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Abstract

In this paper we describe an ongoing work on implementation
of the composition-nominative approach to program formaliza-
tion in Mizar proof assistant based on the first-order logic and
axiomatic set theory. The further aim of this work is develop-
ment of a formal verification tool for software which processes
and communicates with complex forms of data.
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1 Introduction

Formal verification of software systems has been a topic of interest of
researches in computer science for more than fifty years. During this
period many formal software verification tools based on different theo-
retical frameworks (automata theory, first-order logic, dynamic logics,
program logics, etc.) were developed, but most of the existing tools are
still in research stage and their usage in software industry is negligible.
Some reasons include:

- they do not integrate well into typical software development cycles;

- successful practical application of such tools requires specialized
knowledge, is labour intensive, time consuming, and not cost effective
for most software projects.

However, in industries related to development of safety-critical sy-
stems such as aerospace, automotive, health technology formal verifi-
cation of software plays a more significant, but still limited role.
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The well known tools that support or aid formal verification of
software for safety-critical systems include:

- model checkers such as Simulink Design Verifier, Systerel Smart
Solver;

- verified translators and compilers such as CompCert that generate
code in a low-level language or machine code from the source code in a
high-level language that is proven to be equivalent to the source code
under the assumptions of the formalized source and target language
semantics;

- microkernels and hypervisors such as seL4 and CertiKOS that
are formally verified with respect to formal specifications of their ap-
plication programming interfaces and formal models of microprocessor
instruction set architectures.

These tools allow one to eliminate some sources of deviations of
software implementation from its specification and the implied safety
problems, however, they and their underlying theoretical frameworks
focus on verification of relatively simple systems, primarily on systems
of the following types:

- software which performs basic logical operations or numerical com-
putations (e.g. software controllers);

- communication protocols which involve simple types of data.

Therefore such tools lack sufficiently easily usable methods of veri-
fication of

- software which performs complex processing of partially structu-
red (semistructured) data;

- communication protocols which involve complex types of data.

Besides, their application is restricted because it requires specialized
knowledge, is labour intensive, and time consuming.

These restrictions are a factor that may prevent expansion of
the mentioned tools and theoretical frameworks outside of traditio-
nal safety-critical systems domains. Emerging high tech areas like the
Internet of Things (IoT) rely on the idea of combining software sys-
tems and hardware devices and physical objects which involve complex
interaction protocols, large-scale interaction, and processing of large
volumes of semistructured data e.g. in home automation, smart buil-
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dings, smart cities, etc. Errors in IoT software can impact the real
world and lead to cyber security breaches or direct hazards to humans,
but due to the nature of IoT systems in each particular case the poten-
tial impact of software errors is difficult to asses. Moreover, such errors
are difficult to eliminate through testing, because IoT systems have to
be able to function under variety of circumstances which are costly to
model or reproduce. Thus IoT and other relevant high-tech areas could
benefit from introduction of formal software verification approaches to
their systems development processes.

Software for the Internet of Things (IoT) and other emerging high-
tech areas has some differences from traditional safety-critical software
which make application of the state-of-the-art verification tools to it
rather difficult. One of them is processing of complex, usually se-
mistructured types of data, instead of simple types of data such as
logical values or numbers. Usually such data are encoded in data for-
mats like JSON and XML which have tree-like, hierarchical nature.

2 General considerations about implementa-

tion of the approach

The work described in this paper aims to implement a formal verifica-
tion tool which may overcome some limitations of the existing verifi-
cation tools which prevent them to deal with software which processes
complex, semistructured types of data.

The implementation of this tool is based on the composition-
nominative approach to program formalization [1] [2] [3], and the Mizar
system [4] [5], a software for formalizing mathematical theories (proof
assistant) based on first-order logic and Tarski-Grothendieck set the-
ory and a library of already formalized theories (Mizar Mathematical
Library).

Composition-nominative approach provides the means of formaliza-
tion of data – the notion of nominative data which is able to uniformly
represent common forms of data used in programming (e.g. lists, trees,
tables, multidimensional arrays, etc.), mathematical models of software
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which operates on such data based on generalization of Glushkov al-
gorithmic algebras [6], and a logic for reasoning about properties and
correctness of such software – a generalized Floyd-Hoare logic [7] [8]
with partial pre- and post-conditions for programs which operate on
nominative data [9] [10]. The Mizar system provides an environment
where the notions, models and logics of the composition-nominative
approach can be formalized and implemented. In more detail the plan
of their implementation in Mizar is described in [11].

A benefit of usage of Mizar as such an environment is that the Mi-
zar Mathematical Library includes a large amount of notions and facts
about continuous mathematics which allow formalization of mathema-
tical models of physical aspects of IoT systems. More details on the link
between the composition-nominative approach and the mathematical
systems theory can be found in [12] [13].

3 Mizar Formalization

We formalized the basic notions of composition-nominative approach
in a series of Mizar papers entitled NOMIN 1.MIZ [14]–NOMIN 4.MIZ
and PARTPR 1.MIZ [15]. More specifically, we formalized

• the notion of a nominative data with simple names and complex
values called the nominative data of type TNDSC [6];

• the main operations on nominative data of type TNDSC – na-
ming, denaming, overlapping [6]; together with their domain they
form an algebra called the nominative data algebra;

• the notion of a partial predicate on an arbitrary nonempty set;

• the logical compositions of negation, conjunction, disjunction [6]
on partial predicates defined in accordance with the truth tables
of Kleene’s strong logic of indeterminacy [16]; together with the
set of partial predicates they form an algebra which belongs to
the class of Kleene algebras [17];
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• the notion of a binominative function [6] which is a partial
function mapping nominative data to nominative data; such
functions serve as semantic models of sequential programs which
process nominative data;

• the main compositions on binominative functions and partial pre-
dicates on nominative data [6] – sequential composition (of two
binominative functions), superposition (of binominative functions
into a binominative function or a predicate on nominative data),
assignment (of the result of a binominative function to a name),
branching (“if” operator), loop (“while” operator); together with
the sets of binominative functions and predicates on nominative
data and several chosen constants (null-ary compositions) they
form an algebra called the nominative algorithmic algebra [18]
which generalizes Glushkov algorithmic algebras [19];

• the notion of a Hoare triple [9], [7], [8] consisting of a precondition,
a program, and a postcondition; the precondition and postcondi-
tion are partial predicates on nominative data; the program is a
binominative function;

• the Floyd-Hoare composition [9];

• the rules of the extended Floyd-Hoare logic [9] for programs over
nominative data (on semantic level) which allow reasoning about
Hoare triples with partial pre- and post-conditions.

The mentioned elements allow one to

• represent semantics of sequential programs which process hierar-
chically organized data (modeled as nominative data) in the form
of binominative functions in Mizar;

• formulate program properties in the form of Hoare triples with
pre- and postconditions represented by partial predicates on no-
minative data;
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• prove program properties using the rules of the extended Floyd-
Hoare logic in Mizar.

The main elements of the mentioned Mizar formalization are descri-
bed below. The details on syntax and semantics of the Mizar language
can be found in [20].

The set of nominative data with simple names and complex values
[6] over given (arbitrary, but fixed) nonempty sets of names V and
atomic values A is the set

ND(V,A) =
⋃

∞

k=0
NDk(V,A),

where

ND0(V,A) = A ∪ {∅},

NDk+1(V,A) = A ∪
(

V
n

−→NDk(V,A)
)

, k ∈ {0, 1, 2, ...}.

Here V
n

−→ X denotes the set of all partial functions with finite graph
from V to a set X.

The set ND(V,A) and the associated notions are formalized in
Mizar as follows (the detailed definitions can be found in [14] [21]):

• The Mizar mode NonatomicND of V,A represents the type of
nonatomic nominative data, i.e. the type of elements of the set
ND(V,A)\A. Here V,A are set-valued parameters of the type.

• The mode TypeSCNominativeData of V,A represents the type of
elements of the set ND(V,A) (i.e. of either atomic or nonatomic
nominative data). It is defined as

definition

let V,A be set;

mode TypeSCNominativeData of V,A -> set means

it in A or it is NonatomicND of V,A;

end;

• The functor ND(V,A) -> set represents the set ND(V,A) men-
tioned above. It is defined using TypeSCNominativeData as
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definition

let V,A be set;

func ND(V,A) -> set equals

the set of all D

where D is TypeSCNominativeData of V,A;

end;

The main operations on nominative data are formalized in two ways
(the detailed definitions can be found in [14]).

Firstly, each operation is defined as a functor which receives a no-
minative data as an input and returns a nominative data.

• The functor naming(V,A,v,D) -> NonatomicND of V,A (where
D is of type TypeSCNominativeData of V,A) represents the na-
ming operation ⇒ v on ND(V,A); here V,A,v are the operation’s
parameters (assumed to be fixed) and D is the operation’s input.
The operation’s result is a nonatomic nominative data.

• The functor denaming(v,D) -> TypeSCNominativeData of V,A

(where D is of type NonatomicND of V,A) represents the dena-
ming operation v ⇒ on ND(V,A); here V,A,v are the operation’s
parameters (assumed to be fixed) and D is the operation’s input.
The operation’s result is a nominative data.

• The functor global overlapping(V,A,d1,d2) ->

TypeSCNominativeData of V,A (where d1,d2 are data of type
TypeSCNominativeData of V,A) represents the binary overlap-
ping operation ∇ on ND(V,A). Here V,A are the operation’s
parameters (assumed to be fixed) and d1,d2 are the operation’s
left and right input respectively.

Secondly, each operation is defined using a functor which returns
the corresponding partial function on nominative data:

definition

let V,A be set; let v be object;

func naming(V,A,v)

-> Function of ND(V,A),ND(V,A) means
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for D being TypeSCNominativeData of V,A holds

it.D = naming(V,A,v,D);

end;

definition

let V,A be set; let v be object;

func denaming(V,A,v)

-> PartFunc of ND(V,A),ND(V,A) means

dom it = ND(V,A) \ A &

for D being NonatomicND of V,A st not D in A

holds it.D = denaming(v,D);

end;

definition

let V,A be set; let v be object;

func local_overlapping(V,A,v)

-> PartFunc of [:ND(V,A),ND(V,A):],ND(V,A)

means

dom it = [: ND(V,A) \ A , ND(V,A) \ A :] &

for d1,d2 being NonatomicND of V,A

st not d1 in A & not d2 in A holds

it. [d1,d2] = local_overlapping(V,A,d1,d2,v);

end;

Depending on the way of usage, one of these two formalizations of
operations may be more convenient than another one.

The types of partial predicates on nominative data and binomina-
tive functions are defined as follows [18]:

definition

let V,A;

mode SCPartialNominativePredicate of V,A

is PartFunc of ND(V,A),BOOLEAN;

mode SCBinominativeFunction of V,A

is PartFunc of ND(V,A),ND(V,A);

end;

Also, the sets of partial predicates on nominative data (Pr(V,A))
and binominative functions (FPrg(V,A)) are defined as follows:
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definition

let V,A;

func Pr(V,A) -> set equals

PFuncs(ND(V,A),BOOLEAN);

coherence;

func FPrg(V,A) -> set equals

PFuncs(ND(V,A),ND(V,A));

coherence;

end;

Binominative functions represent semantics of sequential programs
which process nominative data (i.e. receive input data, perform cer-
tain computations and produce output data) and partial predicates
represent semantics of conditions on nominative data.

Binominative functions corresponding to programs are constructed
from the basic functions using operations (compositions) correspon-
ding to programming language constructs like sequential execution,
branching, loop.

These compositions were defined mathematically in [6]. The most
important of them are formalized in Mizar as follows (the detailed
formal definitions can be found in [18]).

• The functor

SCassignment(V,A,v) -> Function of FPrg(V,A),FPrg(V,A)

formalizes the unary assignment composition Asgv which acts on
the set of binominative functions ND(V,A)→̃ND(V,A) on data
of type TNDSC . Here v is a parameter (name) to which a value is
assigned. The result of application of the assignment composition
Asgv(f) (where f : ND(V,A)→̃ND(V,A) is given) represents the
semantics of the program consisting of the assignment statement
v := f , where f is the semantics of the expression in program
variables on the right hand side of the assignment statement.

• The functor SCIF(V,A) ->

Function of [:Pr(V,A),FPrg(V,A),FPrg(V,A):],FPrg(V,A)

formalizes the ternary branching composition IF . The result
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of application of branching composition IF (p, f, g), where p :
ND(V,A)→̃{T, F} is a partial predicate, T, F are logical values
(True, False), and f, g : ND(V,A)→̃ND(V,A) are binominative
functions, represents semantics of the program consisting of the
statement “if p then f else g”.

• The functor SCwhile(V,A) ->

Function of [:Pr(V,A),FPrg(V,A):],FPrg(V,A)

formalizes the binary While loop composition WH. The result of
application of the While loop composition WH(p, f), where p :
ND(V,A)→̃{T, F} is a partial predicate, T, F are logical values
(True, False), and f : ND(V,A)→̃ND(V,A) is a binominative
function, represents semantics of the program consisting of the
statement “while p do f end”.

The necessary compositions of partial predicates on arbitrary sets
are formalized in PARTPR 1.MIZ [15].

Generally, the set of partial predicates (on an arbitrary nonempty
set D) is formalized as follows:

definition

let D;

func Pr(D) -> set equals

PFuncs(D,BOOLEAN);

coherence;

end;

The compositions are formalized as follows:

• The functor PPnegation(D) -> Function of Pr(D),Pr(D) re-
presents the negation on partial predicates on a set D.

• The functor
PPdisjunction(D) -> Function of [:Pr(D),Pr(D):],Pr(D)

represents the disjunction on partial predicates on a set D.

Alternatively, the negation and disjunction operations on predicates
are formalized as functors PP not and PP or as follows:
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definition

let D,p,q;

func PP_or(p,q) -> PartialPredicate of D equals

PPdisjunction(D).(p,q);

coherence;

commutativity;

idempotence;

end;

definition

let D,p;

func PP_not(p) -> PartialPredicate of D equals

PPnegation(D).p;

coherence;

involutiveness;

end;

There are also specializations of these notions for predicates on
nominative data.

• The functor

SC not(p) -> SCPartialNominativePredicate of V,A

where p is of type SCPartialNominativePredicate of V,A, re-
presents the negation on partial predicates on

ND(V,A)→̃{T, F}.

• The functor

SC or(p,q) -> SCPartialNominativePredicate of V,A

where p,q are of type SCPartialNominativePredicate of V,A,
represents the disjunction on partial predicates on

ND(V,A)→̃{T, F}.

Conjunction and implication are formalized as a derived composi-
tions using negation and disjunction:

definition

let V,A,p,q;
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func SC_and(p,q) -> SCPartialNominativePredicate of V,A equals

SC_not SC_or(SC_not(p),SC_not(q));

coherence;

commutativity;

idempotence;

func SC_imp(p,q) -> SCPartialNominativePredicate of V,A equals

SC_or(SC_not(p),q);

coherence;

end;

For reasoning about properties of programs (binominative functi-
ons) on nominative data an extended Floyd-Hoare logic [9] is used.

Semantically, it is based on the notion of a Hoare triple formalized
in Mizar as follows.

A semantic Floyd-Hoare triple is a triple (p, f, q), where

• p, q : ND(V,A)→̃{T, F} are partial predicates on ND(V,A) cal-
led the pre- and post-condition respectively;

• f : ND(V,A)→̃ND(V,A) is a binominative function (represen-
ting semantics of a program),

such that for each data d ∈ ND(V,A), if p(d) is defined and true, f(d)
is defined, and q(f(d)) is defined, then q(d) is true.

This means that whenever the precondition (p) is satisfied (p(d)
is true) on the input data (d) of the program (f), and the program
terminates on the input data (f(d) is defined), and the postcondition
(q) is defined on the program’s output (f(d)), the postcondition is
satisfied on the program’s output (i.e. q(f(d)) is true).

The set of all semantic Floyd-Hoare triples (for pre-/postconditions
and binominative functions over ND(V,A)) is formalized in Mizar as
follows:

definition

let V,A;

func SemanticFloydHoareTriples(V,A) -> set equals

{ <*p,f,q*> where p,q is SCPartialNominativePredicate of V,A,

f is SCBinominativeFunction of V,A :
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for d holds d in dom p & p.d = TRUE & d in dom f &

f.d in dom q implies

q.(f.d) = TRUE };

coherence;

end;

notation

let V,A;

synonym SFHTs(V,A) for SemanticFloydHoareTriples(V,A);

end;

The type of semantic Floyd-Hoare triples is introduced as follows:

definition

let V,A;

mode SemanticFloydHoareTriple of V,A

is Element of SemanticFloydHoareTriples(V,A);

mode SFHT of V,A is Element of SFHTs(V,A);

end;

Then semantic versions of the rules of the extended Floyd-Hoare lo-
gic for programs over nominative data [11] are formalized in the form of
theorems which state that under certain conditions, the results of appli-
cation of certain compositions to predicates and binominative functions
form a semantic Floyd-Hoare triple.

For example, the composition rule R IF described in [11] is forma-
lized as follows:

theorem

<*SC_and(r,p),f,q*> is SFHT of V,A &

<*SC_and(SC_not(r),p),g,q*> is SFHT of V,A implies

<*p,SC_IF(r,f,g),q*> is SFHT of V,A

This theorem formalizes the fact that (p, IF (r, f, g), q) is a semantic
Floyd-Hoare triple, if both (r ∧ p, f, q) and (¬r ∧ p, g, q) are semantic
Floyd-Hoare triples.

Informally, this means that in order to prove that from the assump-
tion that on the input data of the program
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if r then f else g

the precondition p holds, after execution of this program the postcon-
dition q holds, it is sufficient to show that

• if r∧p holds before execution of f (the first branch), then q holds
after execution of f

• if ¬r ∧ p holds before execution of g (the second branch), then q

holds after execution of g.

Other rules of the extended Floyd-Hoare logic for programs on no-
minative data are formalized in a similar way.

4 Conclusions

We have described the ongoing work on implementation of the composi-
tion-nominative approach to program formalization in Mizar proof as-
sistant. In particular, we described the way in which hierarchical data,
sequential programs and conditions on hierarchically organized data
are formalized and the way in which rules of an extended Floyd-Hoare
logic for reasoning about properties of such programs are represented
in Mizar. We plan to use the obtained results as a basis for develop-
ment of a formal verification tool for software which processes complex
forms of data.
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