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Abstract

In this paper we prove that it is NP-complete to decide whet-
her a graph can be partitioned into nontrivial convex sets. We
show that it can be verified in polynomial time whether a graph
can be covered by nontrivial convex sets. Also, we propose a re-
cursive formula that establishes the maximum nontrivial convex
cover number of a tree.
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1 Introduction

We denote by G = (X; U) a simple undirected connected graph
with vertex set X, |X| = n, and edge set U , |U | = m. We also specify
the vertex set of G by X(G). The neighborhood of x ∈ X is the set
of all vertices y ∈ X such that y is adjacent to x, and it is denoted by
Γ(x). The distance d(x, y) between two vertices x, y ∈ X is the length
of the shortest path between x and y. The diameter of G, denoted
by diam(G), is the distance between two farthest vertices of G. A set
S ⊂ X is called nontrivial if 3 ≤ |S| ≤ |X| − 1.

We remind some notions defined in [1]. A set S ⊆ X is called convex

if {z ∈ X|d(x, z) + d(z, y) = d(x, y)} ⊆ S for all vertices x, y ∈ S. The
convex hull of S ⊆ X, denoted by d − conv(S), is the smallest convex
set containing S.

The concept of convex p-cover of a graph is introduced by Artigas
et al. in [6] and is studied in a series of papers [6] – [13]. We defined
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a nontrivial convex cover P(G) of a graph G in [10] as a family of sets
that satisfies the following conditions:

1) every set of P(G) is nontrivial and convex in G;
2) X =

⋃

Y ∈P(G) Y ;

3) Y 6⊆
⋃

Z∈P(G),Z 6=Y Z for every Y ∈ P(G).

If |P(G)| = p, then we say that this family is a nontrivial convex p-cover
of G and write Pp(G). A nontrivial convex cover is a nontrivial convex

partition if the sets of the cover are pairwise disjoint. Correspondingly,
a nontrivial convex p-cover is said to be a nontrivial convex p-partition
if it is a nontrivial convex partition.

As it can be seen, in P(G) for each set S ∈ P(G) there exists a
vertex xS such that xS ∈ S and xS 6= S′ for any S′ ∈ P(G), S′ 6= S.
We call such uniquely covered vertices resident vertices [10].

The largest p ≥ 2 for which a graph G admits a nontrivial con-
vex cover with p sets is called the maximum nontrivial convex cover

number of G and is denoted by ϕmax
cn (G). Respectively, the maximum

nontrivial convex cover Pϕmax
cn

(G) is the nontrivial convex p-cover of
G such that p = ϕmax

cn (G) [11]. Indeed, it is natural under conditions
1) – 3) to maximize the number of nontrivial convex sets in the co-
ver. Moreover, it is applicable for determination of nontrivial convex
p-cover of graphs. We know that it is NP-complete to decide whet-
her a graph has a nontrivial convex p-cover or p-partition for a fixed
p ≥ 2 [10]. Some consistent results are obtained for a tree [11]. Among
these results the most important are that a tree T on n ≥ 4 vertices
has a nontrivial convex p-cover for every p, 2 ≤ p ≤ ϕmax

cn (T ), and it
can be decided in polynomial time whether T on n ≥ 6 vertices has a
nontrivial convex p-partition for a fixed p, 2 ≤ p ≤ ⌊n3 ⌋. There exist
graphs for which there are no nontrivial convex covers or partitions.
For instance, if any proper nonempty convex set of a graph is a vertex
or an edge we obtain the so-called convex simple graph [3]. Obviously,
this kind of graph has no any nontrivial convex cover. Further, it is of
interest to determine the complexity of decision whether a graph can
be covered or partitioned into nontrivial convex sets. In the present
paper we study this problem and continue our research on nontrivial
convex p-cover problem of a tree.

4



On Nontrivial Covers and Partitions of Graphs by Convex Sets

2 Nontrivial convex covers of graphs

This section is dedicated to studying the complexity of decision
whether a graph can be covered or partitioned into nontrivial convex
sets. The first problem can be formulated as follows:

Problem: Nontrivial Convex Cover (NCC).

Instance: A graph G.

Question: Is there a nontrivial convex cover of G?

Equivalently, it can be defined the Nontrivial Convex Partition pro-
blem (NCP). For this purpose, we only change the question of NCC
problem like this: Is there a nontrivial convex partition of G?

Note that if for every vertex of G there exists at least one nontrivial
convex set that contains it, then there is a nontrivial convex cover of
G. The converse affirmation is also true. Based on these statements,
we propose a polynomial algorithm, represented below, that solves the
NCC problem.

Algorithm 1.

Input: A graph G = (X; U).

Output: Nontrivial convex cover P(G) or nothing.

1: P(G)← ∅

2: M ← ∅

3: for x ∈ X do

4: if x /∈M then

5: flag ← 0

6: for y, z ∈ X\{x}, y 6= z do

7: S ← d− conv({x, y, z})

8: if S 6= X then

9: P(G)← P(G) ∪ {S}

10: M ←M ∪ S

11: flag ← 1

12: break

13: if flag = 0 then

14: stop: there does not exist any nontrivial convex

set containing x

5



R. Buzatu, S. Cataranciuc

15: for Y ∈ P(G) do
16: if Y ⊆

⋃

Z∈P(G),Z 6=Y Z

17: P(G)← P(G)\{Y }
18: return P(G)

Theorem 1. Algorithm 1 decides in time O(n4m) whether a graph G
can be covered by nontrivial convex sets.

Proof. Steps 1), 2) and 18) run in constant time. Steps 3) – 14) deter-
mine whether, for every vertex x ∈ X, there exists a nontrivial convex
set S ⊂ X, x ∈ S. If there is such a set S, then there are at least two dif-
ferent vertices y, z ∈ X, y 6= x, z 6= x, for which d−conv({x, y, z}) ⊆ S.
Consequently, it is sufficient to build convex hull for all sets of three
vertices, one of which is x. A convex hull of S ⊂ X can be constructed
in time O(|d − conv(S)|m) [4]. Since |d − conv(S)| can reach up to n
vertices, steps 3) – 14) run in time O(n4m).

Steps 15) – 17) exclude from P(G) all sets contained in union of
other sets of P(G). So, we obtain a nontrivial convex cover of G. The
resulting family P(G) has at most n − 2 sets and every set of P(G)
contains no more than n − 1 vertices. Further, steps 15) – 17) run in
time O(n3) and the complexity of the whole algorithm is O(n4m).

In the sequel, we show that NCP problem is NP-complete by re-
ducing to NCP the well-known NP-complete problem Partition Into
Triangles [2] that is formulated as follows:

Problem: Partition Into Triangles (PIT).
Instance: A graph G = (X; U) with |X| = 3q, where q ∈ N .
Question: Is there a partition of X into q disjoint subsets

X1,X2, . . . ,Xq of size 3 such that each Xi, 1 ≤ i ≤ q, induces a triangle
in G?

Note that the PIT problem remains NP-complete even if input
graph G is tripartite [5] (a graph is tripartite iff it can be partitio-
ned in 3 independent sets). Also notice that every tripartite graph has
no 4-cliques.

Theorem 2. Problem NCP is NP-complete.
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a) b)

Figure 1. The graph G′ (case b) that admits a nontrivial convex parti-
tion is obtained from the graph G (case a) that admits a partition into
triangles.

Proof. First notice that NCP is in NP, because any nontrivial convex
cover of G contains a linear number of sets and verifying if a family of
sets with a linear number of sets is a nontrivial convex cover can be
done in polynomial time [4]. We reduce the NP-complete problem PIT
for tripartite graphs to NCP. Let G = (X; U) be a tripartite instance of
PIT, |X| = 3q, q ∈ N . From G we will derive an instance G′ = (X ′; U ′)
of NCP in the following way:

1) X ′ = X ∪ {a, b, c, d, e, f};

2) U ′ = U ∪ {{a, c}, {a, d}, {b, c}, {b, d}, {c, e}, {d, f}}∪

∪{{a, x}, {b, x}|x ∈ X}.

In Figure 1 the graph G′ (case b) that corresponds to a particular
instance of PIT problem G (case a) is represented.

We need to show that G admits a partition into q triangles if and
only if there exists a nontrivial convex cover of G′.

Let Pq(G) = {X1,X2, . . . ,Xq} be a family of triangles that parti-
tions G. Since every triangle is a clique in G, it follows that each Xi,
1 ≤ i ≤ q, is nontrivial and convex in G′ and the set {a, b, c, d, e, f}
remains uncovered in G′. Observe that d− convG′({a, c, e}) = {a, c, e}
and d − convG′({b, d, f}) = {b, d, f}. For this reason, the family of
sets Pq(G) ∪ {{a, c, e}, {b, d, f}} generates a partition of G′ into q + 2
nontrivial convex sets.
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Let P(G′) be a partition of G′ into nontrivial convex sets and let
S be a set of P(G′). We distinguish some properties of S:

1) {a, b} 6⊂ S. Assuming the contrary, namely that {a, b} ⊂ S,
we see that d − convG′({a, b}) = X ∪ {a, b, c, d} and further obtain
X ′\d−convG′({a, b}) = {e, f}. Note that the set {e, f} is not nontrivial
and convex. Hence, P(G′) can not partition G′ into nontrivial convex
sets. We get the required contradiction.

2) {c, d} 6⊂ S. Assuming the converse, it can easily be checked that
{a, b} ⊂ d− convG′({c, d}). Therefore, property 1) is not satisfied and
we obtain a contradiction.

3) {e, f} 6⊂ S. Conversely, we have {a, b, c, d} ⊂ d− convG′({e, f})
and consequently properties 1) and 2) are not satisfied. This implies a
contradiction.

4) {x, y} 6⊂ S for every vertex x ∈ X and y ∈ {c, d}. Assuming the
converse, there exist x ∈ X and y ∈ {c, d} such that {x, y} ⊂ S. Since
{a, b} ⊂ d− convG′({x, y}), we get a contradiction.

5) {x, y} 6⊂ S for every two nonadjacent vertices x, y ∈ X. In the
converse case, there are two nonadjacent vertices x and y of X for
which {x, y} ⊂ S. It follows that {a, b} ⊂ d − convG′({x, y}). Have a
contradiction.

Let S1 = {a, c, e}, S2 = {b, d, f}, S3 = {b, c, e} and S4 = {a, d, f}.
Taking into account properties 1) – 5) and the fact that every ver-
tex of X ′ belongs exactly to one set of P(G′), it is seen that P(G′)
contains strictly a pair of sets of the following two: S1, S2 or S3, S4.
Each pair of sets covers vertices a, b, c, d, e and f . Hence, vertices of
X ′\{a, b, c, d, e, f} need to be partitioned into nontrivial convex sets.
By property 5), all of these sets are cliques. As mentioned above, G
has no cliques with k ≥ 4 vertices. Further, all of these sets are triang-
les and by elimination of a pair of sets S1, S2 or S3, S4 from P(G′) we
obtain a family of triangles Pq(G).

3 Maximum nontrivial convex cover of a tree

We denote by T a tree and by C(T ), |C(T )| = p, a set of terminal
vertices of T . Recall that a terminal vertex is a vertex of degree 1.
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In this section we continue our research on nontrivial convex p-cover
problem of a tree. Below we determine the number ϕmax

cn (T ). Let us
remind some results, which will be useful in the sequel.

Theorem 3. [11] If diam(T ) ≥ 3, then there exists a maximum nontri-

vial convex cover Pϕmax
cn

(T ) such that every terminal vertex of T is re-

sident in Pϕmax
cn

(T ) and any two terminal vertices do not belong to the

same set of Pϕmax
cn

(T ).

Corollary 1. [11] If diam(T ) ≥ 3 and every nonterminal vertex of T
is adjacent to at least one terminal vertex, then ϕmax

cn (T ) = p.

Corollary 2. [11] If 3 ≤ diam(T ) ≤ 5, then ϕmax
cn (T ) = p.

By M(T ), |M(T )| = q, we denote a set of vertices x of T , for which
distance between all vertices of C(T ) and x is greater then or equal to
3 and there exists a vertex c ∈ C(T ), d(x, c) = 3.

Theorem 4. If diam(T ) ≥ 6 and M(T ) 6= ∅, then ϕmax
cn (T ) ≥ p+ q.

Proof. We define a family of nontrivial convex sets P(T ) = ∅ that
will cover T . For every terminal vertex c ∈ C(T ) we select the nearest
x ∈M(T ) and the path L = [x, x1, x2, . . . , xk, c], k ≥ 2. Since the set
Sc = {x1, x2, . . . , xk, c} is nontrivial and convex, we add Sc to P(T ).
Besides, for every x ∈ M(T ) we select a terminal vertex c ∈ C(T ),
d(x, c) = 3, and for the obtained path L with k = 2 form a nontrivial
convex set Sx = {x, x1, x2} and add it to P(T ). If there remain some
uncovered vertices, then we select an uncovered vertex y that is adja-
cent to a vertex z ∈ S, S ∈ P(T ), and further add y to S. We see
that every vertex of A = C(T )∪M(T ) is resident in P(T ) and any two
vertices from A do not belong to the same set of P(T ). In consequence,
we obtain a nontrivial convex cover P(T ) such that |P(T )| = p + q.
Therefore, we have ϕmax

cn (T ) ≥ p+ q.

An important result is given by the following theorem.

Theorem 5. If T has n ≥ 4 vertices, then there exists a maximum

nontrivial convex cover Pϕmax
cn

(T ) such that every set S ∈ Pϕmax
cn

(T )
contains a path L = [x, y, z], where x is a resident vertex in Pϕmax

cn
(T ).
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Proof. If diam(T ) = 2, then the statement of the theorem is obvious.
If 3 ≤ diam(T ) ≤ 5, then it follows from Corollary 2 that the theorem
is true. If diam(T ) ≥ 6, then taking into account Theorem 3, there is a
family Pϕmax

cn
(T ) such that for every terminal vertex x ∈ C(T ) that is

resident in Pϕmax
cn

(T ) and for a set S ∈ Pϕmax
cn

(T ), x ∈ S, there exists
a path L = [x, y, z], where y, z ∈ S.

We define a family of nontrivial convex sets P(T ) = ∅ that will
cover T and a set of vertices D = ∅. If there is a set A ∈ Pϕmax

cn
(T ),

containing a terminal vertex a ∈ A that is resident in Pϕmax
cn

(T ), and
there exists another set B ∈ Pϕmax

cn
(T ), A ∩ B 6= ∅, |A\B| ≥ 2 or

|B\A| ≥ 2, then we denote by Br a set of resident vertices of B in
Pϕmax

cn
(T ). Next, we select a vertex b ∈ Br, where the distance d(a, b)

is maximum. Also, we denote by Bb all verices b
′ of B for which a path

between b′ and a contains b. Evidently, vertex b belongs to Bb. We
now define two sets:

A′ = A ∪ (B\Bb) and B′ = (A′ ∪ {b})\{a}.

It can easily be checked that A′ and B′ are nontrivial convex sets and
there are paths [a, c, d] and [b, c′, d′], where c, d ∈ A′ and c′, d′ ∈ B′.
Further, we replace sets A and B by A′ and B′ in Pϕmax

cn
(T ). If there

still remains such a set A ∈ Pϕmax
cn

(T ) that satisfies the conditions
mentioned above, then we repeat the described process. Otherwise, we
define a family A that consists of sets from Pϕmax

cn
(T ), which contain

exactly one terminal vertex that is resident in Pϕmax
cn

(T ). Next, we
select a set A ∈ A and define a family BA, composed of sets which
belong to Pϕmax

cn
(T ) and intersect A. Let DA = A∪

⋃

B∈BA
B. We add

vertices of DA to D, remove A and every set of BA from Pϕmax
cn

(T )
and from A, and then add them to P(T ). If A 6= ∅, then we choose
another set A ∈ A and repeat the above procedure. In the contrary
case, remove from T vertices of D and edges incident to them. If
X(T ) = ∅, then |P(T )| = |Pϕmax

cn
(T )|. This implies correctness of the

theorem.
If X(T ) 6= ∅, then there are obtained k ≥ 1 subtrees T1, T2, . . ., Tk.

It is clear that X(Ti) ≥ 3, 1 ≤ i ≤ k, and every set of P(T ) does not
intersect any set of P

′
(T ), obtained from Pϕmax

cn
(T ) after elimination
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of convex sets in the actions described above. Therefore, we have:

|P
′
(T )|+ |P(T )| = ϕmax

cn (T ).

If 2 ≤ diam(Ti) ≤ 5, for every i, 1 ≤ i ≤ k, then, considering that if
|X(Ti)| = 3, then |P(Ti)| = 1, by Corollary 2 a maximum nontrivial
convex cover P(Ti) is easily obtained for every Ti such that the affir-
mation of the theorem is true. Conversely, for every Ti, diam(T ) ≥ 6,
we define a family of sets P(Ti) = ∅ that will cover Ti and recursively
fill it using rationales from the demonstration. Further, we get:

k
∑

i=1

|P(Ti)|+ |P(T )| = ϕmax
cn (T ).

So, now we add all sets from P(Ti), 1 ≤ i ≤ k, to P(T ) and see that
the theorem is proved.

Suppose that diam(T ) ≥ 6, then we define the set:

N(T ) = X(T )\



C(T ) ∪
⋃

x∈C(T )

Γ(x)



 .

The set N(T ) is empty if and only if every nonterminal vertex of
T is adjacent to at least one terminal vertex of T , but in this case,
accordingly to Corollary 1, we obtain ϕmax

cn (T ) = p. Assume further
that N(T ) 6= ∅. Let x be a vertex of N(T ). Since x is an articulation
vertex, through the elimination of x from T we obtain |Γ(x)| connected
components T y

x , y ∈ Γ(x). For every vertex y ∈ Γ(x) we get the family
of subtrees:

V
y
x(T ) =

∗T y
x ∪

⋃

z∈Γ(x)\{y}

T z
x ,

where ∗T y
x is a subtree of T obtained by adding x to T y

x such that x is
adjacent to y.

Thus, we get the family of subfamilies of subtrees:

Vx(T ) =
⋃

y∈Γ(x)

V
y
x(T ).
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For the sake of estimation of the number ϕmax
cn (T ), we consider

that if 0 ≤ n ≤ 2, then ϕmax
cn (T ) = 0, and if n = 3, then ϕmax

cn (T ) = 1.
We obtain the recursive formula, reflected in Theorems 6 and 7, that
determines ϕmax

cn (T ).
Let us remark that for a tree T with diam(T ) = 2, n ≥ 4, it can

easily be checked that ϕmax
cn (T ) = p−1. Taking into account Corollaries

1, 2 and the fact mentioned above, we get Theorem 6.

Theorem 6. If diam(T ) ≤ 5 or diam(T ) ≥ 6 and N(T ) = ∅, then

the following relation holds:

ϕmax
cn (T ) =























p, if 3 ≤ diam(T ) ≤ 5 or

diam(T ) ≥ 6 and N(T ) = ∅;

p-1, if diam(T ) = 2;

0, if 0 ≤ diam(T ) ≤ 1.

If diam(T ) ≥ 6 and N(T ) 6= ∅, then by Theorem 5 we obtain
Theorem 7.

Theorem 7. If diam(T ) ≥ 6 and N(T ) 6= ∅, then the following rela-

tion holds:

ϕmax
cn (T ) = max







p, max
x∈N(T )







max
y∈Γ(x)







∑

H∈Vy
x(T )

ϕmax
cn (H)



















.

4 Conclusion

In this paper we prove that it is NP-complete to decide whether
a graph can be partitioned into nontrivial convex sets. We show a
polynomial algorithm that determines whether a graph can be covered
by nontrivial convex sets.

Also, we propose a recursive formula that establishes the maximum
nontrivial convex cover number of a tree. Combining this formula with
our previous results from [11], it can be easily built a recursive proce-
dure that determines whether a tree has a nontrivial convex p-cover for
a fixed p ≥ 2. We conclude further that the nontrivial convex p-cover
problem of a tree is almost completely solved.
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classes of convex sets, Chişinǎu: Ştiinţa, 1978, 222 p. (in Russian)

[2] M. R. Garey and D. S. Jonhson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, New York, NY, USA:
W. H. Freeman & Co., 1979, 338 p.

[3] S. Cataranciuc and N. Sur, d-Convex simple and quasi-simple
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