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The Physical-mathematical Theory of

Hyper-random Phenomena
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Abstract

We give the survey of the researches dedicated to the statisti-
cal stability phenomenon and the physical-mathematical theory
of hyper-random phenomena that takes into account the viola-
tion of statistical stability. It is presented the study technique
of statistical stability, the results of the theoretical and experi-
mental investigations of statistical stability of various processes,
the mathematical apparatus of the theory of hyper-random phe-
nomena, the particularities of mathematical statistics of hyper-
random variables (including ones connected with the law of large
numbers and the central limit theorem), and the explanation why
the accuracy of actual measurements is limited. The description
is constructed on the comparison of the theory of hyper-random
phenomena with the probability theory.

Keywords: Phenomenon of statistical stability; Probability
theory; Theory of hyper-random phenomena; Physical process;
Violation of convergence.

1 Introduction

For description of mass physical phenomena in uncertainty conditions
different mathematical and physical-mathematical theories are used.

Between these two types’ theories there is essential difference: in
mathematical theories the physical entity is ignored and in physical-
mathematical ones it plays a key role. Subject matter of a mathematical
theory is abstract mathematical objects and subject matter of a physical-
mathematical theory is physical phenomena of the real physical world.
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Classical probability theory based on Kolmogorov’s axioms [1] is a
typical example of mathematical theory, the subject matter of which
is abstract probability space. Theories exploiting uncertainty approach

and approximate reasoning (in particular, imprecise probability theory

[2, 3], interval analyses [4], interval probability theory [5], robust Baye-
sian analysis [6, 7], probability box theory [8], robust Neyman-Pearson

theory [9], Huber’s robust statistics [10], etc.) are of mathematical type

too (Table 1).

Table 1. Theories describing mass physical phenomena in uncertainty
conditions

Mathematical

theories

Physical-

mathematical

theories

Probability

approach

Probability theory as
mathematical discipline

(A.N. Kolmogorov)

Probability theory as
physical discipline

(D. Hilbert)

Uncertainty

approach

Mathematical theories

based on approximate
reasoning

Physical-mathematical

theory of hyper-random

phenomena

Besides mathematical interpretation of the probability theory it is
known the alternative one, the follower of which was David Hilbert. He
and many other scientists regarded the probability theory as physical

discipline [11]. Although the physical approach is less popular now
among mathematicians but it is very popular among engineers and
physicists. The subject matter of the physical-mathematical probability
theory is statistical stability of actual mass phenomena.

The probability theory has the centuries-old development history.
During this time it has established itself as the most powerful tool
solving various statistical tasks. There is even opinion that any sta-
tistical problem can be effectively solved within the paradigm of the
probability theory. However, as it turned out, it is not so.

Some conclusions of the probability theory do not accord to the
experimental data. A typical example concerns the potential accuracy
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of measurement. If systematic error absents, according to the proba-
bility theory (Cramer–Rao inequality [12, 13]), with increasing of the
number of measurement results of any physical quantity the error of
the averaged estimator follows to zero. But every engineer or physi-
cist knows that the actual measurement accuracy is always limited and
to overcome the limit by the statistical averaging of the data is not
possible.

Study of the causes of discrepancies between the theory and practice
led to the understanding that the problem is related to the unjustified

idealization of the phenomenon of statistical stability.

The modern probability theory regarded as a physical-mathematical

one has mathematical and physical components [14]. The mathematical
component is based on the A.N. Kolmogorov’s classical axioms while
the physical component is based on physical hypotheses, in particular
the hypothesis of ideal (perfect) statistical stability of actual events,

variables, processes, and fields assuming the convergence of statistics

when the sample size goes to infinity.

The results of numerous experimental studies of various physical
quantities and processes over long observation intervals have shown
that the hypothesis of perfect statistical stability is not confirmed ex-

perimentally.

For relatively short temporal, spatial, or spatio-temporal observa-
tion intervals, an increase in data volume usually reduces the level of
fluctuation in the statistics. However, when the volumes become very
large, this tendency is no longer visible, and once a certain level is rea-
ched, the fluctuations remain practically unchanged or even grow. This
indicates a lack of convergence for real statistics (their inconsistency).

If the volume of processing data is small, the violation of the con-
vergence practically does not influence on the results, but if this volume
is large, the influence is very significant.

The study of violations of statistical stability of physical processes
and the development of an effective way for description of the actual
world with taking into account such violations has resulted in the con-
struction of the physical-mathematical theory of hyper-random pheno-

mena (Table 1).
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The subject matter of this theory as well as the physical-mathematical

probability theory is statistical stability of actual mass phenomena. The
scope of study of it is the violation of statistical stability among the
characteristics and parameters of real physical phenomena.

The theory of hyper-random phenomena consists of physical and
mathematical components. Mathematical component is based on the
Kolmogorov’s axioms and constructed on the scheme of the classical
probability theory. However it accumulates knowledge obtained in the
framework of a number of adjacent mathematical theories exploiting

approximate reasoning.

Physical component of the theory is based on the hypotheses
that essentially differ from the physical hypotheses of the physical-
mathematical probability theory, in particular, on the hypothesis of

limited statistical stability assuming the absence of convergence of ac-

tual statistics.

The theory of hyper-random phenomena began to develop at the
end of the XX century. Quite a few scientific works concerning this
theory are written. The publication list, in particular, includes eight
monographs [14–21], two of which [14, 21] are written in English.

The purpose of this survey article is to present main results concer-

ning modern investigation of the phenomenon of statistical stability and
to compare two approaches for its description proposed by probability

theory and theory of hyper-random phenomena.

In Sect. 2 we familiarize with the manifestations of the statistical
stability phenomenon and two physical hypotheses: perfect and imper-
fect statistical stability.

Sect. 3 is devoted to description of Hilbert’s sixth problem and its
solution in the part of statistical stability proposed by the probability
theory and the theory of hyper-random phenomena.

Sect. 4 presents the investigation technique of statistical stability
on infinite and finite observation intervals as well as the results of theo-
retical researches of statistical stability of stochastic processes and the
experimental investigations of statistical stability of actual processes of
various physical nature.

Sect. 5 familiarizes with the mathematical apparatus used in the
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theory of hyper-random phenomenon for description of real physical
events, quantities, processes, and fields in conditions of imperfect sta-
tistical stability. The mathematical apparatus is developed for hyper-
random events, scalar and vector hyper-random variables, scalar, vec-
tor, stationary, and ergodic hyper-random functions, hyper-random
differential equations, transformations of hyper-random variables and
functions. The special part is devoted to mathematical statistics of
hyper-random phenomena. We do not describe all these questions
(they are presented in detail, in particular, in the monographs [14,
16, 17]). To obtain general representation about the developed mat-
hematical approaches and main theoretical results we consider briefly
only the description of scalar hyper-random variables, the particula-
rities of mathematical statistics of hyper-random variables, notions of
generalized limit and convergence of sequences in the generalized sense,
generalized law of large numbers, and generalized central limit theorem.

Sect 6 concerns the engineering and practical questions. We des-
cribe here the classic determinate–random measurement model rested
upon the probability theory and the determinate–hyper-random one

based on the theory of hyper-random phenomena, compare these two
models, and present estimation results of potential measurement accu-

racy of physical quantities calculated with using these models.

Note, from the issues presented in the article a special place occupies
the questions concerning experimental research of violation of statisti-

cal stability of actual processes. The results of these investigations give
physical grounds for correct using in practice not only hyper-random
mathematical models but other mathematical models based on approx-

imate reasoning principles.

2 The Physical Phenomenon of Statistical Sta-

bility

2.1 Manifestation of the Phenomenon of Statistical Sta-

bility

The statistical stability is manifested in stability of relative frequency
of mass events. The first to draw attention to the phenomenon of
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statistical stability was the cloth merchant J. Graunt in 1662 [22]. In-
formation about research on statistical stability is fragmentary for the
period from the end of the XVII century to the end of the XIX cen-
tury, e.g., by J. Bernoulli, S.D. Poisson, I.J. Bienayme, A.A. Cournot,
L.A.J. Quetelet, J. Venn, etc. [23, 24].

Systematic study of statistical stability began at the end of the
XIX century. In 1879, the German statistician W. Lexis made the
first attempt to link the concept of statistical stability of the relative
frequency with the dispersion [23]. At the turn of the century and in
the early XX century, statistical stability was studied by C. Pearson,
A.A. Chuprov, L. von Bortkiewicz, A.A. Markov, R.E. von Mises, and
others [23, 24].

A lot of well known scientists led experimental investigations of the
statistical stability of relative frequency of mass events. It is known,
for example, that coin-tossing experiments were studied by P.S. de
Laplace, G.L.L. de Buffon, K. Pearson, R.P. Feynman, A. de Morgan,
W.S. Jevons, V.I. Romanovskiy, W. Feller, and others. At the first
glance, this quite a trivial task per se was not presented for them.

A new stage of experimental research began in the late XX cen-
tury. The necessity for additional studies is called due to the new ap-
plied tasks and the detection of a number of phenomena that can not
be satisfactorily explained and described within the framework of the
classical probability theory. The new tasks are, in particular, the ultra-
precise measurement of physical quantities and ultra-precise forecasting

of developments over large intervals of observation. To the relatively
new phenomena can be led, for instance, an unpredictable measurement
progressive (drift) error [25, 26], as well as a flicker noise [27], which is
detected everywhere and can not be suppressed by averaging the data.

The phenomenon of statistical stability is manifested also in the
stability of the average y(t) of the process x(t) and its sample mean

yn = 1
n

n
∑

i=1
xi, where x1, . . . , xn are discrete samples of the process x(t).

Interesting that this phenomenon occurs in case of averaging of the
fluctuations that are of different types, in particular, of the stochastic,
determinate, and actual physical processes.
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Example 1. In Fig. 1a and Fig. 1c a realization of noise with uni-
form power spectral density (white noise) and a determinate periodical
process are presented. In Fig. 1b and Fig. 1d the dependencies of the
according averages on the averaging interval are shown. As can be seen
from Fig. 1b and Fig. 1d, when the averaging interval increases, fluc-
tuations in the sample mean decrease and the average value gradually
stabilizes.

Figure 1. Realization of white Gaussian noise (a) and harmonic oscil-
lation (c), together with the dependencies of the corresponding sample
mean on the average interval (b, d)

Example 2. Fig. 2a and Fig. 2b show how the mains voltage
in a city fluctuates quickly, while the average changes slowly. As the
averaging interval increases from zero to one hour, the average voltage
stabilizes (Fig. 2b).

Figure 2. Dependence of the mains voltage (a) and the corresponding
average (b) on time over 1.8 hours
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The phenomenon of statistical stability is observed in calculation
of other statistics too, in particular, the sample standard deviation

zn =

√

1
n−1

n
∑

i=1
(xi − yn)

2 (n = 2, 3, . . .).

2.2 The Hypothesis of Ideal Statistical Stability

Taking into account the statistical stability of the relative frequency of
actual physical events and actual statistics it seems naturally to assume
that if the number of the test n infinitely increases, the fluctuation level
of the relative frequency pn(A) of any actual event A tends to zero, and
also that in the unlimited increasing of the sample size n (increasing
the observation time t) the fluctuation level of the sample mean yn of
any random or real physical oscillation x(t) follows to zero too.

In other words, it is possible to hypothesize that there is a conver-

gence of the sequence of the relative frequencies p1(A), p2(A), . . . of any
actual event A to some determinate value P (A) and there is a conver-

gence of the sequence of averages y1, y2, . . . of any stochastic or actual

process to determinate value m, viz. the limit of the relative frequency
lim
n→∞

pn(A) = P (A), and the limit of the average lim
n→∞

yn = m.

The modern probability theory is based on this hypothesis of ideal

(perfect) statistical stability or, in other words, on the assumption of

convergence of statistics.

The value P (A) is interpreted in practice as the probability of the
event A, and the value m is regarded as the expectation of the process
x(t).

2.3 The Hypothesis of Imperfect Statistical Stability

For many years it was believed that the hypothesis of perfect statistical

stability adequately reflects the reality. Although some scholars (even
the founder of axiomatic probability theory A.N. Kolmogorov [1, 28,
29] and such famous scientists as A.A. Markov [30], A.V. Skorokhod
[31], E. Borel [32], V.N. Tutubalin [33], and others) noticed that, in the

real world, this hypothesis is valid only with certain reservations.
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Pay attention, the convergence of the relative frequency and other
statistics is only a hypothesis. It does not follow from any experiments
and any logical inferences. Not all processes, even of oscillatory type,
have the property of perfect statistical stability.

Experimental studies of various processes of different physical na-
ture over broad observation intervals show that the hypothesis of per-
fect statistical stability is not confirmed. The real world is continuously
changing, and changes occur at all levels, including the statistical one.
Statistical assessments formed on the basis of relatively small observa-
tion intervals are relatively stable. Their stability is manifested through
a decrease in the fluctuation of statistical estimators when the volume
of statistical data grows. This creates an illusion of perfect statistical
stability. However, beyond a certain critical volume, the level of fluc-
tuations remains practically unchanged (and sometimes even grows)
when the amount of the data is increased. This indicates that the
statistical stability is not perfect.

Example 3. Non-perfect statistical stability is illustrated in Fig.
3 [14] which presents mains voltage fluctuations over 2.5 days. Note,
the fluctuation in Fig. 2a shows the beginning part of the fluctuation
presented in Fig 3a. As can be seen from Fig. 3b, the sample average
does not stabilize, even for very long averaging intervals.

Figure 3. Dependence of the mains voltage (a) and the corresponding
average (b) on time over 60 hours
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3 Hilbert’s Sixth Problem and Approaches for

Its Solving

3.1 Description of the Phenomenon of Statistical Stabi-

lity in the Framework of Probability Theory

Prior to the early twentieth century, probability theory was regarded as
a physical theory, which described the phenomenon of statistical stabi-
lity. Then at the beginning of the last century, the problem of axioma-
tizing probability theory was raised. In fact, David Hilbert formulated
this as part of the problem of axiomatizing physics (the Hilbert’s sixth
problem) [11].

Many famous scientists tried to solve the problem and various ap-
proaches were proposed. Today, the most widely recognized approach
is the set-theoretic one [1] developed by A.N. Kolmogorov in 1929 [34].
This approach has even been elevated to the rank of a standard [35].

The basic notion in Kolmogorov’s probability theory is the notion of
a random event. Random events are regarded as mathematical objects,
described by means of a probability space defined as a triad (Ω, ℑ, P ),
where Ω is the space of elementary events ω ∈ Ω, ℑ is a σ-algebra of

subsets of events (Borel field), and P is a probability measure on subsets

of events.

For any random event A the probability P (A) is defined by the
following three axioms:

1) the probability of any event A is a non-negative number, i.e.
P (A) ≥ 0;

2) for pairwise disjoint events A1, A2, ... (both finite and countable),
the probability of their union is the sum of the probabilities of the
events, i.e. P (∪

n
An) =

∑

n
P (An);

3) the probability of the event Ω is equal unity (i.e. P (Ω) = 1).

A random variable X is regarded as a measurable function defi-
ned on the space Ω of elementary random events ω, while a random

(stochastic) function X(t) is a function of an independent argument t,
whose value is a random variable when this argument is fixed.

A random phenomenon is understood as a mathematical object
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(a random event, random variable, or stochastic function), which is
exhaustively characterized by some specific probability distribution
law. In particular, a random event is described exhaustively by
the probability, a random variable X – by the distribution function

F (x) = P {X < x}, where P {X < x} is the probability of the ine-
quality X < x, and a scalar random function X(t) – by the distri-

bution function F (~x;~t) = P{X(t1) < x1, ...,X(tL) < xL}, where ~x =
(x1, ..., xL) is the L-dimensional vector of values of the function X(t) at
times t1, ..., tL represented by the L-dimensional vector ~t = (t1, ..., tL).

Note that a phenomenon or mathematical model, not described by

specific distribution law is not considered to be random. This is an
extremely important point that must be taken into account.

In probability theory, the probability of an event is a key concept.
Note that, in Kolmogorov’s definition, it is an abstract mathematical

concept. Using a more visual statistical definition due to R. von Mises
[36], the probability P (A) of a random event A is interpreted as a limit
of the relative frequency pN (A) of the event, when the experiments
are carried out under identical statistical conditions and the number
N of experiments tends to infinity. When N is small, the relative fre-
quency pN (A) can fluctuate greatly, but with increasing N , it gradually
stabilizes, and as N → ∞, it tends to a definite limit P (A).

All mathematical theories, including the version of probability the-
ory based on Kolmogorov’s axioms, are related to abstract mathemati-

cal concepts which are not associated with the actual physical world. In
practice, these theories can be successfully applied if we admit certain
physical hypotheses asserting the adequate description of real world
objects by relevant mathematical models. For probability theory, such
physical hypotheses are as follows [14]:

Hypothesis 1 For mass phenomena occurring in the real world,

the relative frequency of an event has the property of ideal (perfect)
statistical stability, i.e., when the sample volume increases, the relative

frequency converges to a constant value.

Hypothesis 2Mass phenomena are adequately described by random

models which are exhaustively characterized by distribution functions.

It is often assumed that the hypothesis of perfect statistical stability
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is valid for any physical mass phenomena. In other words, a stochastic

concept of world structure is accepted.

Kolmogorov’s axioms with added Hypotheses 1 and 2 solve Hilbert’s
sixth problem in the part of axiomatizing of the probability theory as
physical discipline.

3.2 Description of the Phenomenon of Statistical Stabi-

lity in the Framework of Theory of Hyper-random

Phenomena

In Sect. 2.3, attention was drawn to the fact that the experimental
study of real physical phenomena over broad observation intervals does
not confirm the hypothesis of perfect statistical stability (Hypothesis
1). For a correct application of the classical probability theory in this
case, it is sufficient in principle to replace Hypothesis 1 by the following:

Hypothesis 1’ For real mass phenomena, the relative frequency of

an event has the property of limited statistical stability, i.e., when the

sample volume increases, the relative frequency does not converge to a

constant value.

The replacement of Hypothesis 1 by Hypothesis 1’ leads to consi-
derable mathematical difficulties due to the violation of convergence.
There are different ways to overcome them. The development of one
of these led to the physical-mathematical theory of hyper-random phe-

nomena [14].

In classical probability theory, the basic mathematical entities are
random events, random variables, and random functions. In the the-
ory of hyper-random phenomena, the analogues of these basic entities
are hyper-random events, hyper-random variables, and hyper-random

functions, which are sets of non-interconnected random events, random
variables, and stochastic functions, respectively, each regarded as a
comprehensive whole.

A hyper-random event can be described by a tetrad (Ω,ℑ, G, Pg),
where Ω is a space of elementary events ω ∈ Ω, ℑ is a Borel field, G is
a set of conditions g ∈ G, and Pg is a probability measure on subsets of
events, depending on the condition g. Thus, the probability measure
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is defined for all subsets of events and all possible conditions g ∈ G.
Note that the measure for conditions g ∈ G is not determined.

Using a statistical approach, a hyper-random event A can be inter-
preted as an event whose relative frequency pN (A) is not stabilized by

growth of the number N , and which has no limit when N → ∞.
It is essential to understand that the hyper-random events, varia-

bles, and functions (hyper-random phenomena) aremany-valued objects

exhaustively characterized by the sets of non-interconnected probability

measures. Hence,

• a hyper-random event is described exhaustively by the collection

of probabilities;

• a hyper-random variableX = {Xg, g ∈ G} is described exhausti-
vely by the collection of conditional distribution functions F (x/g)
with conditions g ∈ G, forming the many-valued distribution

function F̃ (x) = {F (x/g), g ∈ G}1, where Xg = X/g is a
random variable subject to the condition g, and the set G can
be finite, countably infinite, or uncountable;

• a scalar hyper-random function X(t) = {Xg(t), g ∈ G} is des-
cribed exhaustively by the collection of conditional multidi-

mensional distribution functions F (~x;~t/g) with conditions g ∈
G, forming the many-valued distribution function F̃ (~x;~t) =
{

F (~x;~t/g), g ∈ G
}

, where Xg(t) = X(t)/g is a random function
subject to the condition g.

For correct use of the theory of hyper-random phenomena, one must
also adopt the following hypothesis, in addition to Hypothesis 1’.

Hypothesis 2’Mass phenomena are adequately described by hyper-

random models which are exhaustively characterized by the sets of dis-

tribution functions.

The assumption that these hypotheses are valid for a wide range
of mass phenomena leads to a world-building concept based on hyper-

random principles.

1A tilde under a letter indicates that the object described by the letter is many-

valued.
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So the mathematical part of the theory of hyper-random phenomena

is based on the classical axioms of probability theory, and the physical

part – on Hypotheses 1’ and 2’.

Note, in contrast to the classical Kolmogorov’s mathematical pro-
bability theory, the theory of hyper-random phenomena is physical-

mathematical one. Its subject matter is phenomenon of statistical
stability and the scope of research is adequate description of it by
hyper-random models (hyper-random phenomena) taking into account
the violation of statistical stability.

Since the mathematical part of the theory of hyper-random pheno-
mena uses the system of mathematical axioms of probability theory,
from the mathematical standpoint it is a branch of classical probabi-
lity theory. But from the physical point of view, the theory of hyper-
random phenomena is a new physical theory based on new physical
hypotheses.

In general, the theory of hyper-random phenomena can be regarded
as a new physical-mathematical theory constituting a complete solution

of Hilbert’s sixth problem in the context of statistical stability.

4 The Investigation of the Statistical Stability

Violation

4.1 Formalization of the Statistical Stability Concept

Curiously enough is that the concept of statistical stability was not
formalized until recent time. First of all note, a data statistically stable
with respect to some statistics can be unstable with respect to other
statistics. This means that the statistical stability is an attribute not
only of a data, but also of the statistics. In addition, the level of
statistical stability depends on the number of the data and on the
sequence of this data.

It was proposed the number of parameters characterizing statistical
stability violation. For the random sequence X1, . . . ,XN most useful
are parameters of statistical instability with respect to the average γN
and respect to the sample standard deviation ΓN described by the fol-
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lowing expressions: γN = E
[

D̄YN

]/

E
[

D̄XN

]

, ΓN = E[D̄ZN
]
/

E[D̄XN
],

where D̄YN
= 1

N−1

N
∑

n=1
(Yn − m̄YN

)2 is the sample variance of the fluctu-

ations in the average Yn = 1
n

n
∑

i=1
Xi (n = 1, N ), m̄YN

= 1
N

N
∑

n=1
Yn is the

sample mean of the average fluctuations, D̄ZN
= 1

N−2

N
∑

n=2
(Zn − m̄ZN

)2

is the sample variance of the fluctuations in the sample standard devi-

ation Zn =

√

1
n−1

n
∑

i=1
(Xi − Yn)

2 (n = 2, N ), m̄ZN
= 1

N−1

N
∑

n=2
Zn is the

average of the sample standard deviations, D̄XN
= 1

N−1

N
∑

n=1
(Xi − YN )2

is the sample variance of the initial sequence.

The actual range of the parameters γN , ΓN is [0,∞). The smaller
the values of the parameters γN and ΓN the more stable the sequence
with respect to average and standard deviation respectively. Small
values for large sample sizes N point to high statistical stability of the
sequence, and large values point to statistical instability.

Random samples, for which the parameters of statistical instability

γN and ΓN do not follow to zero, are considered to be statistically

unstable with respect to the average and standard deviation respectively.

Any measurement procedure consists in the comparison of the mea-
surement result with some unit. For quantitative characterizing of the
degree of instability, the measurement units are requested, the compa-
rison with which would allow judging about the degree of instability
in respect to the average and standard deviation. As the role of the
measurement unit, a variable γ0N can play, that is the parameter γN
calculated for the standard statistically stable sequence of uncorrelated

samples of white Gaussian noise.

The absolute level of statistical instability with respect to the
average and standard deviation in units γ0N characterize the parame-
ters of the statistical instability hN and HN described by the following
expressions: hN = γN/γ0N , HN = ΓN/γ0N . The actual range of the-
ses parameter is [0,∞). The measurement unit of them is the number
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h0N = 1 that does not depend on the sample size.

For solving of the practical tasks it is usually not important the
behavior of statistics on the infinite observation interval, though it is
laid in the basis for a formal definition of statistical stability. More
important the behavior of statistics on the actual observation interval :
the presence or absence of the trends indicating a violation of statistical
stability. If on the observation interval these trends are not tracing,

the process can be considered as statistically stable, but otherwise as

statistically unstable.

Various statistics and processes, as a rule, have different statistical
stability intervals. The concepts of the interval of statistical stability
with respect to the average τsm and of the interval of statistical stability
with respect to the standard deviation τsd can be formalized by the
statistical stability borders of the confidence intervals.

For the parameters of the statistical instability γN and ΓN the
statistical stability upper border of the confidence interval is given by
γ+0N = γ0N+εσγ∗

0N
, where ε is the confidence parameter that determines

the width of the confidence interval and σγ∗

0N
is the standard deviation

of the variable γ∗0N = D̄YN
/E[D̄XN

] calculated for standard statistically
stable sequence.

The criteria of statistical stability violation with respect to the

average and with respect to the standard deviation (that determine the
amounts of the intervals of statistical stability τsm and τsd) can be that
the parameters γN and ΓN go beyond the border γ+0N or the parameters
hN and HN go beyond the border h+0N = γ+0N/γ0N .

In practical work, due to the limited amount of data, instead of the
parameters of statistical instability γN , hN and ΓN , HN , we have to
admit using of the appropriate estimates γ∗N , h∗N and Γ∗

N , H∗

N .

4.2 The Statistical Stability of Stochastic Processes

4.2.1 Dependence of the Statistical Stability on the Process’s

Spectrum

Studies show that the statistical stability of a stochastic sequence (pro-
cess) with respect to the average and standard deviation is determined
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by its spectrum.

In particular, for the sequence X1, . . . ,XN with zero expectation
and power spectral density SxN

(k) the parameter of statistical instabi-

lity with respect to the average γN when N → ∞ is described by the
following asymptotic formula:

γN =

N/2
∑

k=2

1
(k−1)2

[

π2

4 + (C + ln(2π(k − 1)))2
]

SxN
(k)

4π2
N/2
∑

k=2

SxN
(k)

,

where k is the spectral sample number (k = 1, N ), C is the Euler–

Mascheroni constant (C ≈ 0.577216).

4.2.2 Stochastic Processes Whose Spectrum is Described by

a Power Function

In many cases, actual noise is well approximated by random processes
whose power spectral density is described by a power function 1/fβ for
various values of the shape parameter β, where f is frequency. Such
noise sometimes is called a color noise. One thus speaks of violet, blue
(cyan), white, pink, brown (red), and black noise that corresponds to
β = −2,−1, 0, 1, 2, and > 2.

Flicker noise and fractal (self-similar) processes are other exam-
ples of the processes with power spectral density described by power
functions.

Taking into account the prevalence of the processes with power
spectral density described by a power function the research of their
statistical stability was carried out.

Studies show that the process with power spectral density described

by a power function is statistically stable with respect to the average and

with respect to standard deviation if β < 1 and statistically unstable if

β ≥ 1.

Since the state of statistical stability of the process changes at the
point β = 1, the process with this particular parameter value can
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be regarded as a limiting unstable process with respect to average and

standard deviation (limiting unstable in broad sense).

Investigations show that if β ≤ 0, the process is more stable

with respect to the average, than with respect to the standard deviation

(γN < ΓN ), and if β > 0, on the contrary, it is less stable (γN > ΓN ).

Summarizing these results it is possible to mark the following (see
Fig. 4):

Figure 4. Processes with power spectral density described by a power
function

- statistically stable with respect to the average and standard devia-

tion (stable in the broad sense) are stationary processes, a part of
the non-stationary processes, the so called fractal Gaussian noise,
a part of the flicker noise, as well as violet, blue, and white noise;

- statistically unstable with respect to the average and standard

deviation (unstable in the broad sense) are a part of the non-
stationary processes, a part of the flicker noise, as well as pink,
brown, and black noise.
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4.2.3 Dependence of Statistical Stability on Other Process’s

Particularities

Investigation of dependence of statistical stability of the processes on
the correlation of the samples shows that a positive correlation between
the samples leads to a decrease in the statistical stability, and a negative
correlation, to an increase.

Studies show [18] that violations of statistical stability occur not
only in the case of low-frequency processes, but also for narrowband

stochastic processes too.

Not only the non-stationary but stationary in a narrow sense sto-
chastic processes can be statistically unstable in a broad sense. The
statistically unstable processes, for example, are stationary stochastic
processes, cut sets of which are described by distributions that do not
have any moments or do not have moments higher than of the first or-
der (processes described by Cauchy, Pareto, Fischer–Snedecor, Frechet,
and et al. distributions).

Violation of statistical stability can have many causes. These in-
clude the inflow into an open system of matter, energy, and (or) infor-
mation feeding non-equilibrium processes, various nonlinear transfor-

mations, low-frequency linear filtering of special type, etc. It is shown
that, as the result of low-frequency filtration, broadband stationary
and statistically stable noise can be transformed into a statistically
unstable process.

4.3 The Results of Experimental Investigations of the

Statistical Stability of Actual Processes of Various

Physical Nature

To find out whether the actual processes are statistically stable or not,
and if they are unstable, on the whole, but at what observation interval
they can be considered as stable ones, various actual physical processes
were studied over long observation intervals.

For instance, it is investigated the supply-line voltage. The active
(effective) voltages were recorded in the computer memory and then
analyzed. Recording sessions were conducted over two months, with
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Figure 5. Variations in the estimate γ∗N of the statistical instability
parameter during a 60-hour observation of the mains voltage in four
sessions

breaks of a few days. The duration of each session was about 60 hours.
One of such records is presented in Fig. 3a. The estimates of the sta-
tistical instability parameter γ∗N with respect to the average calculated
for four sessions are shown in Fig. 5.

It follows from the figure that, for long observation times, the in-
stability parameter does not show any tendency to fall to zero. Con-
sequently, the mains voltage is statistically unstable. The statistical

stability interval with respect to average τsm of the mains voltage is

approximately an hour.

In the same mane it has been investigated statistical stability of a
lot of various processes, in particular the Earth’s magnetic field, the
height and period of waves on the surface of the sea, the temperature
and speed of sound in the ocean, the air temperature and atmospheric
precipitation in different cities, exchange rates, the X-ray intensity of
astrophysical objects, etc. [14, 17]. It has been found that all the
processes have limited interval of statistical stability. Table 2 presents
the estimation result of these intervals for some real processes.
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All these estimates, except for the one in row 9, relate to statistical
stability with respect to the average. The estimate in row 9 corresponds
to statistical stability with respect to the standard deviation.

Table 2. Estimates of the statistical stability intervals for various real
processes

No Real process Estimate of the statisti-
cal stability interval τs

1 Oscillations in the mains voltage About 1 h

2 Currency rate oscillations About 1 h

3 Height and period of sea surface wa-
ves

About half a day

4 Temperature and sound speed vari-
ations in the ocean

Ten hours

5 Radiation oscillations of astrophysi-
cal source Cygnus X-1

About a week

6 Variations of air temperature Several weeks

7 Radiation oscillations of astrophysi-
cal source GRS 1915+105

About a month

8 Narrowband fluctuations of water
temperature in the ocean with an
average period from 2 to 10 hours

Several weeks

9 Radiation oscillations of pulsar PSR
J1012+5307

Several months

10 Fluctuations in the wind speed in
Chernobyl

Several months

11 Earth’s magnetic field variations Several months

12 Precipitation fluctuations Many tens of years

It is important to note that all the processes, taken intentionally
from different fields of knowledge, are statistically unstable. This al-
lows us to suggest the following hypothesis: all real physical pheno-

mena are statistically unstable. This physical hypothesis becomes the
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foundation for constructing of the mathematical part of the theory of
hyper-random phenomena.

Note, the violation of statistical stability in the real world means
that the probability concept has no physical interpretation [14, 17]. Pro-

bability is thus a mathematical abstraction.

5 The Mathematical Apparatus of the Theory

of Hyper-random Phenomena

5.1 Scalar Hyper-random Variables

5.1.1 Conditional Characteristics

To describe the hyper-random variable X = {Xg, g ∈ G}, we use vari-
ous probabilistic characteristics of the conditional random variables Xg

(g ∈ G) such as the conditional distribution functions (Fig. 6) Fx/g(x)

and the conditional probability density functions2 fx/g(x) =
dFx/g(x)

dx
.

Figure 6. A set of conditional distribution functions Fx/g(x) (thin lines)
and the bounds of the distribution function FSx(x), FIx(x) (bold lines)
of the hyper-random variable X

The most complete description of the hyper-random variable X
gives its many-valued distribution function F̃x(x) = {Fx/g(x), g ∈ G}.

2It is assumed here and below that all the above distribution functions are con-

tinuous or piecewise continuous.
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A less complete description supplies the conditional crude and
central moments of the hyper-random variable X (conditional mo-

ments), in particular, the conditional expectation mx/g = E[Xg] =
∞
∫

−∞

x fx/g(x) dx, the conditional variances Dx/g = E[(Xg − mx/g)
2],

the conditional standard deviations σx/g =
√

Dx/g, and others.

In this interpretation, the expectation, variance, and standard de-

viation of the hyper-random variable X are many-valued values, which
is analytically described as follows: m̃x = {mx/g, g ∈ G}, D̃x =
{Dx/g, g ∈ G}, σ̃x = {σx/g, g ∈ G}.

The scalar hyper-random variables X1 and X2 described by the
respectively distribution functions F̃x1

(x) = {Fx1/g(x), g ∈ G} and

F̃x2
(x) = {Fx2/g(x), g ∈ G} are said to be equal in all conditions, if

under all conditions g ∈ G for the same g their conditional distribution
functions coincide: Fx1/g(x) = Fx2/g(x).

5.1.2 Bounds of the Distribution Function and Their Mo-

ments

A general view of the hyper-random variable X is given by the
bounds of the distribution function FSx(x) = sup

g∈G
Fx/g(x), FIx(x) =

inf
g∈G

Fx/g(x) that are respectively the upper and lower bounds of proba-

bility that X < x (see Fig. 6).

These bounds can be considered as the distribution functions of some

virtual random variables. Between these bounds there is the uncer-

tainty area (shaded area in Fig. 6).

The analogues of the probability density function of the random

variable are the probability densities functions of the bounds, viz.

fSx(x) =
dFSx(x)

dx
, fIx(x) =

dFIx(x)

dx
.

To describe a hyper-random variable, we may use the moments of

the bounds, in particular, the expectations, variances, and standard
deviations of the bounds, and so on.

The expectations of the bounds mSx, mIx of the hyper-random va-

riable X are described by the formulas mSx = ES [X] =
∞
∫

−∞

xfSx(x)dx,
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mIx = EI [X] =
∞
∫

−∞

xfIx(x)dx (see Fig. 6).

For a real hyper-random variable X the variances of the bounds

DSx, DIx are defined by DSx = ES

[

(X −mSx)
2
]

, DIx = EI [(X−
mIx)

2
]

, and the standard deviations of bounds – by σSx =
√
DSx, σIx =√

DIx.

The scalar hyper-random variables X1 and X2 described by the
distribution functions F̃x1

(x) and F̃x2
(x) respectively, are said to be

equal if their upper and lower bounds of the distribution coincide:
FSx1

(x) = FSx2
(x), FIx1

(x) = FIx2
(x).

5.1.3 Bounds of the Moments

The bounds of the moments give a general view of the hyper-random
variable X.

The upper and lower bounds of the expectation of the hyper-random

variable X are the values msx= Es[X] = sup
g∈G

mx/g, mix= Ei[X] =

inf
g∈G

mx/g (see Fig. 6).

The upper and lower bounds of the variance of the hyper-random

variable X are the values Dsx= sup
g∈G

Dx/g, Dix= inf
g∈G

Dx/g. The roots

σsx=
√
Dsx, σix=

√
Dix of these values are the bounds of the standard

deviation.

In general, the operators Es[·], Ei[·] do not coincide with the opera-
tors ES [·], EI [·], and the bounds of the expectation and variance msx,
mix, Dsx, Dix do not coincide with the expectations and variances of
the bounds mSx, mIx, DSx, DIx.

5.2 Particularities of Statistics of Hyper-random Varia-

bles

5.2.1 A Hyper-random Sample

The concepts of mathematical statistics of the theory of hyper-random
phenomena are based on the concepts of mathematical statistics of the
probability theory.
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The entire assembly (general population) of the hyper-random vari-

able X = {Xg, g ∈ G} is the infinite set of all its determinate realiza-

tions (sample elements or components) observed under all conditions

g ∈ G. This set can be either countable or uncountable.
It implies from this definition that the general population of the

hyper-random variable X is the union of the populations of all its
random components Xg, g ∈ G.

The general population can be described by the many-valued dis-

tribution function F̃x(x) of the hyper-random variable X, the set of
conditional distribution functions Fx/g(x) (g ∈ G), the upper and lo-
wer bounds of the distribution function FSx(x), FIx(x), the moments
of the bounds, the bounds of the moments, and other characteristics.

A set of members of the general population

~x = (x1, ..., xN ) = {x1g, . . . , xNg, g ∈ G} = {~xg, g ∈ G}

of the hyper-random variable X obtained for a finite number N of
experiments in different fixed or non-fixed conditions g ∈ G is called
the sample of the population, and its elements x1, ..., xN or x1g, . . . , xNg

are called the sampling values or realizations.
Without specifying a condition g each sampling value xn (n = 1, N)

is a set of determinate values (set of numbers), and with specifying the
condition g each sampling value xng is a determinate value (number).

Ones believe that the sample x1, . . . , xN belongs to the hyper-
random variable X = {Xg, g ∈ G} described by the conditional dis-
tribution functions Fx/g(x), g ∈ G if it is obtained from the general
population described under condition g by the distribution function
Fx/g(x).

Infinite set of the samples ~x = (x1, ..., xN ) of a volume N taken
from a general population without specifying of a condition g forms
N -dimensional hyper-random vector

~X = (X1, ...,XN ) = {X1g, . . . ,XNg, g ∈ G} =
{

~Xg, g ∈ G
}

,

called hyper-random sample and the infinite set of samples ~xg =
(x1g, . . . , xNg) of the volume N taken from this general population un-
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der condition g forms N -dimensional random vector (random sample)
~Xg = (X1g, . . . ,XNg).

Generally one believes that all elements of hyper-random vector are
described by the same many-valued distribution function F̃x(x) and
each component Xng (n = 1, N) of the random vector ~Xg correspon-
ding to the specific condition g is described by the same single-valued
distribution function Fx/g(x) (or probability density function fx/g(x)).

Ones usually assume that the components Xn of the hyper-random
sample ~X are mutually independent under all conditions. Then the
conditional distribution function F~x/~g(~x) of the hyper-random sample

~X under conditions g ∈ G factorizes: F~x/g(~x) =
N
∏

n=1
Fx/g(xn).

In the theory of hyper-random phenomena a statistics is any

function of the hyper-random sample ~X , random sample ~Xg under
a fixed condition g ∈ G, determinate many-valued sample ~x or deter-

minate single-valued sample ~xg under a fixed condition g ∈ G.

5.2.2 Evaluations of Characteristics and Parameters of a

Hyper-random Variable

Using the general population of a hyper-random variable theoretically
it is possible to calculate various its exact determinate characteristics

and parameters, such as the conditional distribution functions Fx/g(x),
bounds of distribution function FSx(x), FIx(x), conditional expecta-
tions mx/g, expectations of bounds mSx, mIx, bounds of expectation
msx, mix, conditional variances Dx/g, variances of bound DSx, DIx,
bounds of variance Dsx, Dix, and so on.

Using certain statistics of realizations of the hyper-random variable
it is possible to calculate approximate evaluations of the same charac-
teristics and parameters, in particular the evaluations of conditional
distribution functions F ∗

x/g(x), bounds of distribution function F ∗

Sx(x),

F ∗

Ix(x), conditional expectations m∗

x/g, expectations of bounds m∗

Sx,
m∗

Ix, bounds of expectation m∗

sx, m
∗

ix, conditional variances D∗

x/g, va-
riances of bound D∗

Sx, D
∗

Ix, bounds of variance D∗

Sx, D
∗

Ix, and so on.

If the sample is hyper-random, then the evaluations are the hyper-
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random estimators, if it is determinate, then the evaluations are deter-

minate estimates.

The estimates can be made in several steps. First, samples
x1g, . . . , xNg are formed separately for each condition g ∈ G. Using
samples ~xg = (x1g, . . . , xNg) for all g ∈ G, one then calculates the
conditional characteristic and parameter estimates, in particular, esti-
mates of the conditional distribution functions F ∗

x/g(x), estimates of the
conditional expectations m∗

x/g, estimates of the conditional variances
D∗

x/g, and others.

From the conditional distribution functions F ∗

x/g(x) for all g ∈
G, one can calculate estimates of the distribution function bounds:
F ∗

Sx(x) = sup
g∈G

F ∗

x/g(x), F
∗

Ix(x) = inf
g∈G

F ∗

x/g(x), and estimates of the pa-

rameters describing these bounds: estimates m∗

Sx, m
∗

Ix of the expecta-
tions of the bounds, estimates D∗

Sx, D
∗

Ix of the variances of the bounds,
and so forth.

Using estimates of the conditional variables, one can calculate esti-
mates of the corresponding variable bounds, for example, estimates of
the expectation bounds m∗

sx = sup
g∈G

m∗

x/g, m
∗

ix = inf
g∈G

m∗

x/g, estimates of

the variance bounds D∗

sx = sup
g∈G

D∗

x/g, D∗

ix = inf
g∈G

D∗

x/g, etc.

When applying this technique, certain difficulties can be expected in

the first stage, when the samples ~xg for all g ∈ G are formed, because
at first glance, it is difficult to control and maintain the conditions g.
The situation is facilitated by the facts that a lot of actual samples
are possessed of ergodic property and the calculation of a number of
characteristics do not require information about the specific conditions

under which the conditional characteristics have been obtained.

Most important that, in the sample formation phase, all possible
conditions g of the set G are represented, and for every fixed condition
g in the sample ~xg, only the data corresponding to this condition g is

used.

Typically, for actual phenomena occurring in the real world, in the
case of a broad observation interval, the latter requirement can be easily
provided, because, although the conditions often vary continuously,
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they vary sufficiently slowly, and it is possible to evaluate the maximum
number of elements Ns for which the conditions can be treated as
practically constant.

Therefore one can collect data on a broad observation interval (that
is essentially larger than Ns) without taking care about what the statis-
tical conditions are at any given time and in what way they alternate,
and then one can separate the resulting data into a number of fragments
containing Ns consistent elements. Using these fragments, which re-
present the variable under different statistical conditions g, one can
then calculate the required estimates. The main requirement for this
technique is to collect the data for all possible observation conditions
in G.

Of course a number of questions arise. What are the conditions
under which the hyper-random evaluations converge to the exact cha-
racteristics and parameters? What are types of these parameters and
characteristics? What are their distribution laws? The generalized

law of large numbers and the generalized central limit theorem help to
obtain answer to these and other questions.

To understand this material, one should be familiar with some mat-
hematical concepts, such as the generalized limit and the convergence

of sequences in the generalized sense.

5.3 Generalized Limit and the Convergence of Sequen-

ces in the Generalized Sense
5.3.1 Generalized Limit

According to classical concepts, the numerical sequence x1, x2, ..., xn is
considered as a convergent sequence if there is a limit a = lim

n→∞

xn. If

the limit exists, then it is unique. The sequence which has not the limit
is considered as a divergent sequence.

From every infinite sequence one can form the set of partial se-

quences (subsequences) derived from the original sequence by discar-
ding part of its members, while maintaining the order of the remaining

members.

It is proved that when the sequence converges, all its partial sequen-
ces converge too. If the sequence diverges, then all its partial sequences
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do not necessary diverge. Some of them can converge to certain limits
(limit points). The set of all limit points am, m = 1, 2, . . . of the se-
quence x1, x2, ..., xn also called partial limits, form the spectrum of limit

points S̃x.

The spectrum of limit points S̃x is a generalization of the limit con-
cept on any sequence, including divergent. If the sequence converges,
the spectrum of the limit points consists of a single element (number),
and if it is divergent, it consists of a set of numbers. The spectrum of
limit points can be described by the expression S̃x = LIM

n→∞

xn, where,

unlike the conventional limit lim
n→∞

the symbol of the generalized limit

LIM
n→∞

is used.

This expression can be interpreted as the convergence of the se-

quence to the spectrum of limit points. The spectrum may be discrete,
continuous, or mixed (discrete-continuous). If the spectrum forms a
continuous interval, they say that the sequence converges to the inter-

val.

A divergent sequence can be characterized by not only the spectrum
of limit points, but also by a set (in general) of the measures descri-
bed by the many-valued (in general) distribution function of the limit

points F̃x(x) = LIM
n→∞

mn(x)
n , where mn(x) is the number of terms of the

sequence x1, x2, ..., xn that are less than x.

If the sequence converges in the usual sense to the number a, the
distribution function of limit points is described by the unique distri-
bution function Fx(x) in the form of a unit step function at the point
a (Fig. 7a) (then the measure equals to one at the point a and zero at
all other points).

If the sequence diverges (converges to the set of numbers (in the
particular case converges to the interval)), the distribution function is
either a single-valued non-decreasing function Fx(x) that differs from
the unit step function (Fig. 7b), or a many-valued function F̃x(x) (Fig.
7c). Note that the special case of hyper-random variable is the interval

variable, the distribution function of which is described by a rectangle
of unit height (Fig. 7d).

Using the terminology of the theory of hyper-random phenomena,
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Figure 7. Single-valued Fx(x) (a, b) and many-valued F̃x(x) (c, d) dis-
tribution functions of the limit points and their bounds FIx(x), FSx(x)
for sequences converge to the number a (a) and to the interval [ai, as]
(b–d)

we can say that the spectrum of the limit points of a numerical sequence

can be

• a number (interpreted by the set of real numbers with the unit
measure at the point x = a and zero measure at all other points)
(Fig. 7a),

• a random variable (Fig. 7b),

• a hyper-random variable (Fig. 7c) (in the degenerated case an
interval variable (Fig. 7d)).

In other words, the numerical sequence may converge to a number

or to a set of numbers (in the particular case to an interval). If it
converges to a set of numbers, the spectrum of limit points may be
either a random variable or a hyper-random variable.
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5.3.2 Convergence of Sequences of Hyper-random Variables

in the Generalized Sense

By analogy with the convergence of a sequence of random variables,
in the theory of hyper-random phenomena the concept of convergence
(in generalized sense) of a sequence of hyper-random variables is intro-
duced. There is convergence in distribution function, in mean-square,

almost surely (with probability one), and in probability (in some mea-

sure).

Consider the convergence of the sequence in the generalized sense
in probability and in distribution function.

Suppose we have a sequence of hyper-random variables X =
{X1, ...,XN} and a hyper-random variable X, where Xn = {Xng, g ∈
G} (n = 1, N ) and X = {Xg, g ∈ G}. For all X1, ...,XN and X, there
are distribution functions F̃x1

(x) = {Fx1/g(x), g ∈ G}, . . . , F̃xN
(x) =

{FxN /g(x), g ∈ G} and F̃x(x) = {Fx/g(x), g ∈ G}.
Then the sequence of hyper-random variables X converges in

the generalized sense to the hyper-random variable X in probability

(P (|XN −X | > ε) → 0) if for all conditions g ∈ G and ε > 0, when
N → ∞, P (|XNg −Xg| > ε) → 0, i.e., for all g ∈ G, the random
sequence X1g, ...,XNg converges in probability to the random variable
Xg.

The sequence of hyper-random variables X converges in the genera-

lized sense to the hyper-random variable X in distribution (F̃xN
(x) →

F̃x(x)) if for each point x, where Fx/g(x) is continues, for all conditions
g ∈ G, when N → ∞, FxN/g(x) → Fx/g(x).

As in the case of the sequences of random variables, convergence in
distribution is weaker than convergence in probability, i.e. the sequence
of hyper-random variables that converges in probability converges in
distribution too. The converse is not always true.

It follows from the definitions that, as well as a numerical sequence,
the hyper-random sequence can converge to a number (determinate
variable, the distribution function of which is a unit step function), to
a random variable or to a hyper-random variable. It is obvious that a
random sequence can also converge to a number, to a random variable
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or to a hyper-random variable.

5.4 Generalized Law of Large Numbers

Several variants of the law of large numbers for random sequences are
known. Let us dwell on one of them formulated and proved by P.L.
Chebyshev in 1867.

Chebyshev theorem. Let X1, . . . ,XN be a sequence of pair-
wise independent random variables with expectations m1, . . . ,mN and
bounded variances. Then, when the sample size N goes to infinity,

the average m∗

xN = 1
N

N
∑

n=1
Xn of the sample values X1, . . . ,XN tends

in probability to the average mxN = 1
N

N
∑

n=1
mxn of the expectations

m1, . . . ,mN : lim
N→∞

P {|m∗

xN −mxN | > ε} = 0.

In typical for the probability theory interpretation the law of large
numbers consists in that the average m∗

xN converges in probability to
some number mx that is a conventional limit of the average mxN of the
expectations mx1

, . . . ,mxN
.

The analysis of the proof of this assertion (which we will not pre-
sent herein) shows that in the proof it is not applied the assumption

that the average m∗

xN of the random samples and the average mxN

of the expectations have the conventional limits. This means that the
sequences {m∗

xN} = m∗

x1, . . . ,m
∗

xN and {mxN} = mx1, . . . ,mxN may

not have limits in the conventional sense, i.e. the sequences may be

divergent.

But if they do not converge in the conventional sense, they can con-

verge in the generalized sense to the many-valued variables: to random
or hyper-random ones.

Hereafter, following the above mentioned agreement concerning de-
signations of single-valued and many-valued variables and functions,
the single-valued limits of the sequences {m∗

xN} and {mxN} we shall
denote by m∗

x and mx, and a many-valued ones by the same manner
but with tilde above: m̃∗

x and m̃x.

Whether the considered limits are single-valued or many-valued, ac-
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cording to the law of large numbers, when the sample size N increases,
the sample mean m∗

xN gradually approaches the average of the expec-

tations mxN .

When N → ∞, there are two possibilities:

Case 1 The variable m∗

xN converges to the single-valued average
of the expectations mx (number).

Case 2 The variable m∗

xN , becoming a many-valued variable m̃∗

x in
the limit, converges in the general sense to a many-valued variable m̃x.

Case 1 is the idealized case considered in probability theory. In this
case, the limit mx of the average of the expectations is described by
the distribution function Fmx(x), which is a unit step function at the
point mx. The distribution function Fm∗

xN
(x) of the sample mean m∗

xN

tends to it when N → ∞ (see Fig. 8a).

Case 2 is more realistic. Here the limit sample mean m̃∗

x and the
limit average of the expectations m̃x are described respectively by the
many-valued spectra S̃m∗

x
and S̃mx . In this case there may be two

variants:

Case 2.1 The limit of the sample mean m̃∗

x and the limit of the
average expectations m̃x are variables of random type. Then the spectra
S̃m∗

x
and S̃mx are characterized by the single-valued distribution functi-

ons Fm∗

x
(x) and Fmx(x) (see Fig. 8 b).

Case 2.2 The limit of the sample mean m̃∗

x and the limit of the
average expectations m̃x are variables of hyper-random type. Then the
spectra S̃m∗

x
and S̃mx are characterized by the many-valued distribution

functions F̃m∗

x
(x) and F̃mx(x) (see Fig. 8c).

Since the convergence in distribution of a sequence of random va-

riables is weaker than the convergence in probability, in Case 2.1, the
limit distribution function Fm∗

x
(x) coincides with the limit distribution

function Fmx(x).

For hyper-random variables, convergence of the sequence in dis-

tribution is also weaker than convergence in probability. Therefore, in
Case 2.2, the limit distribution function F̃m∗

x
(x) coincides with the limit

distribution function F̃mx(x). In this case, the lower bound FIm∗

x
(x) of

the limit distribution function F̃m∗

x
(x) coincides with the lower bound

FImx(x) of the limit distribution function F̃mx(x), and the upper bound
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Figure 8. Formation of the limit distribution function F̃m∗

x
(x) of the

sample mean in the case of a random sequence: the limit sample mean
and the limit average of expectations are a number (a), a random
variable (b), and a hyper-random variable (c, d) (c is the general case
and d is a special case)

FSm∗

x
(x) of the limit distribution function F̃m∗

x
(x) coincides with the

upper bound FSmx(x) of the limit distribution function F̃mx(x).

The uncertainty area located between the specified bounds is shown
in Fig. 8c by the shaded area. It is proved that, if the distribution
function describing the spectrum of the sequence of averages of de-
terminate values is many-valued, then the corresponding uncertainty
area is continuous. So the uncertainty area of the distribution function

F̃mx(x) is continuous.

The interval in which the sample mean m∗

xN fluctuates when
N → ∞ is described by the lower bound m∗

ix when the function
FSm∗

x
(x) begins to rise from zero and the upper bound m∗

sx when the
function FIm∗

x
(x) reaches unity. Naturally, these bounds coincide with

the corresponding bounds mix, msx of the functions FSmx(x), FImx(x):
m∗

ix = mix, m
∗

sx = msx. These bounds can be either finite or infinite.

Note that Case 2.2 includes the special case when the limit sample
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mean m̃∗

x and the limit average of the expectations m̃x are of interval
type (Fig. 8d).

Systematizing the results of the present section, we may note that
the sample mean m∗

xN of a random sample can converge to a number

mx (finite or infinite) or fluctuate within a certain interval [mix,msx].

In the latter case, we shall say that there is convergence of the sam-

ple mean to the interval. Theoretically the limit of the sample mean m̃∗

x

and the limit average of the expectations m̃x can be numbers, random
variables, intervals, or hyper-random variables. The spectra S̃m∗

x
and

S̃mx can be numbers or intervals. The limit distribution functions
Fm∗

x
(x) and Fmx(x) can be of unit step type, single-valued functions,

or many-valued functions with a continuous uncertainty area.

Convergence of the sample mean to a number is not corroborated
by the experiments and convergence to an interval is corroborated by a
lot of them. We shall return to the question concerning the type of the
limit distribution function after study of the generalized central limit
theorem.

5.5 Generalized Central Limit Theorem

In the probability theory it is known the central limit theorem. There
are many variants of it. One of them can be formulated with some
simplification by the following manner.

Lindeberg-Feller theorem. Let X1, . . . ,XN be, in general, a
non-uniform random sample with mutually independent terms descri-
bed by distribution functions Fxn(x) with expectations mxn and varian-
cesDxn (n = 1, N ). We assume the so called Lindeberg condition. Then
the distribution function Fm∗

xN
(x) of the sample mean m∗

xN conver-

ges uniformly to a Gaussian distribution function F (x/mxN ,DxN ) =

Φ
(

(x−mxN )/
√
DxN

)

with expectation mxN = 1
N

N
∑

n=1
mxn and vari-

ance DxN = 1
N2

N
∑

n=1
Dxn , viz.

lim
N→∞

Fm∗

xN
(x) = lim

N→∞

F (x/mxN ,DxN ), (1)
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where Φ (x) is Laplace function.
According to this theorem, with increasing of the sample size the

random variable m∗

xN becomes a Gaussian random variable.

Using the technique devised to obtain (1), a more general state-
ment can be proved: if the conditions specified in Lindeberg-Feller
theorem are satisfied, the difference between the distribution function
Fm∗

xN
(x) of the sample mean m∗

xN and the Gaussian distribution
function F (x/mxN ,DxN ) converges uniformly to zero

lim
N→∞

[

Fm∗

xN
(x)− F (x/mxN ,DxN )

]

= 0. (2)

There is a significant difference between (1) and (2). The expression
(1) implies that the sample mean m∗

xN has a single-valued limit dis-
tribution function Fm∗

x
(x) to which the distribution function Fm∗

xN
(x)

tends when N → ∞, and there is a single-valued Gaussian limit dis-
tribution function Fmx(x) = F (x/mx,Dx) to which the distribution
function F (x/mxN ,DxN ) tends, where mx and Dx are the expectation
and the variance of the limit distribution function, respectively.

The formula (2), on the other hand, allows the given limit distri-
bution functions to be many-valued. The many-valuedness of the limit
distribution function to which the function F (x/mxN ,DxN ) tends is
stipulated by the many-valuedness of the expectation and (or) vari-
ance. Therefore, in the expression F̃mx(x) = F̃ (x/m̃x, D̃x) representing
the limit distribution function of the average of the expectations, the
many-valued parameters m̃x and D̃x appear. In general these parame-
ters are hyper-random variables. Therefore the function F̃ (x/m̃x, D̃x)
is a hyper-random function. It can be interpreted as a set of single-
valued Gaussian distribution functions. Each of these is described by
a single-valued expectation mx ∈ m̃x and variance Dx ∈ D̃x.

The relation Fm∗

xN
(x) → F̃ (x/m̃x, D̃x) follows from (2), implying

that there is convergence in distribution of the sequence of determi-
nate functions Fm∗

xN
(x) to the hyper-random function F̃ (x/m̃x, D̃x).

In other words, the many-valued limit distribution functions F̃m∗

x
(x),

F̃ (x/m̃x, D̃x) are described by identical sets of single-valued conditional
distribution functions.
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When m̃x = mx and D̃x = Dx (i.e. the both parameters are num-
bers) and Dx = 0, the limit Gaussian distribution function Fmx(x) =
F (x/mx,Dx) is the unit step function shown in Fig. 8a by the bold
line; and when m̃x = mx and D̃x = Dx are numbers but Dx 6= 0, this
distribution function is described by the single-valued Gaussian curve
shown in Fig. 8b by the bold line.

When the limit expectation m̃x, the limit variance D̃x or both these
parameters are many-valued variables, the limit distribution function
F̃mx(x) is a many-valued function. In Fig. 8c, d, it is displayed by the
shaded areas.

Note, the analogues results concerning the law of large numbers and
the central limit theorem are generalized on hyper-random sequences.

5.6 Experimental Study of the Convergence of the Sam-

ple Mean

The theoretical research presented in Sects. 5.4 and 5.5 indicates that
with increasing of the sample size the sample means are not necessarily
normalized (i.e. they do not necessarily take on the Gaussian character)
and tend to a certain fixed value. This result is quite different from the
conclusion of the classical probability theory. It raises a very important
question: how do the actual sample means behave?

To answer this question, we return to investigation of the mains
voltage oscillations (see Fig. 3a) and present some results of additional
experimental studies of the process.

Studies consisted in calculation and analysis of the estimates of the
distribution functions of the voltage fluctuations F ∗

g (x) on adjacent
observation intervals, each lasting about one hour (g = 1, 64) (Fig.
9a), and the estimate of the distribution function of the sample mean
F ∗

m∗

xN
(x) (Fig. 9b).

The curves of the distribution functions F ∗

g (x) corresponding to
different values of the parameter g differ essentially from one anot-
her (primarily by their location) (see Fig. 9a), and this confirms the
claimed nonstationarity of the oscillations.

The calculation results of the estimate of the sample mean distri-
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Figure 9. Estimates of the distribution functions of mains voltage os-
cillations on 64 contiguous observation intervals (a) and estimates of
the distribution function of the voltage sample mean F ∗

m∗

xN
(x) for sam-

ple sizes N = 2r, r = 8, 10, 12, 14, 16, 18, 20 (b) (the line thickness
increases with the value of the parameter r)

bution function F ∗

m∗

xN
(x) for exponentially growing sample size (see

Fig. 9b) show that F ∗

m∗

xN
(x) does not tend to a certain limit distribu-

tion function Fmx(x), and the sample mean m∗

xN does not tend to a

certain limit value mx.

On the basis of the curves for the estimate of the distribution
function of the sample mean F ∗

m∗

xN
(x) for small values of the para-

meter r (8 and 10) (see Fig. 9 b), we may with some level of skepticism
conclude that it is tending to a Gaussian distribution with decreasing
variance, as probability theory would predict. However, for large values
of r (starting from 10 to 20), the assumed trend is not confirmed.

When the sample size increases, the variance of the sample mean
m∗

xN sometimes increases (for values of r from 8 to 14 and from 18 to
20) and sometimes decreases (for r from 14 to 18). In general, as one
moves from small to large sample sizes, the variance does not manifest
any tendency to go to zero, as would have been predicted by probability
theory (see Fig. 8a), but in fact increases, even by a significant factor
(the range of the samplemean increases approximately from1V to 8V ).
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It follows from these results that the distribution function of the

sample mean tends to a many-valued function F̃mx(x) of general form
(see Fig. 8c).

Studies of the distribution functions of the sample means of a lot
of processes show that when the data volume is large there is not the

aspiration of the estimate F ∗

m∗

xN
(x) of the distribution function of the

sample mean to any specific distribution law, and more so to a Gaussian
distribution with variance that tends to zero.

Thus, the experimental studies of the actual physical processes show
that in case of a small data volume ones observe the trends of norma-

lization and stabilization of the sample means and in case of a large

amount of data such tendencies are not fixed.

The changing in the character of the behavior of the sample means
can be explained by a violation of statistical stability of the actual pro-
cesses on large observation intervals. These disorders lead to restriction
of the accuracy of measurement and prediction of real physical quan-
tities.

6 Accuracy and Measurement Models

6.1 Measurement Models

Any measurement is based on some models. It is usually suggested that
the measurand (measurement quantity) has a determinate character,

while its estimator is random. Modern classical measurement theory
uses this paradigm.

a b

Figure 10. The classical determinate-random (a) and determinate–
hyper-random (b) measurement models
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When measuring a scalar quantity, the measurand θ can be repre-
sented by a unit step distribution function Fθ(x) and the measurement
result Θ∗ – by a distribution function Fθ∗(x) (Fig. 10a). Such a mea-
surement model may naturally be referred to as determinate–random.

The foundations of this model were laid out by Galileo Galilei,
who introduced the concepts of systematic and random errors. The
systematic error is described by the bias of the estimator ε0 = mθ∗ − θ
and the random error is often presented by the standard deviation σθ∗

of the estimator Θ∗.

Modern metrology is based on the following hypotheses: the ideal
value of a physical quantity is determinate, single-valued, and is not
changed during the measurement time; the measure does not change its
characteristics during the measurement; the statistical conditions are
constant during the measurement time; and the result of a concrete
measurement is unique.

All of these items, to put it mildly, not very reasonable. All actual
physical objects and physical quantities describing them are subjected
to change over time (except perhaps some universal constants). Every-
thing is changed: the object of measurement (measurand), the measure,

and the measurement conditions.

Any measurement is carried out not instantaneously, but over some
time interval. Therefore the measurement result is an average value re-

presenting over this interval the various states of the measuring object,

the different states of the measure, and different measurement conditi-

ons.

Of course, it is very convenient to represent the measurand by a
determinate, unique, and unchanging value, and the measurement re-
sult – by a random variable. But this primitive model does not reflect
many nuances of the real situation.

The theory of hyper-random phenomenon proposes different hyper-
random mathematical models, taking into account some of them.
Determinate–hyper-random model (Fig. 10b) describes, for instance,
the measurand by a determinate model and the estimator by a hyper-
random variable. In the figure, FSθ∗(x) and FIθ∗(x) are the upper and
lower bounds of the distribution function of the hyper-random estima-
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tor Θ∗; εI0 = mSθ∗ − θ and εI0 = mIθ∗ − θ are the biases of the upper
and lower bounds of the distribution function of the hyper-random esti-
mator with respect to the measurand; mSθ∗, mIθ∗ are the expectations
of the upper and lower bounds of the hyper-random estimator; and
σSθ∗ , σIθ∗ are the standard deviations of the appropriate bounds of the
hyper-random estimator. The uncertainty area of the hyper-random
estimator is shown by the shaded area.

6.2 Comparison of the measurement models

In the determinate–random measurement model, the error has a random
nature. It is described by systematic and random components, and
characterized by two parameters: the bias ε0 and the standard deviation

of the estimator σθ∗ (Fig. 10a). In the determinate–hyper-random

measurement model, the error has a hyper-random nature. It has an
uncertainty area and is described by four parameters εS0, εI0, σSθ∗ , σIθ∗

defining the location and size of the uncertainty area on the error axis
(Fig. 10b).

Techniques of statistical measurement according to the comparing
models are well known. They are described for instance in [14, 18].
Here we do not describe them and present only the calculation results
for the parameters characterizing the mains voltage (Fig. 3a) at the
end of 100-second and 60-hour observation intervals (Fig. 11).

The left side of the figure is obtained with using the classic
determinate–random measurement model based on probability theory
and the right side presents the parameters obtained with using the
determinate–hyper-random measurement model based on the theory of
hyper-random phenomena (except the parameter marked with a thin
arrow).

For the 60-hour observation interval, the sample range and the
range of the sample mean are obtained from the data of Figs. 3a and
9b. The confidence interval (THRP) marked with a bold arrow and the
estimate (THRP) are calculated using the technique of the theory of
hyper-random phenomena. The confidence interval (PT) marked by a
thin arrow is calculated using the classic technique of the probability
theory.
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Figure 11. Calculation results for the parameters characterizing the
city mains voltage over 100-second and 60-hour observation intervals,
using calculation techniques based on probability theory (PT) and the
theory of hyper-random phenomena (THRP)

The results shown in the figure for the 100-second and 60-hour
observation intervals differ considerably. The parameters on the left
side of the figure reflect the state of the electrical supply network un-
der the specific statistical conditions that occurred during the relevant
100-second observation interval. The parameters on the right side (ex-
cept for the one marked by a thin arrow) represent the state of the
network for the varying set of statistical conditions that succeeded one
another unpredictably during the relevant 60-hour observation period.
The parameter marked by a thin arrow characterizes the state of the
network for the set of different but very specific statistical conditions

that succeeded each other over the same 60-hour period of observation.

For the 100-second observation interval, the most informative pa-

rameter is the confidence interval calculated using the classic technique

of probability theory, and for the 60-hour interval, it is the confidence

interval calculated using the technique based on the theory of hyper-

random phenomena (in Fig. 11 these parameters are marked by two
bold arrows).

For the 60-hour observation interval, the confidence interval, with
width 50 mV and average value 229.4 V (calculated in accordance with
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probability theory and indicated in the figure by a thin arrow) is not

informative, because it takes into consideration the concrete sequence

of changes in the conditions which, in the next 60-hour observation
interval, is likely to be something quite different. The confidence inter-
val, with width 33 V and average 233.5 V (calculated using the theory
of hyper-random phenomena and marked by a thick arrow) contains
useful practical information about the average dynamics of the voltage
changes in the power supply.

The loss of useful information in the first case and the fact that it is
kept in the second arise because, when there are violations of statistical
stability, the classic determinate–random measurement model reflects
the real situation with considerable distortion, while the determinate–
hyper-random measurement model is able to present it adequately. It
follows from the above example that, ignoring the violation of statistical
stability can lead to absurd results, and in particular, to an unjustifi-
able overstatement of measurement accuracy estimators by factors of
hundreds or more.

The conclusion is obvious: when statistical stability is violated, the

determinate–random measurement model and the measuring techniques

based on it cannot be used. In this case, other models and measu-

rement techniques must be used, and in particular the determinate–

hyper-random measurement model and techniques based on it, which

take into consideration the violations of statistical stability.

6.3 Potential Measurement Accuracy

In case of determinate–random measurement model the error ∆zN =
√

ε20 + σ2
θ∗N

is determined by the bias ε0 and the standard deviation of

the estimator σθ∗N . With increasing sample size N , theoretically this

magnitude tends to the square of the bias ε20. Let the estimator Θ∗

N

be the average of the sample (X ,
1...,XN ) and the sample elements are

independent and have identical variance Dx. Then the variance of the
estimator σ2

θ∗N
= Dx/N and the error is described by the expression

∆=
zN

√

ε20 +Dx/N . The dependence of the magnitude ∆zN on the defi-
ning parameters is shown in Fig. 12a.
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It is clear from the figure that, when N → ∞, the error tends
to the bias ε0 (the systematic error). If the bias ε0 is negligible, the
magnitude ∆zN is in inverse proportion to the root of the sample sizeN .
It follows from this that, theoretically, by increasing N , the accuracy
of the measurement can grow without limit, and as N → ∞, it should
become infinitely large.

Probability theory does not give a satisfactory explanation as to
why, at low bias, an ultra-high measurement accuracy cannot be achie-
ved by statistical processing of a large number of real data. The expla-
nation of this effect gives the theory of hyper-random phenomena.

a b

Figure 12. Dependence of the error ∆zN (a) and the error bounds ∆iz,
∆sz (b) on the sample size N and the variance Dx accordingly for the
determinate–random and the determinate–hyper-random measurement
models. In case a ε0 = 0.01 and in case b ε0 = εS0 = 0.01, ∆ε0 =
0.1. Thicker lines correspond to large values of the variance Dx =
0.2; 0.4; 0.6; 0.8; 1

Suppose the measurand θ is determinate and the estimator Θ∗ is
a hyper-random variable. The elements of the hyper-random sample
(X1, . . . ,XN ) are independent. The statistical conditions change slowly
and this allows us to divide the observation interval into G fragments
of identical length corresponding to nearly constant statistical conditi-
ons. The elements of the sample are taken with uniform step. In any
fragment, the number of samples is Ns.

The distribution law of the random elements X1g, . . . ,XNsg under
the fixed condition g is fixed. Under different conditions g, the distri-
bution laws of the elements are different, however all of them have the
same variance Dx and differ from each other only in the expectation
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value. Then the error bounds can be written as ∆iz =
√

ε2i +Dx/Ns,

∆sz =
√

ε2s +Dx/Ns, where ε2i = inf
g∈G

[ε20/g ] and ε2s = sup
g∈G

[ε20/g] are the

lower and upper bounds of the square of the bias.

The dependence of the error bounds ∆iz, ∆sz on the defining pa-
rameters is shown in Fig. 12b. The dotted lines represent the lower
error bounds and the solid ones the upper error bounds.

It is clear from the figure that, with increasing sample size Ns,
the upper bound of the error ∆sz tends to εs = ε0 + ∆ε0 (ε0 is the
systematic error and ∆ε0 is the length of the uncertainty area).

Therefore, even if we make the unlikely assumption that the value
Ns tends to infinity, the determining upper bound of the error ∆sz will
never be less than the value ∆ε0 6= 0. When the bias ε0 is negligible,
the magnitude ∆sz → ∆ε0 6= 0.

So with the determinate–hyper-random measurement model, we
can explain the inability in practice to achieve infinitely high accuracy,
even with an unlimited amount of data.

7 Conclusions

Summing up the consideration of the issues it is drawn attention to the
following key points.

1. Statistical stability is a physical phenomenon manifested in stabi-
lity of relative frequency of the actual mass events, sample means

and other statistics.

2. There are two theories describing statistical stability phenome-
non: the probability theory and the theory of hyper-random phe-

nomena. The probability theory is based on the assumption that
the phenomenon of statistical stability is perfect (statistics are

converged and estimators are consistent). The theory of hyper-

random phenomena is based on the assumption that the phe-

nomenon of statistical stability is not perfect (statistics are not

converged and estimators are not consistent).
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3. Numerous experimental studies of real phenomena of different
physical nature indicate that statistics obtained from actual sam-

ples do not demonstrate the tendency to convergence. The trend
towards convergence is observed only when the sample volume is
small. In case of large sample volume such trend is not registered.

4. The violation of convergence of the relative frequency of actual
events implies that the probability, the basic concept of the pro-

bability theory is an abstract mathematical concept that does not

have a physical interpretation.

5. It is formulated and proved for divergent sequences the generalized
law of large numbers and the generalized central limit theorem.

6. The results of the experimental studies conform the opinions
of some scholars (including A.N. Kolmogorov, A.A. Markov,
A.V. Skorokhod, E. Borel, and others) that the hypothesis of
perfect statistical stability is valid in the actual world only in cer-
tain reservations. Apparently, the actual world really is obeyed to
three types of laws: determinate, statistically predicted (random,

stochastic or otherwise probabilistic), and statistically unpredic-

table.

7. For the small sample size the influence of statically unpredictable
laws does not reflect essentially on the results of the measurement
of physical quantities. This gives possibility to use the classical
models and statistical methods of probability theory in a lot of
important cases. For the large sample size when the violation of

statistical stability manifests itself clearly, the using of classical

stochastic models leads to unacceptably large measurement errors.
Then the hyper-random models have obvious advantages over the

stochastic models.

8. The hyper-random models, unlike the random ones theoretically
can be used both in case of large and small observation inter-
vals as in large and small samples. However, the hyper-random
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models are more complicated. Therefore for not very large sam-

ple sizes the stochastic models are preferred. The using of the
hyper-random models is justified when the stochastic models do
not provide an adequate description of the reality.

9. The limited accuracy of any statistical measurement of actual

physical quantities and the limited accuracy of the temporal pro-

gress forecasting of actual events can be explained by the presence
of a statistically unpredictable laws.

10. The limited nature of statistical stability suggests that it may be
necessary to review the postulates of a number of physical dis-
ciplines, in which the probability concept and convergence play
a key role, in particular, statistical mechanics, statistical physics,

and quantum mechanics. Taking into account statistical stability
violations may lead to new scientific results that will be interes-
ting for both theory and practice.
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