
Computer Science Journal of Moldova, vol.24, no.3(72), 2016

Executable choreographies applied in

OPERANDO

Ŝınică Alboaie, Lenuta Alboaie,

Mircea-Florin Vaida, Cristina Olariu

Abstract

The objective of this paper is to present the software archi-
tecture used for the OPERANDO privacy platform, funded by
the European Union in a Horizon 2020 project. For integration,
OPERANDO is using SwarmESB, an open source Enterprise Ser-
vice Bus (ESB) based on executable choreographies. In this pa-
per we are presenting the concept of service transformations, pre-
sented as a bridge between the world of REST web services and
the world of services implemented with executable choreogra-
phies. These transformations are improving the heterogeneity
aspects when we are analysing SwarmESB as a distributed sys-
tem. Five types of transformations that have been analysed and
implemented as open source software have been integrated. This
proposal is shaped around a common language capable of express-
ing all these five transformation types we have identified working
for OPERANDO. Therefore, the Domain Specific Language pro-
posed, renders the essential elements for transformations among
functions, web services and executable choreographies. This uni-
fication will trigger a quantitative effect on the productivity of
the teams creating or integrating web services in a federated ser-
vice bus environment which is a key architectural component in
the future Internet-of-Things and cloud systems.

Keywords: middleware · architectures · DSL · executable
choreographies · web service transformations.

c©2016 by S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

417

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

1 Introduction

The OPERANDO’s [1] architecture presented in this article focuses
on the usage of an Enterprise Service Bus (ESB) [2] based on the
open source research project SwarmESB [3]. The main goal of the
OPERANDO project is to integrate and extend the existing privacy
techniques to create a platform that will be used by independent organ-
isations called Privacy Service Providers (PSPs) to ensure policies com-
pliance regarding privacy laws and regulations. OPERANDO should
ensure comprehensive user privacy enforcement in the form of a ded-
icated online service, called “Privacy Authority”. The OPERANDO
platform supports flexible and viable business models, including target-
ing of individual market segments such as public administration, social
networks and Internet of Things. We are approaching the concept of
service transformations, presented as a bridge between the world of
REST web services and the world of services implemented with ex-
ecutable choreographies. Web services can be seen as working on a
request/response communication pattern. Executable choreographies
[4] can be intuitively seen as arbitrary complex workflows that get ex-
ecuted in systems belonging to multiple organisations or authorities.
Executable choreographies are implemented in SwarmESB using the
swarm communication idea [5]. Therefore, SwarmESB is a research
and engineering effort to implement and adapt ideas specific to the
mobile calculus theory. While theoretical research on mobile code [6]
and on systems for asynchronous calculus have existed for many years,
SwarmESB is a practical approach that can be appealing for the spe-
cialists used to program in mainstream languages Java, C#, Java Script
and who will not easily switch to research programming languages (ac-
tor inspired languages[7], pi calculus[8] et al.).

In SwarmESB, messages have a long time identity during multi-
ple communication events and during complex communication pro-
cesses. Groups of related messages called swarms change their state
after each communication event. In actor model inspired approaches,
a message does not have identity or an associated behaviour. Iden-
tity, state changes or behaviours are associated only with the message

418

Executable choreographies applied in OPERANDO

receivers (actors). Associating state, mobile code and behaviour with
its own messages is the main difference between swarm communication
and the actor model. In the actual implementation message, queues
are used and the mobile code is securely deployed on the processing
nodes but swarm communication hides all the details of the code mi-
gration message queues. Executable choreographies are scripts that
get executed in multiple processing nodes which may belong to multi-
ple organisations. Swarm communication environments can be easily
integrated with web services by manually exposing remote endpoints
in JavaScript functions. In OPERANDO project, we have decided to
automate this process by creating methods of describing web service
and providing multiple types of “transformations” between web ser-
vices and executable choreographies. Choreographies can implement a
larger number of communication patterns compared with web services.
However, we are currently living in a world of web services and since
OPERANDO is a complex project that uses existing components and
technologies, we have found mandatory to automate the integration of
the web services.

2 ESB middleware’s based on choreography –

concepts overview

An important concern in Service Oriented Architecture (SOA) [9] is
to extract the business processes from the application code and or-
chestrate the business process grounded on services. When multiple
organisations are involved in the same business process, we talk about
choreography. When business processes spread over multiple organisa-
tions, governance, security and privacy aspects become suddenly criti-
cal and have a big influence on the business and technology choices. In
OPERANDO, we have chosen to use executable choreography, a con-
cept emerging from our previous research [4, 5, 13], [10]. Executable
choreographies propose the existence of a business process description
that is aware of the location aspects (which is the organisation). It also
unifies short living processes as ESB routing and long living business

419

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

processes (implemented as an extension to the routing). Executable
choreographies are technical descriptions of business agreements among
multiple organisations and should be treated as such.

One of the most popular integration methods is the nightly batch
processing [11]. However, batch-processing integration strategies are
prone to errors caused by multiple data changes on shared resources
and are bound to cause delays in information retrieval. An ESB can
eliminate many latency problems by providing real-time throughput
of the data flows among applications and organisations. This real-
time flow of data requires support for data transformations [12]. From
the development process point of view, an ESB can be seen as the
foundation of a SOA architecture that may enable an agile style of
working. Agile main goal of reducing waste is accomplished by lowering
the need of complex ad-hoc architectures. The development team can
understand the big picture from an early stage and actively contribute
to defining the services scope and detailed requirements.

Executable choreographies that should be executed by multiple or-
ganisations will be manually or automatically verified and approved
each time they get updated. Any ESB allows parallel development
of integrated services, reducing the need of stubs or fake service im-
plementation during development. The missing services can be simu-
lated within the integration scripts (e.g. executable choreographies).
The integration scripts as executable artefacts of the short/long living
processes may be independently developed by each team which imple-
ments different services. Different versions of the choreographies can
be merged at any time, usually without requiring any changes in the
service implementation.

The typical ESB roles include connectivity, routing, transforma-
tions and various methods to represent short or long living business
processes (integrations, orchestration or choreographies) [13].

Connectivity is the basic feature for any Service Bus. An ESB
reduces the configuration efforts because the producers will send infor-
mation only towards BUS and do not have to be aware of consumers.

Routing: beside connectivity, if integration is a subject of interest,
the necessity to route the messages in an efficient way becomes appar-

420

Executable choreographies applied in OPERANDO

ent. A service consumer only receives that piece of information that
should be handled. Typically, routing can take multiple approaches:

• The ”pipe” pattern: a single event triggers a sequence of process-
ing steps, each performing a specific function.

• The ”content based router” pattern: the message content is used
to take decisions about the receivers

• The ”message dispatcher” pattern: a message is sent to a list of
services

• The ”scatter gather” pattern: a request is sent to a number of
service providers but all the responses get aggregated into a single
response message

In case of SwarmESB based choreographies, all these patterns and
many others can be achieved in explicit declarative and imperative
code (see Figure 1).

Figure 1. The main roles of an ESB

421

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

Transformation: integrated service and applications do not have
the same data formats and the ESB is a good place to handle the trans-
formations among these formats. The transformation services that are
specialized in the needs of individual applications plugged into the bus
can be located anywhere and accessible everywhere on the bus. The
transformation can be implemented in the form of adapter nodes or
can be implicit in the scripts describing the routing. In this paper,
we present the transformation layer implemented in SwarmESB. The
proposed methods are able to automate integration with web services,
expose web services and perform complex data transformations related
to integration or privacy concerns.

Business processes and Service Orchestration concepts are unifying
concerns that can be explained meaningfully to the final user (map
in scripts or descriptions specific user stories or use cases). They also
provide useful abstractions for software analysts, software architects
and developers. There are two main types of business processes: long
living processes and short living processes. Long living processes are
abstracting business concerns that take a long time to be executed
(they have a persistent state stored in databases). Until the end of
their execution, long living processes are prepared to receive various
human inputs or special events in their execution environment (time
events, changes in data structures, creation of new objects, etc.).

Human intervention in business processes is usually described by
the “workflow” concept. It is quite tempting to use workflow and busi-
ness process concept as synonyms. This is justified and it is acceptable
because, in execution, any manual intervention from a dedicated op-
erator is almost identical to non-human change. In both cases, we
are talking about a set of events and changes in databases or in data
structures.

A key point is that workflows follow the opposite paradigm of state-
based approach rather than a flow-based one like Business Process Ex-
ecution Language (BPEL) orchestrators. In some cases, the workflow
approach is better adapted to long-lived processes, without being re-
stricted from sitting on top of orchestrated services. Hence, workflow
servers are usefully complemented by ”straight” orchestrators and we

422

Executable choreographies applied in OPERANDO

may find solutions that are deploying two business process-oriented
servers. Additionally, in many ESBs, short living processes are rep-
resented by the routing mechanism and in some others by the BPEL
type of orchestration. Unfortunately, this approach exposes the de-
velopers to too many different languages or approaches when describ-
ing short living processes (integration processes). In OPERANDO,
SwarmESB choice avoids the complexity and the redundancy of effort
and resources caused by the usage of three quite different process de-
scription languages. The usage of orchestration concept is discussed in
multiple contexts and sometimes with different meanings. We can talk
about orchestrations in the context of provisioning in the virtualized
deployment environments (in dynamic data-center use cases) and in
Service Oriented Architectures. In both cases, orchestration is about
aligning the business request with the applications, data, and infras-
tructure. It defines the policies and service levels through automated
workflows, provisioning, and change management. From the data-
center or deployment management perspective, orchestration creates
an application-aligned infrastructure that can be scaled up or down
based on the needs of the applications. For simplicity, we will call this
kind of orchestration, orchestration for deployments and provisioning.

A somewhat different usage of the orchestration concept is related
to the process of coordinating an exchange of information through in-
teractions of web services. We will call this kind of orchestration service
orchestration. Advanced Service Oriented Architectures could try to
decouple the orchestration layer from the service layer in the form of
the service orchestration or service choreography. Systems like ESB or
integration Platform as a Service (iPaaS) are typically deployed and
fine-tuned in order to perform this role. For dynamic data-center use
cases, the orchestration is typically related and closely connected to
monitoring infrastructure and to the management of the virtualisation
solutions. As it will be explained below, the choreography concept and
especially the executable choreography is a technique that offers an al-
ternative implementation for the service orchestration. The final results
of the service orchestration and of the choreography may look identi-
cal (some services are mixed together) but from the point of view of

423

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

performance, scalability, security and privacy, the decentralised way of
choreography brings important benefits. An ESB is a strategic compo-
nent in any complex system as it succeeds in reducing coupling between
solution’s components. Reduced coupling enables parallel work to be
performed by multiple teams that use separate tools, processes and
even platforms/technologies (Java, C#, PHP, node.js etc.). An ESB
enables an SOA that is an alternative to the client server model. An
ESB promotes agility and flexibility regarding communication between
applications and subsystems (see Figure 2).

Figure 2. The generic architecture for ESB based systems

The purpose of the integration bus is to provide a flexible method to
compose services and components, ensure security and scalability of the
system and to allow development towards a federated system between
multiple ESBs. Enterprise Service Bus systems must be seen as an
architectural pattern. An ESB offers a standard way of integration

424

Executable choreographies applied in OPERANDO

between applications, services or other kinds of integration objects.
An ESB mediates between service providers and service consumers.
Integration of loosely coupled services within or across organizations
can be obtained.

The SwarmESB current architecture starts from the premises that
we are supporting the federation of services among multiple organi-
sations. This perspective implies a technology capable of executing
business processes among multiple organisations (choreography) (see
Figure 3). Any usage of centralised message queues or centralised Busi-
ness Process Management (BPM) engines will not be sufficient because
of the security and privacy issues raised by centralisation. SwarmESB
uses a script based on the routing method that circumvents these pri-
vacy concerns.

Figure 3. The architecture for choreography based integration offering
federation

425

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

3 Web Service transformation language pro-

posal

To enable complex communication between the distributed bus pro-
vided by SwarmESB and the external world, we have analysed the
types of transformation that we have to create in order to enable in-
bound and outbound usage of web services. A typical integration case
is the need to call existing web services inside executable choreography
scripts. Another case is the requirement of a new or existing application
to communicate with the ESB using web services. These capabilities
were not available by default in SwarmESB and as workaround, we
used to create custom code for each case. Beyond these two cases, our
research for OPERANDO has shown that other three types of trans-
formations exist. The current implementation can be found in the
TransRest open source project [14]. The resulted five types of trans-
formations are presented in Table 1.

All five types of transformations may be described in a common
language called Swarm to web service Transformation (SwarmTL). For
syntax description, we used Backus-Naur Form notation. SwarmTL
DSL is an internal DSL (Domain Specific Language) so all JavaScript
syntactic and semantic rules should be considered. By using an inter-
nal DSL we can benefit from existing tools for debugging, Integrated
Development Environments and programming expertise, therefore we
reduce adoption risks for this new technology.

SwarmTL language is presented in Table 2.

In order to get an intuitive image about the syntax of the transfor-
mations we are exemplifying a SF transformation that takes a remote
REST web service from http://localhost:3000 and exposes a set of func-
tions with the name of the blocks (e.g. baseUrl or createEntity).

{

baseUrl: ’http://localhost:3000’,

getEntity: {

method:’get’,

params: [’entity’, ’token’],

426

Executable choreographies applied in OPERANDO

Table 1. Types of transformations

Name Description

Service to Func-
tions transforma-
tions (SF)

This transformation can translate a REST service into
functions usable in a processing node (e.g. Swarm ESB
adapter) and from choreographies. Intuitively, this trans-
formation is just a quick method to generate some functions
that asynchronously call remote web services. This simple
transformation allows documenting the web service and it
also permits a uniform working style inside the SwarmESB
based project in which the adapters are plain JavaScript
functions.

Choreography to
Service transfor-
mations (CS)

This transformation exposes a swarm workflow (choreog-
raphy) as a REST web service. Since the same based sys-
tems are real time systems that allow push notification
and multiple results for a call, this transformation offers
a bridge to the applications that are designed to work in
an ask/request method promoted by REST services. The
CS transformation allows that existing services to be refac-
tored to use SwarmESB and allows the reuse of the existing
skills and tools.

Function to Ser-
vice transforma-
tions
(FS)

The FS transformation exposes functions as REST web
APIs. This type of transformation is very useful for test-
ing and mocking web services but also for the creation of
REST web services with very little code. As we see below,
the transformation language hides all the wiring usually
required to create web services. This transformation will
work together with CS and I transformations allowing to
expose an enriched set of services.

Service to Chore-
ography transfor-
mations (SC)

This transformation can change a REST Service into a
workflow/choreography (swarm description/script) based
on an existing template. This kind of transformation is
complex and requires metaprogramming capabilities from
the choreography implementation. This transformation
has not been implemented yet in SwarmESB. The SF
transformation allows manual creation of new choreogra-
phy based on existing web services so basically the SC
transformations should be manually programmed.

Interceptor
transformations
(I)

This kind of transformation can be seen as a combination
between SC and CS transformations. An Interceptor trans-
formation can be seen as a smart proxy between some arbi-
trary REST APIs and an exposed REST APIs. The benefit
will be that the transformation can intercept every call and
can enrich each call with some arbitrary logic that will be
hosted in a swarm workflow description.

427

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

Table 2. SwarmTL language

<transformation> :== “{“ <properties> ”,” <blockList>
”}”

<properties> :== ”” | <property>
| <property> <opt-comma>
<properties>

<blockList> :== <block> | <block> <opt-
comma> <blockList>

<block> :== <blockName> <opt-whitespace>
“:” <opt-whitespace>
“{“ <blockPropertyList> “}”

blockPropertyList :== ”” | <blockProperty>
| <blockProperty><opt-comma>
<blockPropertyList>

<blockProperty> :== <mandatoryProperty>
| <specificProperty>

<property> :== <globalKey> <equal> <value>

<mandatoryProperty> :== <mandatoryKey> <equal>
<value>

<specificProperty> :== <specificKey> <equal>
<value>

<mandatoryKey> :== ”method” | ”params” | ”path”

<globalKey> :== ”baseUrl” | ”port” | ”swarm”

<specificKey> :== ”code” | ”phase”

<value> :== jsString | jsAnonymousFunction |
jsArray

<opt-comma> :== <opt-whitespace> ”,”
<opt-whitespace> | ””

<equal> :== <opt-whitespace> ”=”
<opt-whitespace>

<opt-whitespace> :== ” ” <opt-whitespace> | ””

428

Executable choreographies applied in OPERANDO

path:’/$entity/$token’

},

createEntity: {

method: ’put’,

params: [’entityId’, ’token’, ’ body’],

path : ’/?id=$entityId&token=$token’

}

}

Any transformation is composed of global properties and a list of
transformation blocks. The global properties are basically key value
assignments. Each block is composed of a list of properties known as
’block’ properties. A set of properties is present in all the transforma-
tions (and are called mandatory properties) but the others are optional
or transformation specific. The mandatory properties are ”method”,
”params” and ”path”. The values for ”method” are ”get”, ”post”,
”put”, ”delete” corresponding to the HTTP verbs. The ”path” param-
eter specifies the part of the URL that is used to route the request to
the actual implementation. The path value is a string that consists of
fixed strings and ”parameters”. All parameters are prefixed by an ”$”
character that enables the url parse to determine the place of the cor-
responding values in the actual urls. The values for “params” property
are a JavaScript array of string denoting the parameters names. The
actual usage of the parameter depends on the type of the transforma-
tion. These parameters should appear as strings in the url prefixed
by a ”$”. To terminate a parameter placeholder and to begin a new
string or a new parameter, the ”/” character should be used. As we
can see, this scheme is similar to the ones used in the other routing
web engines. A similar naming scheme for routing is used to connect
node.js framework but instead of ”$” they use ”:”.

Additionally, we support variables that are not part of the URL,
specifically the ” body” parameter that will contain the content of
the POST and PUT requests. All the names of variables prefixed with
” ” are reserved to be used with the parameters of the POST and
PUT body content. In the global section, a set of attributes can be

429

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

used. ”baseURL” key means the base url of the rest services. The
”node” means the group (or the node type for the processing nodes)
on which the transformation will be executed. Other specific properties
are specific to particular transformation types as we can see in Table 3.

Tests and code demonstrating the transformations can be found in
the TransREST open source project [14].

4 Web service transformations applied in OPE-

RANDO

OPERANDO system is built around a Shared Bus that supports feder-
ation and advanced transformation capable of integrating internal and
third party web services and functionalities.

Figure 4. OPERANDO architecture. The high-level view diagram

The major components or layers in the OPERANDO architecture
consist of:

• Authentication layer: a set of services and components respon-
sible with the authentication and monitoring of all the business

430

Executable choreographies applied in OPERANDO

Table 3. Swarm Transformation Language property names

Property Transformations Semantic description Possible

value

baseUrl CS,SC,SF,I Global property that specifies
the base url for a remote ser-
vice,

A remote
URL

swarm I Global property that specifies
the name of a swarm used in
I transformations to actually
call the remote REST service.

String

template SC Global property that specifies
the name of a swarm used
as template in SC transforma-
tions

A swarm
name

method CS,FS,SC,SF,I A block property that speci-
fies the HTTP method used
for routing in local and remote
services

GET |
POST |
PUT |
DELETE

path CS,FS,SC,SF,I A block property that speci-
fies the path in the url for re-
mote services or for the local
router

specially
formatted
string

params CS,FS,SC,SF,I A block property having as
value an array with the name
of the parameters used in the
choreography constructors, of
the generated functions in all
transformations

jsArray:
JavaScript
array with
strings

phase CS A block property specifying
the phase name that is trans-
formed as a service in CS
transformations

String

Code FS A block property used by
FS transformations to spec-
ify the actual implementation
of the service. The value is
just a plain JavaScript func-
tion returning a value asyn-
chronously.

jsAnonymous-

Function:

anonymous
function

Result-

Phase

CS A block property used by CS
transformations to specify the
phase name of the result.

String

431

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

processes involving OPERANDO;

• OPERANDO Core services: a collection of complex services,
techniques and algorithms that offer functionalities to OSPs such
as secure data vaults, anonymization, data mining, etc.;

• REGULATOR API: a collection of web services offered to legal
authorities (regulators) to monitor and control OPERANDO’s
features regarding privacy laws and regulations;

• Online Service Providers APIs (OSP APIs) refer to a set of ex-
tensible APIs that can be integrated and transformed by the
OPERANDO to be made available for use in applications de-
veloped by third party developers called OSPs;

• UA Middleware (User Agent Middleware): a collection of services
and workflows used by the OPERANDO client side components.

For OPERANDO we have found three generic use cases where we
may use web service transformations:

a) composition of multiple services from the OPERANDO’s inter-
nal services (OPERANDO Core in Figure 4). For this use case, we use
SF transformations to translate external web services into JavaScript
functions. These web services are external from the point of view of
the bus but are internal for OPERANDO. These functions are exposed
to choreographies and used by processing nodes that are called adapter
nodes in SwarmESB [6]. With this type of transformation, we can au-
tomatically integrate multiple services developed in various languages
and make them accessible to the bus without writing any code. In
SwarmTL only the declarative descriptions are required and it reduces
risks of bugs when using lower level libraries to do REST remote calls.

b) exposition of a single service from Core that will be directly
exposed almost unchanged. In this case, the existing web services are
enriched by adding only a layer of authentication or by filtering the data
within a logical layer responsible with transparent data transformation
consisting in real-time anonymization. For this use case we can use an

432

Executable choreographies applied in OPERANDO

I transformation that can enrich existing web services while exposing
web services to the external environment.

c) creation of custom made web services that have to fit with the
need of particular OSP APIs and UA Middleware.

For this use case, we make combinations of FS, SF and CS transfor-
mations. SF transformations are capable of exposing various Web Ser-
vices (implemented with various technologies and by different partners)
to the Shared Bus. FS and CS transformations are capable of exposing
web services towards outside parties (OSPs, clients, legal regulators)
by translating custom made functions and SwarmESB choreographies
in web services.

For OPERANDO project, we have analysed the short and medium
term quantitative and qualitative effects of the web service transfor-
mations. By unifying a set of 5 complementary operations between
functions, web services and choreographies we have managed to reduce
the quantity of conventions that a programmer has to gasp. An obvious
quantitative effect is the reduction of the number of code lines required
to create a web service or to use existing web services in choreogra-
phies. The reduction in the number of code lines correlates with the
reduction in the number of bugs as it is commonly accepted [15]

We constantly evolve SwarmESB in area of building better, generic
error handling mechanisms. Our perspective is that every step that
increases the use of these generic mechanisms instead of relying on
custom code – created by the programmers using lower level libraries –
is very important for the reduction of the programming costs and can
increase the maintainability of the resulted systems.

5 Conclusions

ESBs created around the concept of executable choreographies and
other classical ESBs that are using orchestration engines for web ser-
vices may have similar purposes. However, as it has been demonstrated
in the previous research [4] executable choreographies are designed to
provide federation concepts and better privacy ensuring capabilities in

433

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

complex solutions involving multiple organisations. Executable chore-
ographies do not have a direct correspondent in the web service world
and in this paper we have presented five types of web service transfor-
mations that enable a bridge between REST web services programming
environments and the executable choreography environments. Provid-
ing real time messaging [5], the swarm communication pattern can be
seen as a generalization for request/response case of the http commu-
nication. Likewise, web service transformations are a general case for
the more well-known concept of data transformation [12]. The service
transformations can be used to implement the well-known concept of
data transformations but can also be used for other integration pur-
poses that typically do not belong to data transformation. The most
widely used description languages for web services do not annotate data
for privacy concerns. Therefore, it makes sense to extend the descrip-
tions used for web service transformations in order to add support for
automated checks or automated anonymization of the choreographies.
We have already allocated research efforts in this direction. Neverthe-
less, the ubiquity of web services encouraged our efforts to extend the
executable choreographies with deeper support for web services and
this has turned out to be an opportunity to create technologies that
provide qualitative improvements for programmers’ productivity.

6 Acknowledgements

This work was partially supported by the European Commission un-
der the Horizon 2020 Programme (H2020), as part of the OPERANDO
project (Grant Agreement no. 653704). Also this work is partially sup-
ported by POC-A1-A1.2.3-G-2015 program, as part of the PrivateSky
project (P 40 371/13/01.09.2016).

References

[1] “OPERANDO,” [Online]. Available: http://cordis.europa.eu/
project/rcn/194891 en.html.

434

Executable choreographies applied in OPERANDO

[2] D.A. Chappell, Enterprise Service Bus: Theory in Practice,
O’Reilly Media, 2004, 276 p.

[3] “SwarmESB open source project,” [Online]. Available: http://git
hub.com/salboaie/SwarmESB.

[4] Sinica Alboaie, Lenuta Alboaie and Andrei Panu, “Levels of Pri-
vacy for e-Health systems in the cloud era,” in 24th Interna-
tional Conference on Information Systems Development, (Harbin,
China), August 25-27, 2015, pp. 243–253.

[5] Lenuta Alboaie, Sinica Alboaie and Andrei Panu, “Swarm
Communication-A Messaging Pattern Proposal for Dynamic Scal-
ability in Cloud,” in High Performance Computing and Communi-
cations & 2013 IEEE International Conference on Embedded and
Ubiquitous Computing (HPCC EUC), 2013 IEEE 10th Interna-
tional Conference on IEEE, 2013, pp. 1930–1937.

[6] Antonio Carzaniga, Pietro Picco Gian and Giovanni Vigna, “De-
signing distributed applications with mobile code paradigms,” in
Proceedings of the 19th international conference on Software engi-
neering, (Boston, Massachusetts, USA – May 17 - 23, 1997), New
York, NY, USA: ACM, 1997, pp. 22–32. ISBN:0-89791-914-9. DOI:
10.1145/253228.253236.

[7] Gul A. Agha, “Actors: A model of concurrent computation in
distributed systems,” Massachusetts Inst of Tech Cambridge Ar-
tificial Intelligence LAB, Rep. No. AI-TR-844, 1985.

[8] Robin Milner, Communicating and mobile systems: the pi calculus,
Cambridge university press, 1999, 176 p. ISBN-10: 0521643201.
ISBN-13: 978-0521643207.

[9] Thomas Erl, Service-oriented architecture: concepts, technology,
and design, Pearson Education India, 2005, 600 p. ISBN-10:
0133858588. ISBN-13: 9780133858587.

435

S. Alboaie, L. Alboaie, M.-F. Vaida, C. Olariu

[10] Florin-C. Pop, Marcel Cremene, Mircea-F. Vaida and Michel
Riveill, “Natural language service composition with request disam-
biguation,” in ICSOC 2010, Lecture Notes in Computer Science,
volume: 6470, pp. 670–677.

[11] JSR-000352 Batch Applications for the JavaTM Platform, 2014.

[12] Alfredo Cuzzocrea, ”A framework for modeling and support-
ing data transformation services over data and knowledge grids
with real-time bound constraints,” Concurrency and Computa-
tion: Practice and Experience, vol. 23, no. 5, pp. 436–457, 2011.

[13] Lenuta Alboaie, Sinica Alboaie and Tudor Barbu, “Extending
Swarm Communication to Unify Choreography and Long-lived
Processes,” in 23rd International Conference on Information Sys-
tems Development (ISD 2014), 2014, pp. 375–382.

[14] [TransRest] implementation: http://github.com/salboaie/transrest.

[15] Steve McConnell, Code complete, Pearson Education, 2004, 914 p.

Ŝınică Alboaie, Lenuta Alboaie, Received October 2, 2016
Mircea-Florin Vaida, Cristina Olariu

Ŝınică Alboaie1,2
1Technical University of Cluj-Napoca, Gh. Baritiu Street, 26-28,
Cluj-Napoca, Romania
2RomSoft Srl, Iasi, Romania, Research Department
E–mail: salboaie@gmail.com

Lenuta Alboaie
Faculty of Computer Science of the University “Al. I Cuza” of Iasi, Romania
E–mail: adria@info.uaic.ro

Mircea-Florin Vaida
Technical University of Cluj-Napoca, Communication Department,
Gh. Baritiu Street, 26-28, Cluj-Napoca, Romania
E–mail: mircea.vaida@com.utcluj.ro

Cristina Olariu
Faculty of Computer Science of the University ”Al. I Cuza” of Iasi, Romania
E–mail: cristina21olariu@gmail.com

436

