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Parallel algorithm to find Bayes-Nash solution

to the bimatrix informational extended game

Boris Hancu, Anatolie Gladei

Abstract

We propose to use the new methodology for solving the com-
plete and perfect information bimatrix game. To solve the ga-
mes of these type we construct the incomplete and imperfect
information game generated by the informational extended stra-
tegies. Then we construct associated Bayesian game with non-
informational extended strategies. For a HPC cluster computing
system with shared and distributed memory, we constuct a paral-
lel algorithm for computing Bayes-Nash solutions to the bimatrix
informational extended games. The complexity and time perfor-
mance analysis of the algorithm are provided.

Keywords: game, strategy, Nash equilibrium, Bayes-Nash
solution, parallel algorithm, time complexity, communication
complexity.

1 Bayes-Nash solutions to the bimatrix infor-

mational extended games

1.1 Bimatrix informational extended games

We consider the bimatrix game in the following strategic form

Γ = 〈I, J,A,B〉 , (1.1.1)

where I = {1, 2, .., n} is the line index set (the set of strategies of
the player 1), J = {1, 2, ..,m} is the column index set (the set of
strategies of the player 2) and A = ||aij ||

j∈J
i∈I , B = ||bij ||

j∈J
i∈I are the

payoff matrices of player 1 and player 2, respectively. All players know
exactly the payoff matrices and the sets of strategies. Players maximize
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their payoffs. Denote by (1 ⇆ 2) the following ”informational decision
making model” [1,2]: the player 1 knows exactly the value of the
strategy chosen by the player 2, as well as, simultaneously, the player
2 knows exactly the value of the strategy chosen by the player 1. So we
will analyze the game (1.1.1) in complete information (the players know
exactly the normal form of the game) and (1 ⇆ 2)-perfect information
over the sets of pure strategies.

The conditions described above stipulate that we can use the set of
informational extended strategies i : J → I, so that ∀j ∈ J, i(j) ∈ I
of the player 1 and j : I → J, so that ∀i ∈ I, j(i) ∈ J of the player
2. According to [3] we can describe the informational extended strate-
gies in bimatrix game as follows: i = i1i2...ij ...im and j = j1j2...ji...jn,
where the element ij = i(j) (respectively ji = j(i)) of this number
string means the following: if the player 2 (respectively the player 1)
chooses the column j ∈ J (chooses the line i ∈ I), then the player
1 (the player 2) will choose the line ij ∈ I (will choose the column
ji ∈ J). So the number string i, respectively j, is called the infor-
mational extended strategy of the player 1, respectively informational
extended strategy of the player 2. The sets I = {i = i1i2...ij ...im},
where i go through the values from I and J = {j = j1j2...ji...jn},
where j go through the values from J , are called the sets of in-
formational extended strategies of the player 1, respectively of the
player 2. The (i, j) is called the informational extended strategy pro-
file. The set Ĩ = {ij ∈ I : ij 6= ik,∀j, k ∈ J, j 6= k} ⊆ I, respectively

J̃ = {ji ∈ J : ji 6= jr∀i, r ∈ I, i 6= r} ⊆ J , is the set of informational
non extended strategies of the player 1, respectively 2, generated by
the informational extended strategies i, respectively j.

It should be mentioned that the players do not know the informa-
tional extended strategies of each other and from this point of view we
can consider that the game has imperfect information structure over
the sets of the informational extended strategies.

Denote by Game (1 ⇆ 2) the bimatrix game in the informatio-
nal extended strategies, described above. Remark that the notation
Game (1 ⇆ 2) does not represent the normal form. This game is in
imperfect information on the set of informational extended strategies,
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but because we do not know yet the normal form, we can not say
if this game is in complete or incomplete information. For the game
in informational extended strategies it is very difficult to construct
utility matrices. So we can not answer the following question: for
any informational extended strategy profile (i, j) which element of

the matrix A and B should be considered as a payoff value of the
player 1 and 2 ? For example, consider the following bimatrix game

A =

(
3 5 4
6 7 2

)
, B =

(
0 5 1
4 3 2

)
in complete and (1 ⇆ 2)-perfect infor-

mation and suppose that the informational extended strategy of the
player 1 is i = 111223, and for the player 2 is j = 1122. For strategy
profile (i, j) ≡ (111223, 1122) we can not determine which elements

in matrices A and B can be considered as payoff values for players 1
and 2.

Thus, in order to solve games in informational extended strategies,
we propose to use the new methodology described in [3]. We will briefly
present one of these methodologies.

1.2 The incomplete and imperfect information game ge-

nerated by the informational extended strategies

As it was mentioned in [3] any fixed strategy profile (i, j) in infor-
mational extended strategies generates a couple of matrices A(i, j) =
||aij ||

j∈J
i∈I = ||aijji ||

j∈J
i∈I , B(i, j) = ||bij||

j∈J
i∈I = ||bijji ||

j∈J
i∈I that represent

the utility of the players in informational non extended strategies ge-
nerated by the informational extended strategies i, respectively j. For
strategy profile (i, j) the elements aij ≡ aijji , bij ≡ bijji reprezent the
payoff of the player 1 and of the player 2, respectively, if player 1 choo-
ses the line i ∈ I and the player 2 chooses the column j ∈ J in the
complete and (1 ⇆ 2)-perfect information bimatrix game. As the play-
ers do not know what informational extended strategies are chosen by
the other partners, then the player 1, respectively player 2, will have a
possible utility matrices from the following set of matrices {A(i, j)}j∈Ji∈I ,

respectively {B(i, j)}j∈Ji∈I . The game of this type is the game in incom-
plete information because neither player 1 nor player 2 knows exactly
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which matrix from the mentioned set of matrices will be his utility.

So the game Game (1 ⇆ 2) in imperfect information on the set of
informational extended strategies generates the following incomplete
and imperfect information game on the set of informational non exten-
ded strategies: the strategies of the player 1 are I = {1, 2, ..., n} and of
the player 2 are J = {1, 2, ...,m}; the payoff matrix of the player 1 is

one of the matrices from the set {A(i, j)}j∈J
i∈I

and the payoff matrix of

the player 2 is one of the matrices from the set {B(i, j)}j∈J
i∈I

.

Finally, using the informational extended strategies in the game
(1.1.1) with complete and (1 ⇆ 2)-perfect information we obtain the
following normal form of the incomplete (asymmetric) and imperfect
information game

Γ̃ =

〈
{1, 2}, I, J,

{
AB(i, j) =

∥∥(aijji , bijji
)∥∥j∈J

i∈I

}j∈J

i∈I

〉
. (1.2.1)

1.3 The associated bayesian game

According to [4] and [5] we can construct the bimatrix Bayesian game
for the bimatrix incomplete information game Γ̃ from (1.2.1) that con-
sists of the following elements described in [6].

A set of players is {1, 2}. A set of possible actions for each player:
for player 1 is I = {1, 2, .., n}, the line index, and for player 2 is J =
{1, 2, ..,m}, the column index of the payoff matrices.

A set of possible types for each player: the types of the player 1
are ∆1 = {α = 1, ..., nm} and of the player 2 are ∆2 = {β = 1, ...,mn}.
Only player 1 (player 2) knows his type α (his type β) when play begins.
So we say that the player 1 is of the type α if he chooses the matrix
A(α, β) ≡ A(iα, jβ) = ||a

iαj j
β
i

||j∈Ji∈I as the payoffs and respectively, we

say that the player 2 is of the type β if he chooses the matrix B(α, β)
≡ B(iα, jβ) = ||b

iαj j
β
i

||j∈Ji∈I as the payoffs. Here iα ∈ I, jβ ∈ J.

The probability p (respectively q) summarizes what player 1 (re-
spectively player 2), given his type, believes about the types of the

other players. So, p(β|α) =
p(β ∩ α)

p(α)
(Bayes’Rule) (respectively
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q(α|β) =
q(α ∩ β)

q(β)
) is the conditional probability assigned to the type

β ∈ ∆2 (respectively α ∈ ∆1) when the type of the player 1 is α
(respectively of the player 2 is β).

Combining actions and types for each player it is possible to
construct the strategies that may assign different actions to diffe-
rent types. In this way we will construct the strategies of the
players. If player 1 is of type α ∈ ∆1 and he knows that the
type of the player 2 may be an element from the set ∆2 = {β =
1, ...,κ2}, and as the utility matrix elements also depend on the type
β of player 2, then the set of matrices that represents his utility is{
A(α, β) = ||a

iα
j
j
β
i

||j∈Ji∈I ≡
∥∥∥aαβij

∥∥∥
j∈J

i∈I

}β=1,κ2

α=1,κ1

. For α-type player 1 we

will denote the pure strategy by l = l1l2...lβ ...lκ2
and it has the fol-

lowing meaning: the player 1 will choose the line l1 ∈ I from the
utility matrix A(α, 1) if β = 1, and line l2 ∈ I from the utility ma-
trix A(α, 2) if β = 2 and so on: line lκ2

∈ I from the utility matrix
A(α,κ2) if β = κ2. Denote by L(α) the set of all pure strategy of
the α-type player 1. Similarly, if player 2 is of type β ∈ ∆2 and
he knows that the type of player 1 may be an element from the set
∆1 = {α = 1, ...,κ1}, and as the utility matrix elements depend also
on the type α of player 1, then the set of matrices that represents

his utility is

{
B(α, β) = ||b

iα
j
j
β
i

||j∈Ji∈I ≡
∥∥∥bαβij

∥∥∥
j∈J

i∈I

}

α=1,κ1

. So for β-type

player 2 we will denote the pure strategy by c = c1c2...cα...cκ1
and it

has the following meaning: the player will chose column c1 ∈ J from
utility matrix B(1, β) if α = 1, and column c2 ∈ J from utility matrix
B(2, β) if α = 2 and so on he will chose column cκ1

∈ J from utility
matrix B(κ1, β) if α = κ1. Denote by C(β) the set of all pure strategies
of β-type player 2. So let the type of the player 1 is α with probability
p = 1 and the type of the player 2 is β with the probability q = 1. Then
the payoffs of the player 1 in the strategy profile (l, c) is the element

aαβij , where i = lβ (the line i from the utility matrix A(α, β)), j = cα
(the column j from utility matrix A(α, β)).

A payoff function specifies each player’s expected payoff matrices
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for every possible combination of all player’s actions and types. Hence,
if the player 1 is of type α, that is, he will choose the strategy lα

only from the set L(α), which ensures the payoffs determined by the
matrices A(α, β), and believes with the probability p(β|α) that the
player 2 plays the strategy c ∈ C(β) for β ∈ ∆2, then expected payoffs
of α-type player 1 is the following matrix

A(α)= ‖alc‖
c∈C(β)
l∈L(α) (1.3.1)

and

alc ≡ al1l2...lβ ...lκ2
c1c2...cα...cκ1

=
∑

β∈∆2

p(β/α)alβcα ≡
∑

β∈∆2

p(β/α)aαβij .

Similarly, if the player 2 is of type β, that is, he will choose the strategy
cβ only from the set C(β), which ensures the payoffs determined by
the matrices B(α, β), and believes with the probability q(α|β) that the
player 1 plays the strategy l ∈ L(α) for α ∈ ∆1, then expected payoffs
of β-type player 2 is the following matrix

B(β)= ‖blc‖
c∈C(β)
l∈L(α) (1.3.2)

and blc ≡ bl1l2...lβ...lκ2
c1c2...cα...cκ1

=
∑

α∈∆1

q(α|β)blβcα ≡
∑

α∈∆1

q(α|β)bαβij .

Here i = lβ and j = cα. So for the incomplete information game Γ̃ from
(1.2.1), the normal form game

ΓBayes = 〈{1, 2}, {∆1,∆2} ,L,C,A,B〉 , (1.3.3)

where L =
⋃

α∈∆1

L(α), C =
⋃

β∈∆2

C(α) and the utility matrices are A =

‖A(α)‖α∈∆1
and B = ‖B(β)‖β∈∆2

, is called the associated Bayesian
game in the non informational extended strategies. The matices A and
B are the ”big matrices”, that consist of the submatrices of the type
A(α) and B(β), respectively.

The games defined above are sometimes called Bayesian normal
form games, since the drawing of types is followed by a simultaneous

44



Parallel algorithm to find Bayes-Nash solution in the informational . . .

move game. Denote by BE [ΓBayes] the set of all Bayes-Nash strategies
profile of the game ΓBayes from (1.3.3). For any fixed α ∈ ∆1 and
β ∈ ∆2 the game subΓBayes = 〈{1, 2},L(α),C(β),A(α),B(β)〉 will be
called a subgame of the Bayesian game ΓBayes from (1.3.3), and using
the notion of ”type-players”, the subΓBayes is the bimatrix game of the
α-type player 1 and of the β-type player 2.

So we have the following diagram
Γ ⇒ Game (1 ⇆ 2) ⇒ Γ̃ ⇒ ΓBayes

The game in

complete and

perfect

information

over the sets

of pure

strategies

The game

in imperfect

information

over the sets of

informational

extended

strategies

The incomplete

and imperfect

information

game generated

by the informa-

tional extended

strategies

Associated

Bayesian

game in the

non

informational

extended

strategies

Consider the following bimatrix game H1 =

(
3 5 4
6 7 2

)
, H2 =

(
0 5 1
4 3 2

)

in complete and (1 ⇆ 2)− perfect information and suppose that the in-
formational extended strategies of the player 1 are i1 ≡ i1i2i3 = 111223,
i2 ≡ i1i2i3 = 112213 and respectively, of the player 2 are j1 ≡ j1j2 =
1122 and j2 ≡ j1j2 = 2112. The informational extended strategies{
i1, i2, j1, j2

}
generate an incomplete information bimatrix game Γ̃ in

which the payoff matrix may be one of the following matrices and
imperfect information over the set of informational non extended stra-
tegies I, J:

AB
(
i1, j1

)
=

(
(3, 0) (3, 0) (6, 4)
(5, 5) (5, 5) (7, 3)

)
, AB

(
i2, j1

)
=

(
(3, 0) (6, 4) (3, 0)
(5, 5) (7, 3) (5, 5)

)
,

AB
(
i1, j2

)
=

(
(5, 5) (5, 5) (7, 3)
(3, 0) (3, 0) (6, 4)

)
, AB

(
i2, j2

)
=

(
(5, 5) (7, 3) (5, 5)
(3, 0) (6, 4) (3, 0)

)
.

The set of strategies of the α-type player 1 (α = 1) is L(α =
1) = {1112, 1122, 2112, 2122)} and of the β-type player 2 (β = 1) is
C(β = 1) = {1112, 1122, 1132, 2112, 2122, 2132, 3112, 3122, 3132}. Thus a
subΓBayes = 〈{1, 2},L(α),C(β),A(α),B(β)〉 for α = 1 and β = 1 and
the believer probability p = 1/2, q = 1/2 is the following:
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A =




−1−1−1−1−1−1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 2 2 0 0 0
1 1 1 1 1 1 0.5 0.3 0.5


 ,

B =




0 −2 0 0 −2 0 0 −2 0
0 −2 0 0 −2 0 0 −2 0
0 1 0 2 1 2 −1 0 −1
0 1 0 2 1 2 −1 0 −1


 .

Similarly, we can construct the all subΓBayes.
Finally for determining the Bayes-Nash solutions in the bimatrix

informational extended games we use the following theorem [3]:

Theorem 1.1. The strategy profile (l∗, c∗), where l∗ ∈ L, c∗ ∈ C, is
a Bayes-Nash equilibrium in the game ΓBayes from (1.3.3) if and only
if the strategy profile (l∗, c∗) is a Nash equilibrium for the subgame
subΓBayes = 〈{1, 2},L(α),C(β),A(α),B(β)〉. To determine all Bayes-
Nash equilibrium profiles we can determine the all Nash equilibrium
profiles for all bimatrix games of type subΓBayes in the non extended
strategies.

2 Parallel algorithm for mixed system with

shared and distributed memory to determine

the Bayes-Nash solutions to the bimatrix in-

formational extended games

2.1 Parallel algorithm

The basic parallel strategy consists of three main steps. The first step

is to partition the input into several partitions of almost equal sizes.
The second step is to solve recursively the subproblem defined by
each partition of the input. Note that these subproblems can be solved
concurrently in the parallel system. The third step is to combine or
merge the solutions of the different subproblems into a solution for the
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overall problem. The success of such strategy depends on whether or
not we can perform the first and third steps efficiently [7]. To realize
the first step of the parallel strategy, that is to realize data paraleli-
zation, we use the MPI programming model and open source Scalable
Linear Algebra PACKage (ScaLAPACK) or more exactly, the Basic
Linear Algebra Subprograms or BLAS routines [8]. The BLACS are
a message-passing library designed for linear algebra. The computati-
onal model consists of a one- or two-dimensional process grid, where
each process stores pieces of the matrices of the subΓBayes.

So, using the MPI-OpenMP programming model and ScaLAPACK
-BLACS packages we can construct the following parallel algorithm to
find the all equilibrium profiles (l∗, c∗) in the game ΓBayes.

Algorithm 2.1

1. Using the MPI programming model we generate the virtual me-
dium of MPI-process communication (MPI Communicator) with
linear topology and dimension κ1 · κ2. Root process, using the
MPI Bcast function, broadcasts to all MPI process the initial ma-
trices A = ||aij ||

j∈J
i∈I , and B = ||bij ||

j∈J
i∈I of the bimatrix game

Γ = 〈A,B〉.

2. Using the MPI programming model and open source library

ScaLAPACK-BLACS, the processes grid {(α, β)}β=1,κ2

α=1,κ1

is ini-

tialized and in parallel (concurrent) all fixed (α, β)−processes,
using combinatorial algorithm, construct the informational ex-
tended strategies iα = iα1 i

α
2 ...i

α
j ...i

α
m and jβ = jβ1 j

β
2 ...j

β
i ...j

β
n . Thus,

the MPI (α, β)−process has built up the informational extended

strategies iα = iα1 i
α
2 ...i

α
j ...i

α
m and jβ = jβ1 j

β
2 ...j

β
i ...j

β
n .

3. In parallel, all fixed MPI (α, β)-processes, using the OpenMP
directives, construct utility matrices A(α, β) = ||a

iαj j
β
i

||j∈Ji∈I and

B(α, β) = ||b
iα
j
j
β
i

||j∈Ji∈I , generated by the informational extended

strategies iα and jβ.
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4. In parallel, the MPI α-rank process, for all α = 1,κ1, generates
the “believer-probabilities” p(β/α) for all fixed β = 1,κ2 of the α-
type player 1 and also, MPI β-rank process, for all β = 1,κ2, ge-
nerates the “believer-probabilities” q(α/β) for all fixed α = 1,κ1

of the β-type player 2. Thus, the MPI (α, β)-process “possesses”
the probabilities p(β/α) and q(α/β).

5. Using MPI and OpenMP programming models, for all α = 1,κ1,
in parallel, the MPI α-rank process generates the sets L(α) of
the lα = lα1 l

α
2 ...l

α
β ...l

α
κ2

strategies and constructs the payoff matrix
A(α) from (1.3.1) of the α-type player 1 and the MPI β-rank
process, for all β = 1,κ2, generates the sets C(β) of the cβ =

cβ1c
β
2 ...c

β
α...c

β
κ1

strategies and constructs the payoff matrix B(β)
from (1.3.2) of the β-type player 2. So all MPI (α, β)-processes
have a pair of matrices (A(α),B(β)).

6. Denote by I and J the set of line and column indices of the
matrices A(α) and B(β). In parallel, all MPI (α, β)-processes,
using the OpenMP directives, eliminate from matrix A(α) and
from matrix B(β) the lines that are strictly dominated in matrix
A(α) and columns that are strictly dominated in matrix B(β).

Finally we obtain the matrices
(
Â(α), B̂(β)

)
, where Â(α) =

||âij ||
j∈Ĵ

i∈Î
and B̂(β) = ||̂bij ||

j∈Ĵ

i∈Î
, for all i ∈ Î, j ∈ Ĵ and cardinals∣∣∣Î

∣∣∣ ≤ |I|,
∣∣∣Ĵ

∣∣∣ ≤ |J |.

7. In parallel, all MPI (α, β)-processes, using the OpenMP functi-
ons, ScaLAPACK routines and the existing sequential algorithm,
determine all Nash equilibrium profiles in the bimatrix game with

matrices
(
Â(α), B̂(β)

)
and construct the set of Nash equilibrium

profiles in the bimatrix game with matrices (A(α),B(β)).

8. Using ScaLAPACK-BLACS routines, the root MPI process gat-

her from processes grid {(α, β)}β=1,κ2

α=1,κ1

the sets of Nash equili-

brium profiles in the bimatrix game (A(α),B(β)).
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In the general case, to determine all sets of Bayes-Nash equilibrium
profiles in bimatrix informational extended games a very large number
(equal to nm × mn) of the subΓBayes bimatrix games in the non ex-
tended strategies are to be solved. Therefore, it is recommended to
use the exascale HPC systems. C++ program using MPI functions,
OpenMP directives and ScaLAPACK routines has been developed for
this algorithm. Program has been tested on the control examples. The
test results were consistent with theoretical results.

2.2 Communication and Run Complexity for Clusters:

overview

Parallel program evaluation must take into account the computing sy-
stem architecture, which means that it is possible that the chosen al-
gorithm is the best for a particular machine but for machines of other
architecture it may be not the best parallel algorithm for solving that
problem. Also, it is possible, that for a different input size different pa-
rallel algorithms to be good for solving the same problem. That is why
for comparing the parallel and the sequential variant of an algorithm
there must be specified the parallel computing model, must be chosen
the best sequential algorithm and must be pointed if there are specific
conditions for algorithm performance depending on the input size. In
general, in a study of performance of algorithms the following factors
are taken into consideration [9]:

• arithmetic operations;
• data transfer.

Estimation of Communication Complexity for Clusters.

The time necessary for transmitting data between the processors defi-
nes the communication overhead of the duration of parallel algorithm
execution in a multiprocessor computer system. The basic set of para-
meters, which can help to evaluate the data transmission time, consists
of the following values:

- initializing time (ts) characterizes the duration of preparing the
message for transmission, the search of the route in the network
etc.
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- control data transmission time (th) between two neighboring pro-
cessors (i.e. the processors, connected by a physical data trans-
mission channel); to control data we may refer the message hea-
der, the error detection data block etc.;

- transmission time of one data byte along a data transmission
channel (tb); the duration of this transmission is defined by the
communication channel bandwidth.

If we choose for the further analysis the clusters of this widely used
type (the complete graph topology, packet communication method),
then the time complexity of the communication operation between two
processors may be estimated according to the following formula [10]:
Tcomm(m) = ts +m ∗ tb + th, the estimation of this type is caused by
the expression of packet communication method, when the path length
of data transmission is l = 1. Such an approach is quite possible.
However, it is possible to notice that in this model the time of data
preparation ts is assumed to be constant (it does not depend on the
amount of the transmitted data). The time of control data transmission
th does not depend on the number of the transmitted packets, etc.
These assumptions do not fully coincide with the real situation, and
the time estimations obtained with the help of this model may be not
accurate enough.

Time Complexity. The main reason behind developing parallel
algorithms was to reduce the computation time of an algorithm. Thus,
evaluating the execution time of an algorithm is extremely important
in analyzing its efficiency.

Execution time is measured on the basis of the time taken by the
algorithm to solve a problem. The total execution time is calculated
from the moment when the algorithm starts executing to the moment
it stops. If all the processors do not start or end execution at the same
time, then the total execution time of the algorithm is the moment
when the first processor started its execution to the moment when the
last processor stops its execution.

Parallel Random Access Machines (PRAM) is a model, which is
considered for most of the parallel algorithms. Here, multiple proces-
sors are attached to a single block of memory. A PRAMmodel contains:

50



Parallel algorithm to find Bayes-Nash solution in the informational . . .

a set of similar type of processors; all the processors share a common
memory unit; processors can communicate among themselves through
the shared memory only; a memory access unit (MAU) connects the
processors with the single shared memory. There are many methods to
implement the PRAM model, but the most prominent ones are: shared
memory model; message passing model, data parallel model.

In the general case the execution time Tp(n) = Tcomput + Tcomm,
where Tcomput denotes the computation time, Tcomm denotes the com-
munication (transferring data) time and n denotes the volume of data.

2.3 Time performance analysis of the parallel algorithm

to determine the Bayes-Nash solutions to the bima-

trix informational extended games

In this paragraph we will determine some of the numerical characteris-
tics of the parallel Algorithm 2.1 constructed above. For convenience,
we use the following notation: T k

p (n) denotes the time run complexity
of parallel implementation of the iteration k of the Algorithm 2.1.

We can demonstrate the following theorem that estimates the run
time performance and communication complexity of the parallel Algo-
rithm 2.1.

Theorem. The run time complexity of the Algorithm 2.1 is

Tcomput =
7∑

k=2

T k
p = O(max(n,m)) +O (max(κ1,κ2))+

+O (max (|I| , |J |)) +O
(
max

(∣∣∣Î
∣∣∣ ,
∣∣∣Ĵ

∣∣∣ , |grBr1| · |grBr2|
))

and communication complexity is

Tcomm = O (ts + [max (|I| × |J | ,m× n)] ∗ tb + th) .

Proof. For this theorem demonstration it is sufficient to estimate
the run time performance and communication complexity of each step
of parallel Algorithm 2.1.

Communication complexity of the step 1 of the Algorithm 2.1. If
we take into account all considerations from the communications for
clusters, then the communication complexity is T 1

comm(m × n) = ts +
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(m× n) ∗ tb + th, where m× n is the dimension of the payoff matrices
A and B.

Run time performance of the step 2 of the Algorithm 2.1. The
construction of the information extended strategy iα is equivalent to the
following problem: for given non-negative integers {1, 2, ..., i, ...n}, to
generate a length m string of these numbers. For example, if I = {1, 2}
and J = {1, 2, 3}, then the sets of the informational extended strategies
are

I = {111213, 212223, 111223, 112213, 211213, 112223, 211223, 212213} ,

J = {1112, 2122, 3132, 1122, 2112, 1132, 3112, 2132, 3122} .

So, to construct the set I for n = 2, m = 3, we must: a) generate
the strings (1, 1, 1) and (2, 2, 2); b) having the numbers {1, 2} to gene-
rate all the sub-strings of length 3 with the elements in this set, that
are the strings (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2, ), (2, 1, 2), (2, 2, 1).
In mathematics, a multiset (or bag) is a generalization of the concept
of a set that, unlike a set, allows multiple instances of the multiset’s
elements. For example, {a, a, b} and {a, b} are different multisets alt-
hough they are the same set. However, order is important, so {a, a, b}
and {a, b, a} are the different multisets. It can be easily noticed that
any informational extended strategy is nothing more than a multiset,
so their generation actually consists in generating multisets [11]. So we
will get that each (α, β)-process generates in O(m) time the strategy
iα and in O(n) time the strategy jβ using the combinatorial algorithm
for generating the multiset permutations. To generate the sets I and
J of the informational extended strategies the run time complexity is
T 2
p = O(max(n,m)) in the case of using κ1 × κ2 processes with distri-

buted memory.
Run time performance of the step 3 of the Algorithm 2.1. This

step can be detailed as follows. a) For all (i, j) determine iαj ∈ I

and jβi ∈ J ; This operation, using lists, can be performed in O(1)

time. b) The assignment operations aαβij = a
iα
j
j
β
i

and bαβij = b
iα
j
j
β
i

,

the time complexity of which is O(n · m) (the number of elements
in matrices A(α, β), respectively B(α, β)). So, if for each (α, β)-process
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n·m OpenMP processes (threads) are generated (that is, (α, β) -process
”becomes” a parallel system with a PRAM computation model), then

the elements aαβij , bαβij are generated in parallel and the time complexity

T 3
p (n·m) = O(1), using n·m parallels shared memory (SMM) processes.

Run time performance of the step 4 of the Algorithm 2.1. The α-
process will generate “believer-probabilities” p(β/α) for all β = 1,κ2

in O(κ2) time. If for each α-process κ2 OpenMP process (thread) is
generated (that is, α-process “becomes” a parallel system with a PRAM
computation model), then probabilities p(β/α) are generated in parallel
(each thread generates p(β/α) for a fixed β) in O(1) time. Similarly, β-
process will generate “believer-probabilities” q(α/β) for all α = 1,κ1

in O(κ1) time. If for each β-process κ1 OpenMP process (thread)
is generated (that is, β-process “becomes” a parallel system with a
PRAM computation model), then probabilities q(α/β) are generated
in parallel (each thread generates q(α/β) for a fixed α) in O(1) time.
So, in using κ1 ×κ2 parallel distribute memory (DMM) processes, the
time complexity is T 4

p = O(1), and for each of these processes it is
generated max(κ1,κ2) threads (that are SMM type processes).

Run time performance of the step 5 of the Algorithm 2.1. This step
can be divided into the next two.
5.1. Time complexity for generating the sets L(α) and C(β)). Simi-
larly to step 2, process α in O(κ2) time generates the sets L(α) of the
lα = lα1 l

α
2 ...l

α
β ...l

α
κ2

strategies and process β in O(κ1) time generates

the sets C(β) of the cβ = cβ1 c
β
2 ...c

β
α...c

β
κ1

strategies using the combi-
natorial algorithm for generating the multiset permutations. Here for
every fixed α we have κ2 strategies of the type lα = lα1 l

α
2 ...l

α
β ...l

α
κ2

(the
number of the type of player 2) and for all fixed β we have κ1 strategies

of the type cβ = cβ1c
β
2 ...c

β
α...c

β
κ1

(the number of the type of player 1).
If for each α-process κ2, the OpenMP process (thread) is generated
(that is, α-process “becomes” a parallel system with a PRAM compu-
tation model), then the set L(α) is generated in parallel (each thread
produces lα = lα1 l

α
2 ...l

α
β ...l

α
κ2

for all fixed β ) in O(1) time. Similarly,
if for each β-process, the κ1 OpenMP process (thread) is generated
(that is β-process “becomes” a parallel system with a PRAM compu-
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tation model), then the set C(β) is generated in parallel (each thread

produces cβ = cβ1 c
β
2 ...c

β
α...c

β
κ1

for all fixed α) in O(1) time. So, for all
(α, β)-MPI processes, time complexity for construction the sets L(α)
and C(β) is O(1) in case of using max(κ1,κ2) threads (that are SMM
type processes).
5.2. Time complexity for generating the matrices A(α),B(β), that
is the elements alαcβ and blαcβ . Time complexity for determination
of the element alαcβ is O(κ2) (maximum number of iterations), and
similarly for element blαcβ , it is O(κ1). If for all (α, β)-MPI proces-
ses there are generated κ1 × κ2 threads (how many elements must be
constructed, i.e. the number of matrix lines and columns of the matri-
ces A(α),B(β)), then the time complexity for generating the matrices
A(α),B(β) is O (max(κ1,κ2)).
Finally, if for step 5 we use max(κ1,κ2) MPI processes and for each
of these processes we generate κ1 × κ2 execution threads, then the
complexity time T 5

p = O (max(κ1,κ2)).

Run time performance of the step 6 of the Algorithm 2.1. So, con-

sider a (α, β)-MPI process, which will ”build” the
(
Â(α), B̂(β)

)
ma-

trix pair. The parallel algorithm can be organized as follows: for these

MPI processes we generate max

(
|I|

2
,
|J |

2

)
OpenMP threads and each

thread performs element comparison between two lines of the matrix
A(α) and two columns of the matrix B(β) to determine dominant lines
and columns. The complexity of these operations (that is, the compa-
rison of the two elements by two) is O (max (|I| , |J |)). Here |I| , |J |
denotes the number of lines and the number of columns of the ma-
trix A(α) and B(β) respectively. Thus, if for Step 6 there are used
max(κ1,κ2) MPI processes, and for each of these processes there will

be generated max

(
|I|

2
,
|J |

2

)
OpenMP execution threads, then com-

plexity time T 6
p = O (max (|I| , |J |)).

Run time performance of the step 7 of the Algorithm 2.1. So, con-
sider a (α, β)-MPI process, which will determine Nash’s equilibrium

solutions in pure strategies for bimatrix game
(
Â(α), B̂(β)

)
. The so-
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lution is determined based on the definition. Equilibrium profile is
the index pair (i∗, j∗), for which the following inequality system is

checked: (i∗, j∗) ⇔

{
âi∗j∗ ≥ âij∗ ∀i ∈Î

b̂i∗j∗ ≥ b̂i∗j ∀j ∈Ĵ
. Or equivalently: a) de-

termine i∗(j) = argmax
i∈Î

âij, and j∗(i) = argmax
j∈Ĵ

b̂ij; b) determine

those pairs of indices(i∗, j∗) for which i∗ = i∗(j∗) J∗ = j∗(i∗). If we
use the best response sets of the players, then we will have the fol-
lowing. Let Br1(j) = Arg argmax

i∈Î

âij∗ , Br2(i) = Arg max
j∈Ĵ

b̂i∗j (i, j)

be the best response set of strategies of the player 1 and respecti-

vely of the player 2. Denote by grBr1 =
{
(i, j) : i ∈ Br1(j), j ∈ Ĵ

}

and grBr2 =
{
(i, j) : j ∈ Br2(i), i ∈ Î

}
the graph of these point-to-

set mappings. Then (i∗, j∗) is Nash equilibrium profile if and only
if (i∗, j∗) ∈ grBr1

⋂
grBr2. Thus, in order to determine equilibrium

profiles in pure strategies for bimatrix games, we must: a) for any
fixed column in matrix Â(α) we note (highlight) all the maximum ele-
ments per line, that is, we determine i∗(j) = argmax

i∈Î

âij for all j∈Ĵ ;

b) for any fixed line in matrix B̂(β) we note (highlight) all the maxi-
mum elements per column, that is, we determine j∗(i) = argmax

j∈Ĵ

b̂ij

for all i∈Î; c) we select those pairs of indices that are simultaneously
highlighted both in matrix Â(α) and matrix B̂(β). In other words, it

is determined

{
i∗ ≡ i∗(j∗)
j∗ ≡ j∗(i∗)

, namely (i∗, j∗) ∈ grBr1
⋂

grBr2. To

determine i∗(j) for a fixed j, the time complexity will be O(
∣∣∣Î
∣∣∣) and

similarly, to determine j∗(i) for fixed i, the time complexity will be

O(
∣∣∣Ĵ

∣∣∣). If for α-MPI process
∣∣∣Ĵ

∣∣∣ threads will be generated and there-

fore each thread in parallel will determine i∗(j), then to build the set

grBr1 time complexity will be O(
∣∣∣Î
∣∣∣). Similarly, if for β-MPI process

∣∣∣Î
∣∣∣ threads will be generated and each thread in parallel will deter-

mine j∗(i), then to build the set grBr2 the time complexity will be
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O(
∣∣∣Ĵ

∣∣∣). Each (α, β) process can sequentially determine grBr1
⋂

grBr2

in O (|grBr1| · |grBr2|) time, where |grBr1| means the number of ele-
ments from grBr1. So, if for Step 7 it will be used max(κ1,κ2) MPI

processes and for each of these processes max
(∣∣∣Î

∣∣∣ ,
∣∣∣Ĵ

∣∣∣
)
OpenMP thre-

ads will be generated, then we obtain the following complexity time

T 7
p = O

(
max

(∣∣∣Î
∣∣∣ ,
∣∣∣Ĵ

∣∣∣ , |grBr1| · |grBr2|
))

.

Communication complexity of the step 8 of the Algorithm 2.1. If
we take into account all considerations from the communication for
clusters, then the communication complexity is T 8

comm(|I| × |J |) =
ts + (|I| × |J |) ∗ tb + th, where |I| × |J | is the dimension of the payoff
matrices A(α) and B(β) respectively.

Summarizing the obtained run time and communication complexity
of the steps 1)-8) of the Algorithm 2.1, we complete the proof of the
theorem. �

3 Concluzion

Information issues are very important for mathematical modeling deci-
sion making problems in situations of risk and conflict. In this article,
to solve the game in complete and perfect information over the sets
of pure strategies, we elaborate the parallel algorithm that in parallel
generates the sets of informational extended strategies of the player 1
and player 2; in parallel constructs the incomplete and imperfect in-
formation game Γ̃ generated by the informational extended strategies;
in parallel constructs the associated Bayesian game ΓBayes in the non-
informational extended strategies. The main complexity here consists
in determination of the Bayes-Nash’s solutions for the game ΓBayes,
since we have to deal with very large matrices, the elements of which
are matrices as well. So, the elaborated algorithm in parallel generates
the set of all subΓBayes bimatrix subgames in the non-extended strate-
gies, Nash solutions of which are Bayes-Nash solutions. For software
implementation on HPC cluster parallel systems, which are in most
cases mixed systems with distributed and shared memory, we use the
MPI and OpenMP programming models. Also we estimate the run
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time performance and communication complexity of the elaborated al-
gorithm. The obtained estimates demonstrate that the effectiveness of
the algorithm will increase if the exascale HPC systems will be used.
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