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Abstract

For a given integer k, a graph G of order n is called k-step
Hamiltonian if there is a labeling v1, v2, ..., vn of vertices of G
such that d(v1, vn) = d(vi, vi+1) = k for i = 1, 2, ..., n − 1. The
independence number of a graph is the maximum cardinality of
a subset of pair-wise non-adjacent vertices. In this paper we
study the independence number in k-step Hamiltonian graphs.
We present sharp upper bounds as well as sharp lower bounds,
and then present a construction that produces infinite families of
k-step Hamiltonian graphs with arbitrarily large independence
number.
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1 Introduction

Let G = (V,E) be a simple graph with vertex set V = V (G) and edge
set E = E(G). For a vertex v ∈ V (G), let NG(v) = {u|uv ∈ E(G)}
denote the open neighborhood of v and NG[v] = {v} ∪ NG(v) denote
the closed neighborhood of v. The degree of a vertex v, degG(v), or just
deg(v), in a graph G is the number of neighbors of v in G. We refer
to ∆(G) and δ(G) as the maximum degree and the minimum degree of
the vertices of G, respectively. We denote by Cn and Pn the cycle and
the path on n vertices, respectively. The distance d(u, v) between two
vertices u and v in a graph G is the length of a shortest path from u
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to v. A graph G is called bipartite if its vertex set can be partitioned
into two sets X and Y such that any edge of G has one end-point in X

and one end-point in Y . A bipartite graph is called complete bipartite

if any vertex of each partite set is adjacent to all of the vertices of the
other partite set. A complete bipartite graph whose partite sets have
cardinality m and n, is denoted by Km,n. The graph K1,n−1 is called
a star. A double-star is a tree with precisely two vertices that are not
leaf (we refer to these two vertices as the centers of the double-star).
We denote by S(a, b) a double star in which one of the central vertices
has degree a and the other central vertex has degree b. A graph is
triangle-free if it does not contain a C3 as an induced subgraph. For a
subset S of vertices of G, we denote by G[S] the subgraph of G induced
by S. For other notations and terminologies not given here, we refer
to [8].

A set S of vertices in a graph G is an independent set if no pair
of vertices of S are adjacent. The independence number of G, denoted
by α(G), is the maximum cardinality of an independent set in G. The
concept of independent sets is an active area of research in graph theory
and there are many papers dealed with independent sets which presen-
ted exact values or bounds for the independence number in graphs, see
for example [1] - [3], [5] - [7] and [9].

A graph G = (V,E) is Hamiltonian if there is a spanning cycle
in G. There is no specific characterization to check the existence and
non-existence of Hamiltonian cycle for a given graph G though the
Hamiltonian problem has been widely studied in graph theory. All the
works provide necessary conditions and sufficient conditions for a graph
to be Hamiltonian. See [4] for a recent development and open problems
related to Hamiltonicity of graphs. In [12], Lau et al. extended the
concept of Hamiltonicity to k-step Hamiltonicity. They introduced
the concept of AL(k)−traversal followed by k-step Hamiltonian graph
as follows: For an integer k ≥ 1, a graph G of order n is said to
admit an AL(k)−traversal if we can arrange the vertices of G as the
sequence of vertices v1, v2, . . . , vn such that d(vi, vi+1) = k for i =
1, 2, . . . , n − 1. A graph G is k−step Hamiltonian (or just k−SH) if
it has an AL(k)−traversal and d(v1, vn) = k. Then, the sequence
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v1, v2, . . . , vn, v1 is called a k−step Hamiltonian walk of G. Clearly,
k-SH graphs with k = 1 are the Hamiltonian graphs. The concept of
k-SH graphs has been further studied in, for example [10], [11], [13]
and [14].

In this paper we study the independence number in k-SH graphs.
We present sharp upper bounds as well as sharp lower bounds, and then
present a construction that produces infinite families of k-SH graphs
with arbitrarily large independence number. We make use of the follo-
wing.

Theorem 1 (Lau et al. [13]). No bipartite graph is 2-SH.

Theorem 2 (Lau et al. [13]). The cycle Cn, n ≥ 3 is k-SH for k ≥ 2
if and only if n ≥ 2k + 1 and gcd(n, k) = 1.

Proposition 1 (West [15]). For a path Pn, α(Pn) = ⌈n2 ⌉.

2 Upper bounds

We first present an upper bound for the independence number in a
k-SH graph with k ≥ 2. Let H be the class of all graphs obtained from
a double star S(a, b) with a ≥ 3 and b ≥ 3 by adding at least two new
vertices and joining each of them to both central vertices of S(a, b).

Lemma 1. A graph G of order n is a 2-SH graph with α(G) = n− 2
if and only if G ∈ H.

Proof. Let G be a 2-SH graph with α(G) = n − 2, D a maximum
independent set in G, and V (G) −D = {x, y}. Since G is connected,
N(x)∩N(y) 6= ∅ and D ⊆ N(x)∪N(y). Since G is 2-SH, by Theorem
1, we obtain that x is adjacent to y. Let A = N(x)−N(y), B = N(y)−
N(x) and C = N(x) ∩N(y). Since G is 2−SH, there exists a 2−step
Hamiltonian walk. Without loss of generality, we re-label the vertices
of the 2−step Hamiltonian walk such that v1 = x. Then v2 ∈ B. Let
i be the minimum index such that v2, v3, . . . , vi ∈ B, vi+1 6∈ B. Then,
vi+1 ∈ C. There is an integer j such that vj = y. Then, vj−1 ∈ A.
Since d(vj , v1) = 1, we have vj+1 ∈ A. Thus, |A| ≥ 2. Let s be
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the minimum integer such that vj+1, vj+2, . . . , vs ∈ A, vs+1 6∈ A. Then,
vs+1 ∈ C. Thus, |C| ≥ 2. Also it is obvious that vn ∈ B. Thus, |B| ≥ 2.
Consequently, G ∈ H. Conversely, let G ∈ H. Then, G is obtained
from a double star S(a, b) with a ≥ 3 and b ≥ 3 by adding at least
two new vertices and joining each new vertex to both central vertices
of S(a, b). Let x and y be the central vertices of S(a, b). Let N(x) ∩
N(y) = {a1, a2, . . . , at}, N(x) − N(y) = {b1, b2, . . . , bt′} and N(y) −
N(x) = {c1, c2, . . . , ct′′}, where t, t

′, t′′ ≥ 2. Clearly V (G)−{x, y} is an
independent set in G and so α(G) ≥ n− 2. Since the vertices x, y and
a1 form a triangle in G, we obtain that α(G) ≤ n − 2. Thus α(G) =
n−2. Now, x, c1, a1, b1, y, b2, b3, . . . , bt′ , a2, a3, . . . , at, c2, c3, . . . , ct′′ , x is
a 2−step Hamiltonian walk. Consequently, G is 2−SH.

Theorem 3. If G is a k-SH graph of order n for k ≥ 2, then α(G) ≤
n− ⌈k2⌉ − 1, with equality if and only if k = 2 and G ∈ H.

Proof. Let G be a k−SH graph of order n with k ≥ 2. Let u and v

be two consecutive vertices on a k-step Hamiltonian walk of G, and
without loss of generality, assume that v1v2...vkvk+1 be a shortest path
in G from u to v, where u = v1 and v = vk+1. Let D be a maximum
independent set in G. If D ∩ {v1, ..., vk+1} = ∅, then |D| ⊆ V (G) −
{v1, ..., vk+1} and so |D| ≤ n− k − 1 ≤ n− ⌈k2⌉ − 1. Thus assume that
D ∩ {v1, ..., vk+1} 6= ∅. Then D ∩ {v1, ..., vk+1} is an independent set
in the graph G[{v1, ..., vk+1}]. Since G[{v1, ..., vk+1}] is a path Pk+1,
by Proposition 1, |D ∩ {v1, ..., vk+1}| ≤ ⌈k+1

2 ⌉. Consequently, |D| ≤

⌈k+1
2 ⌉+ n− (k + 1) = n− ⌈k2⌉.

Suppose that α(G) = n − ⌈k2⌉. Clearly D contains at most

α(Pk+1) = ⌈k+1
2 ⌉ vertices of G[{v1, ..., vk+1}], since G[{v1, ..., vk+1}]

is isomorphic to Pk+1. Since |D| = n − ⌈k2⌉, we obtain that |D −
{v1, ..., vk+1}| ≥ n − k − 1. Thus we find that |D − {v1, ..., vk+1}| =
n−k−1 and |D∩{v1, ..., vk+1}| = α(Pk+1) = ⌈k+1

2 ⌉. Assume that k is

even. Then v2i+1 ∈ D for i = 0, 1, ..., k
2 , deg(v1) = deg(vk+1) = 1 and

deg(v2i+1) = 2 for each i = 1, ..., k2−1. Since V (G)−{v1, ..., vk+1} ⊆ D,
V (G) − {v1, ..., vk+1} is an independent set, and thus any vertex of
V (G)−{v1, ..., vk+1} is adjacent to some vertex in {v2i : i = 1, 2, ..., k

2}.
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If k ≥ 4, then there is no vertex at distance k from v3, a contradiction.
Thus assume that k = 2. Since any vertex of V (G) − {v1, v2, v3} is
adjacent to v2, we obtain that G is a star. This is a contradiction
by Theorem 1. Next assume that k is odd. Since D ∩ {v1, ..., vk+1}
is an independent set of cardinality k+1

2 , we have D ∩ {v1, vk+1} 6= ∅.
Without loss of generality, assume that v1 ∈ D. Then deg(v1) = 1,
and deg(x) = 2 if x ∈ {v2, ..., vk} ∩ D. As before, any vertex of
V (G)−{v1, ..., vk+1} is adjacent to some vertex in ({v1, ..., vk+1}−D).
Clearly D ∩ {v3, v4} 6= ∅. If k ≥ 5, then there is no vertex in G at dis-
tance k from the vertex in D ∩ {v3, v4}, a contradiction. Thus assume
that k = 3. If v3 ∈ D, then there is no vertex at distance 3 from v3,
a contradiction. Thus assume that v4 ∈ D. Then deg(v4) = 1, and so
there is no vertex in G at distance three from v2, a contradiction. We
conclude that α(G) ≤ n− ⌈k2⌉ − 1, as desired.

We next prove the equality part. Assume that α(G) = n−⌈k2⌉− 1.
Let u,v,v1,...,vk+1 and D be as described above. If |D−{v1, ..., vk+1}| <
n − k − 2, then n − ⌈k2⌉ − 1 = |D| ≤ |D ∩ {v1, ..., vk+1}| + |D −

{v1, ..., vk+1}| < ⌈k+1
2 ⌉+n−k−2 which leads to a contradiction. Thus

|D−{v1, ..., vk+1}| ≥ n−k−2. Let x and y be the vertices on the k-step
Hamiltonian walk of G such that dG(x, v⌈k+1

2
⌉) = dG(v⌈k+1

2
⌉, y) = k.

Clearly, x, y ∈ V (G) − {v1, ..., vk+1}. If k ≥ 6, then the shortest
path in G from v⌈k+1

2
⌉ to x contains at least three vertices in V (G) −

{v1, ..., vk+1}, a contradiction, since |D−{v1, ..., vk+1}| ≥ n− k− 2. If
k ∈ {4, 5}, then the shortest path in G from v⌈k+1

2
⌉ to x contains at least

two vertices in V (G)− {v1, ..., vk+1}, and the shortest path in G from
v⌈k+1

2
⌉ to y contains at least two vertices in V (G) − {v1, ..., vk+1}, a

contradiction, since |D − {v1, ..., vk+1}| ≥ n − k − 2. Thus, k ≤ 3.
Suppose next that k = 3. Then |D| = n − 3. Suppose that
V (G) − {v1, ..., v4} ⊆ D. Then |D ∩ {v1, ..., v4}| = 1, and any ver-
tex of V (G) − {v1, ..., v4} is adjacent to some vertex in {v1, ..., v4}. If
v4 ∈ D, then v4 has no neighbor in V (G) − {v1, ..., v4}, and so there
is no vertex in G at distance three from v2, a contradiction. Thus
v4 6∈ D, and similarly, v1 6∈ D. If v3 ∈ D, then v3 has no neighbor
in V (G) − {v1, ..., v4}, and so v4 is the only vertex in G at distance
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three from v1, a contradiction, since G is a 3-SH graph. Thus v3 6∈ D,
and similarly, v2 6∈ D. This contradicts |D ∩ {v1, ..., v4}| = 1. We
deduce that V (G) − {v1, ..., v4} 6⊆ D. Then |D ∩ {v1, ..., v4}| = 2, and
|D − {v1, ..., v4}| = n − 5. Clearly D ∩ {v1, ..., v4} = {v1, v3}, {v2, v4}
or {v1, v4}. Assume that D ∩ {v1, ..., v4} = {v1, v3}. If deg(v1) = 1,
then G[V (G)− {v1, ..., v4}] contains at least two edges, since there are
two vertices in G at distance three from v3. This is a contradiction.
Thus deg(v1) ≥ 2, and so v1 has some neighbor in V (G) − {v1, ..., v4}.
If any neighbor of v1 in V (G) − {v1, ..., v4} is a neighbor of v3, then
similarly we obtain a contradiction. Thus we assume that v1 has a
neighbor v′1 ∈ V (G) − {v1, ..., v4} − N(v3). Then v3 has no neig-
hbor in V (G) − {v1, ..., v4}, and so v4 is the only vertex in G at dis-
tance three from v1, a contradiction, since G is a 3-SH graph. Thus
D ∩ {v1, ..., v4} 6= {v1, v3}, and similarly, D ∩ {v1, ..., v4} 6= {v2, v4}.
Thus D ∩ {v1, ..., v4} = {v1, v4}. Clearly, either v1 has no neighbor in
V (G) − {v1, ..., v4} or v4 has no neighbor in V (G) − {v1, ..., v4}. Wit-
hout loss of generality, we may assume that v4 has no neighbor in
V (G)−{v1, ..., v4}. Since there are two vertices in G at distance three
from v2, G[V (G) − {v1, ..., v4}] contains at least two edges, a contra-
diction. We conclude that k = 2. Now the result follows from Lemma
1.

Corollary 1. If G is a k-SH graph of order n for k ≥ 3, then α(G) ≤
n− ⌈k2⌉ − 2, and this bound is sharp for k = 3.

Proof. The result follows from the Theorem 3. To see the sharpness
for k = 3, consider the cycle C7, and note that C7 is 3−SH by Theorem
2.

We next give a new upper bound for the independence number of
a k-SH graph for k ≥ 4 which improves Corollary 1 for k ≥ 13.

Theorem 4. If G is a k-SH graph of order n for k ≥ 4, then α(G) ≤
n− k + ⌈k−1

4 ⌉ if k is odd, and α(G) ≤ n− k + 1 + ⌈k−2
4 ⌉ if k is even.

Proof. Let G be a k−SH graph of order n with k ≥ 4. Let u and v

be two consecutive vertices on a k-step Hamiltonian walk of G, and

20



Bounds for the Independence Number in k-SH Graphs . . .

assume that P : v1v2...vkvk+1 is a shortest path in G from u to v,
where u = v1 and v = vk+1. Let D be a maximum independent set in
G. If D ∩ {v1, ..., vk+1} = ∅, then |D| ⊆ V (G) − {v1, ..., vk+1} and so
|D| ≤ n− k− 1 ≤ min{n− k+ ⌈k−1

4 ⌉, n− k+1+ ⌈k−2
4 ⌉}. Thus assume

that D ∩ {v1, ..., vk+1} 6= ∅. Then D ∩ {v1, ..., vk+1} is an independent
set in the graph G[{v1, ..., vk+1}]. Since G[{v1, ..., vk+1}] is a path Pk+1,
by Proposition 1, |D ∩ {v1, ..., vk+1}| ≤ ⌈k+1

2 ⌉. There is a vertex w in
G at distance k from v⌈k+1

2
⌉, since G is a k-SH graph. Let x1x2...xk+1

be a shortest path from v⌈k+1

2
⌉ to w, where x1 = v⌈k+1

2
⌉ and xk+1 = w.

Let i be the minimum integer such that x1, ..., xi ∈ P and xi+1 6∈ P .
Then clearly, xi+1, ..., xk+1 6∈ P . Observe that i ≤ k+1

2 + 1 if k is odd,

and i ≤ k
2 + 1 if k is even. Thus, i ≤ ⌈k+1

2 ⌉ + 1. Let Q be the path
xi+1, ..., xk+1. Then Q is isomorphic to Pk+1−i, and so D contains at
most α(Pk+1−i) vertices of Q. Thus

|D| ≤ |D ∩ {v1, ..., vk+1}|+ |D ∩ (V (G) − {v1, ..., vk+1})|

≤ ⌈
k + 1

2
⌉+ n− (k + 1)− (k + 1− i− α(Pk+1−i)).

Since i ≤ ⌈k+1
2 ⌉+ 1, we obtain that

|D| ≤ ⌈
k + 1

2
⌉+ n− (k + 1) −

− (k + 1− (⌈
k + 1

2
⌉+ 1)− α(P

k+1−(⌈k+1

2
⌉+1)))

= ⌈
k + 1

2
⌉+ n− (k + 1) − (k − ⌈

k + 1

2
⌉ − α(P

k−⌈k+1

2
⌉))

= ⌈
k + 1

2
⌉+ n− (k + 1) − k + ⌈

k + 1

2
⌉+ ⌈

k − ⌈k+1
2 ⌉

2
⌉.

Now a simple calculation shows that |D| ≤ n − k + ⌈k−1
4 ⌉ if k is odd,

and |D| ≤ n− k + 1 + ⌈k−2
4 ⌉ if k is even.

We note that a simple calculation shows that Theorem 4 improves
Corollary 1 for k ≥ 13. We purpose obtaining a sharp upper bound
for the independence number of a k-SH graph for k ≥ 4 as an open
problem.
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Problem 1. What is the best upper bound for the independence number

of a k-SH graph for k ≥ 4?

3 Lower bounds

We next present a lower bound for the independence number of a k-SH
graph.

Theorem 5. If G is a k−SH graph for k ≥ 2, then α(G) ≥ ⌈k+1
2 ⌉ +

⌊k−3
4 ⌋+ 1. This bound is sharp for k = 2, 3, 4.

Proof. Let u and v be two consecutive vertices in a k−step Hamiltonian
walk of G, and P : v1, v2, . . . , vk+1 be a shortest path in G from u to v,
where u = v1 and v = vk+1. Clearly, G[{v1, v2, . . . , vk+1}] is isomorphic
to Pk+1. Thus α(G) ≥ α(G[{v1, v2, . . . , vk+1}]) = α(Pk+1) ≥ ⌈k+1

2 ⌉, by
Proposition 1. The result is obvious if k = 2. Thus assume that
k ≥ 3. There is a vertex w in G at distance k from v⌈k+1

2
⌉, since G

is a k-SH graph. Let x1x2...xk+1 be a shortest path from v⌈k+1

2
⌉ to

w, where x1 = v⌈k+1

2
⌉ and xk+1 = w. Let i be the minimum integer

such that x1, ..., xi ∈ P and xi+1 6∈ P . Then clearly, xi+1, ..., xk+1 6∈ P .
Observe that i ≤ k+1

2 + 1 if k is odd, and i ≤ k
2 + 1 if k is even. Thus,

i ≤ ⌈k+1
2 ⌉ + 1. If there is an integer s with ⌈k+1

2 ⌉ + 2 ≤ s ≤ k + 1
such that xs is adjacent to v1, then d(v⌈k+1

2
⌉, xk+1) < k, since the walk

v⌈k+1

2
⌉, v⌈k+1

2
⌉−1, ..., v1, xs, xs+1, ..., xk+1 is a path from v⌈k+1

2
⌉ to xk+1

of length less than k, a contradiction. Thus xs is not adjacent to v1 for
each integer s with ⌈k+1

2 ⌉+2 ≤ s ≤ k+1. Similarly, xs is not adjacent

to vk for each integer s with ⌈k+1
2 ⌉ + 2 ≤ s ≤ k + 1. For any vertex

a ∈ {v2j+1 : 1 ≤ j ≤ ⌈k−1
2 ⌉ − 1}, since d(v⌈k+1

2
⌉, a) < d(v⌈k+1

2
⌉, v1) and

d(v⌈k+1

2
⌉, a) < d(v⌈k+1

2
⌉, vk), we deduce that xs is adjacent to no vertex

in {v2j+1 : 0 ≤ j ≤ ⌈k−1
2 ⌉} for each integer s with ⌈k+1

2 ⌉+2 ≤ s ≤ k+1.
Now,

{v2j+1 : 0 ≤ j ≤ ⌈
k − 1

2
⌉} ∪ {x⌈k+1

2
⌉+2+2t : t = 0, 1, ..., ⌊

k − 3

4
⌋}

is an independent set in G. Consequently, α(G) ≥ ⌈k+1
2 ⌉+ ⌊k−3

4 ⌋+ 1.
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For the sharpness of the bound for k = 2, 3, 4, we prove a stronger
result. We show that there is an infinite family of k-SH graphs G with
α(G) = ⌈k+1

2 ⌉ + ⌊k−3
4 ⌋ + 1 for each k. Let 2 ≤ k ≤ 4. For a given

integer m ≥ 1, consider m copies of a cycle C2k+1. Let {vi1, ..., v
i
2k+1}

be the vertex set of the i-th C2k+1, where vij is adjacent to vij+1 for
j = 1, 2, ..., 2k +1 and the summation is in modulo 2k+1. Let G be a
graph obtained by joining vij to the vertices vrj , v

r
j−1 and vrj+1 for each

r ∈ {1, 2, ...,m} − {i} and each i = 1, 2, ...,m and j = 1, 2, ..., 2k + 1.
Then clearly α(G) = α(C2k+1) = k and it is easy to see that k =
⌈k+1

2 ⌉+ ⌊k−3
4 ⌋+ 1. If k = 2 then

v11v
1
3v

1
5v

1
2v

1
4v

2
1v

2
3v

2
5v

2
2v

2
4 ...v

m
1 vm3 vm5 vm2 vm4 v11

is a 2-step Hamiltonian walk for G, and thus G is 2-SH. If k = 3, then

v11v
1
4v

1
7v

1
3v

1
6v

1
2v

1
5v

2
1v

2
4v

2
7v

2
3v

2
6v

2
2v

2
5 ...v

m
1 vm4 vm7 vm3 vm6 vm2 vm5 v11

is a 3-step Hamiltonian walk for G, and thus G is 3-SH. If k = 4, then

v11v
1
5v

1
9v

1
4v

1
8v

1
3v

1
7v

1
2v

1
6v

2
1v

2
5v

2
9v

2
4v

2
8v

2
3v

2
7v

2
2v

2
6 ...v

m
1 vm5 vm9 vm4 vm8 vm3 vm7 vm2 vm6 v11

is a 4-step Hamiltonian walk for G, and thus G is 4-SH.

We next characterize all triangle-free k-SH graphs G with k ≤ 4
that achieve equality of the bound of Theorem 5.

Proposition 2. For 2 ≤ k ≤ 4, a triangle-free graph G is a k−SH

graph with α(G) = ⌈k+1
2 ⌉+ ⌊k−3

4 ⌋+ 1 if and only if G = C2k+1.

Proof. Let G be a triangle-free k-SH graph with α(G) = ⌈k+1
2 ⌉ +

⌊k−3
4 ⌋ + 1. First let k = 2. Then α(G) = 2. Clearly, N(x) is an in-

dependent set for any vertex x, since G is triangle-free. Consequently,
∆(G) = 2. Since no path is 2-SH, we find that G is a cycle, and by
Theorem 2 it can be seen that G = C5.

Next assume that k = 3. Then α(G) = 3. Suppose that ∆(G) > 2.
Let x be a vertex of maximum degree in G. If deg(x) > 3, then N(x)
is an independent set of cardinality more that α(G), a contradiction.
Thus deg(x) = 3. There is a vertex y in G at distance three from
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x, since G is 3-SH. Then N(x) ∪ {y} is an independent set in G, a
contradiction. We deduce that ∆(G) = 2. Since no path is 3-SH, we
find that G is a cycle, and by Theorem 2, it can be seen that G = C7.

Now assume that k = 4. Then α(G) = 4. We show that ∆(G) = 2.
Suppose that ∆(G) ≥ 3. Let x be a vertex of maximum degree in
G. If deg(x) > 4, then N(x) is an independent set of cardinality
more that α(G), a contradiction. If deg(x) = 4, then N(x) ∪ {y} is
an independent set in G, where y is a vertex at distance four from
x. This is a contradiction. Thus, deg(x) = 3. There are two vertices
z1, z2 at distance four from x, since G is 4-SH. If z1 6∈ N(z2), then
N(x) ∪ {z1, z2} is an independent set in G, a contradiction. Thus
assume that z1 ∈ N(z2). Clearly, z1 and z2 have no common neighbor,
since G is triangle-free. Let y1 ∈ N(z1)− {z2} and y2 ∈ N(z2)− {z1}.
Clearly, y1 6∈ N(z2). Now N(x) ∪ {y1, z2} is an independent set in G,
a contradiction. We deduce that ∆(G) = 2. Since no path is 4-SH, we
find that G is a cycle, and by Theorem 2, it can be seen that G = C9.

The converse is obvious.

We improve the bound of Theorem 5 for k ≥ 5.

Theorem 6. If G is a k−SH graph for k ≥ 5, then α(G) ≥ ⌈k+1
2 ⌉ +

⌊k−3
4 ⌋+ 2, and this bound is sharp for k = 5, 6.

Proof. We follow the proof of Theorem 5. Let u, v, P : v1, v2, . . . , vk+1,
w, and x1x2...xk+1 be as described in the proof of Theorem 5. As
noted, the set

D = {v2j+1 : 0 ≤ j ≤ ⌈
k − 1

2
⌉} ∪ {x⌈k+1

2
⌉+2+2t : t = 0, 1, ..., ⌊

k − 3

4
⌋}

is an independent set in G of cardinality ⌈k+1
2 ⌉ + ⌊k−3

4 ⌋ + 1. Assume
that k ≡ 1 or 2 (mod 4). Let z be a vertex of G at distance k from x2.
Note that z exists, since G is k-SH. If z is adjacent to a vertex a ∈ D,
then d(z, x2) < k, a contradiction. Thus z is adjacent to no vertex in
D. Consequently, D ∪ {z} is an independent set in G, implying that
α(G) ≥ ⌈k+1

2 ⌉ + ⌊k−3
4 ⌋ + 2. Next assume that k ≡ 0 or 3 (mod 4).

Observe that k ≥ 7. Let z′ be a vertex of G at distance k from x3. If
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z′ is adjacent to a vertex a ∈ D, then d(z′, x3) < k, a contradiction.
Thus z′ is adjacent to no vertex in D. Consequently, D ∪ {z′} is an
independent set in G, implying that α(G) ≥ ⌈k+1

2 ⌉+ ⌊k−3
4 ⌋+2. To see

the sharpness, consider the C2k+1 for k = 5, 6, and use Theorem 2.

We believe the Theorem 6 can be improved for k ≥ 7.

Problem 2. Find a sharp lower bound for the independence number

of a k-SH graph for each k ≥ 7.

By Theorem 5, α(G) ≥ ⌈k+1
2 ⌉ + ⌊k−3

4 ⌋ + 1 for each k ≥ 2 and
any k-SH graph G. We next wish to prove that the difference α(G) −
(⌈k+1

2 ⌉+⌊k−3
4 ⌋+1) can be arbitrarily large. For this purpose, we prove

a stronger result. We show that the quotient α(G)
k

can be arbitrarily
large in a k-SH graph G. We prove that for any positive integer n ≥ 1,
and k ≥ 2, there is a graph G with α(G)

k
= 2n. Note that for k ≥ 2,

and any integer n ≥ 1, clearly, 2nk > ⌈k+1
2 ⌉+ ⌊k−3

4 ⌋ + 1. We define a
construction on a graph as follows.

• A-Construction: For any graphGwith vertex set {v1, v2, . . . , vn},
let A(G) be a graph with vertex set V (A(G)) = {v1, v2, . . . , vn}∪
{ui : i = 1, 2, ..., n} and edge set E(A(G)) = E(G) ∪ {uivj :
vj ∈ NG(vi)}. Furthermore, we define recursively, Ak(G) for any
k ≥ 1, by A1(G) = A(G), A2(G) = A(A(G)), and Ak(G) =
A(Ak−1(G)) if k ≥ 2.

Proposition 3. 1. If G is a k-SH graph, then Am(G) is a k−SH graph

for each m ≥ 1. 2. α(Am(G)) = 2mα(G) for each m ≥ 1.

Proof. We prove only for m = 1 and then the result follows by an
induction on m.

1. Let v1, v2, . . . , vn be a k−step Hamiltonian walk of G. From
the construction of A(G), it is clear that d(ui, ui+1) = d(vn, u1) =
d(un, v1) = k for i = 1, 2, . . . , n − 1. Therefore, the sequence
v1, v2, . . . , vn, u1, u2, . . . , un, v1 is a k−step Hamiltonian walk of A(G),
as desired.
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2. Let D be a maximum independent set in G. Then D ∪ {ui :
vi ∈ D} is an independent set for A(G), and thus α(A(G)) ≥ 2α(G).
Suppose that α(A(G)) > 2α(G). Let I be a maximum independent set
in A(G). Then |I∩V (G)| < |I−V (G)|. Then {vi : ui ∈ I−V (G)} is an
independent set for G of cardinality more than α(G), a contradiction.
Consequently, α(A(G)) = 2α(G).

Theorem 7. For any positive integer n ≥ 1 and k ≥ 2, there is a

graph H with
α(H)
k

= 2n.

Proof. Given k ≥ 2 and n ≥ 1, let G = C2k+1 and H = An(G). Since
G is a k-SH graph by Theorem 2 with α(G) = k, by Proposition 3, H
is a k-SH graph, with α(H) = 2nk.

Let β(G) be the vertex covering number of a graph G. Note that
β(G) is the minimum cardinality of a set of vertices such that each
edge of the graph is incident to at least one vertex of the set. It is
known that α(G) + β(G) = n. Thus from Theorems 3 and 5, we have
the following.

Corollary 2. If G is a k-SH graph of order n for k ≥ 2, then ⌈k2⌉+1 ≤

β(G) ≤ n− ⌈k+1
2 ⌉ − ⌊k−3

4 ⌋ − 1.

4 Conclusion

The presented upper and lower bounds for the independence number
in k-step Hamiltonian graphs given in this paper are sharp for small
values of k. New sharp bounds for larger values of k are of sufficient
interest.

References

[1] E. Angel, R. Campigotto, C. Laforest, “A new lower bound on the
independence number of graphs,” Discrete Appl. Math., vol. 161,
no. 6, pp. 847–852, Apr. 2013.

26



Bounds for the Independence Number in k-SH Graphs . . .

[2] Y. Caro, “New results on the independence number,” Tel-Aviv
University, Technical Report, 1979.

[3] K. Dutta, D. Mubayi, C. R. Subramanian, “New lower bounds
for the independence number of sparse graphs and hypergraphs,”
Siam J. Discrete Math., vol. 26, no. 3, pp. 1134–1147, Aug. 2012.

[4] R. Gould, “Advances on the Hamiltonian Problem: A Survey,”
Graphs Comb., vol. 19, no. 1, pp. 7–52, Mar. 2003.

[5] J. R. Griggs, “Lower bounds on the independence number in terms
of the degrees,” J. Combin. Theory Ser. B, vol. 34, no. 1, pp. 22–
39, Feb. 1983.

[6] W. Goddard and M. A. Henning, “Independent domination in
graphs: a survey and recent results,” Discrete Math., vol. 313, no.
7, pp. 839–854, Apr. 2013.

[7] W. Goddard, M. A. Henning, J. Lyle and J. Southey, “On the
independent domination number of regular graphs,” Ann. Comb.,
vol. 16, no. 4, pp. 719–732, Dec. 2012.

[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals

of Domination in Graphs, New York, NY, USA: Marcel Dekker,
Inc., 1998, 446 p.
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