Proceeding from the Abelian group Gγ the set FGγ of T -quasigroups
can be constructed. On the base of this set, families of finite semi-
automata, and families of finite Mealy and Moore automata, such that
the transition mapping is defined by formula (7) and the output map-
ping is defined by formula (8) or by formula (9), can be designed.

These generalizations of families of finite Mealy and Moore auto-
mata that have been considered in [1] imply the feasibility for using
finite T -quasigroups at resolving information protection problems.

5 Conclusions

In the given paper families of finite semi-automata and reversible finite
Mealy and Moore automata have been defined and analyzed. These
models have been applied to establish that the set of finite quasigroups
(i.e. the maximal subset of cancellative finite magmas) is the most
acceptable subset of the set of finite magmas at resolving model pro-
blems in Cryptography, such as design of iterated hash functions and
stream ciphers.

It has been also established that the set of finite T -quasigroups
can be applied for designing families of finite semi-automata and re-
versible finite Mealy and Moore automata, such that, both, time and
space complexity for simulation of the functioning during one instant
of automaton time is much lower than in general case.

The following further research can be pointed.

Firstly, it is the investigation in detail of the sets of families of
finite semi-automata and reversible finite Mealy and Moore automata

generated by the sets FG (G ∈ G
(A)
Q ) under the supposition that in the

decomposition (12) the integers p
dij
j (i = 1, . . . ,m; j = 1, . . . , ki) differ

a little from each other.

The significance of this case consists in the fact that for such semi-
automata and reversible finite Mealy and Moore automata, both, time
and space complexity for simulation of the functioning during one in-
stant of automaton time are very close to the minimal possible simu-
lation time.
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Secondly, it is important to define and to investigate in detail suffi-
ciently narrow non-trivial subsets S of the set QQ that differ from the

subset Q
(T )
Q and satisfy exactly to one of the following two excluding

each other conditions.

The first condition consists that for any quasigroup G ∈ S time and
space complexity of computing a ◦ b (a, b ∈ Q) is close to estimations
established by formulae (3) and (4).

In this case for semi-automata and reversible finite Mealy and
Moore automata defined on the set S, both, time and space complexity
for simulation of the functioning during one instant of automaton time
are very close to estimations established by formulae (3) and (4).

The second condition consists in the fact that for any set Q there
exists some positive integer m such that m = o(|Q|) (|Q| → ∞), and
for any quasigroup G ∈ S time and space complexity of computing a◦ b
(a, b ∈ Q) are defined by formulae

T◦ = O(m−1|Q| logm−1|Q|) (|Q| → ∞), (15)

V◦ = O(m logm−1|Q|) (|Q| → ∞), (16)

In this case for semi-automata and reversible finite Mealy and
Moore automata defined on the set S, both, time and space complexity
for simulation of the functioning during one instant of automaton time
are very close to estimations established by formulae (15) and (16).
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