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Abstract

In the paper we develop methods for proving properties of
programs on hierarchical nominative data on the basis of the
composition-nominative approach. In accordance with this ap-
proach, the semantics of a program is a function on nominative
data constructed from basic operations using compositions (oper-
ations on functions) which represent programming language con-
structs. Nominative data can be considered as a class of abstract
data models which is able to represent many concrete types of
structured and semistructured data that appear in programming.
Thus, proofs of properties of programs depend on proofs of prop-
erties of compositions and basic operations on nominative data.

To simplify the parts of such proofs that deal with program
compositions we propose to represent compositions of programs
on nominative data using effective definitional schemes of H.
Friedman. This permits us to consider proofs in data algebras
(which are simpler to derive, automate, etc.) instead of proofs in
program algebras. In particular, we demonstrate that the prop-
erties of programs related to structural transformations of data
can be reduced to the data level. The obtained results can be
used in software development and verification.
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1 Introduction

The importance of the problem of elaborating the theory of program-
ming and connecting it with software development practice was recog-
nized by many researchers. In particular, it was mentioned as one of the
grand challenges in computing by T. Hoare in his influential paper [1].
More generally, one may argue that development of tools and methods
of program analysis that can make sure that it has the desired runtime
properties before the program is run (e.g. model checking, verification
against a formal specification using logical methods and automatic the-
orem provers, etc.) is a very important research topic.

In this paper we consider one aspect of the mentioned problem that
is concerned with simplification of the process of proving properties of
programs which operate on complex data structures (e.g. records, mul-
tidimensional arrays, trees, etc.). The types of properties we consider
are the properties which can be described by special predicates on in-
put and output data of a program: if i is an input data, o is the output
of a program on the input i, then the property can be formulated as
P (i, o), where P is a predicate such that its truth domain is a tran-
sitive binary relation. Another kind of property which we consider is
monotonicity of a program as a function from input data to output
data with respect to some preorder relation on data (or, in particular,
equivalence relation).

The ability to check such properties is useful in many cases. For
example, in terms of such properties one can formulate the state-
ment of partial correctness of a cyclic program in Floyd-Hoare logic
[2], [3], the statement about correctness of implementation of a pro-
cedure/function/method with respect to its specification in contract
programming [4], the statement about preservation of the structure or
content of the data by a program (if a program is intended to perform a
certain transformation of its input like optimization, translation, com-
pilation, etc.).

Usually a proof of such a property of a program can be done by in-
duction on the program structure and it ultimately reduces to a number
of proofs of properties of similar type for the basic operations on data
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and for programming constructs (compositions – such as sequential
execution, branching, cycle, etc.).

However, the complexity of such a proof can be lowered, if one
is able to reduce the proofs of properties of different compositions to
proofs of properties of operations on data. In this paper we propose a
way of achieving such a reduction by representing compositions using
effective definitional schemes of H. Friedman. The achieved reduction
permits us to consider proofs in data algebras (which are simpler to
derive, automate, etc.) instead of proofs in program algebras. Using
this approach we demonstrate that the properties of programs related
to structural transformations of data can be simplified by reducing
them to the data level.

An informal description of how our approach works is given below.
Consider the following version of the greatest common divisor compu-
tation algorithm (GCD algorithm).

Input: x, y (integer), local variables: a, b (integer)

a:=x; b:=y;
while a 6= b do begin

if a>b do a:=a-b;
if b>a do b:=b-a;
end

The program has a state which can be represented as an association
between variable names a, b, x, y and integer values e.g. its initial state
can be d = [x 7→ 10, y 7→ 5, a 7→ 10, b 7→ 5]. Such an association can be
formalized as a nominative data. We will denote the value associated
with a name x in a data d as d(x). The program state changes during
execution, however, all operations which change the state (assignments
a := a − b, b := b − a) leave the value gcd(a, b) unchanged. Let us
define as P the input-output relation of the program, i.e. the set of
pairs (di, do) of nominative data such that if di is the initial state of
the program, then do is the final state of the program. Let us denote
as 6 the following binary relation: if d1, d2 are nominative data which
give values to the names a, b, x, y, then d1 6 d2 if and only if

d1(x) = d2(x) ∧ d1(y) = d2(y) ∧ gcd(d1(a), d1(b)) = gcd(d2(a), d2(b)).
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Obviously, 6 is a transitive relation. If we can show (di, do) ∈ P implies
that di 6 do, then we can easily conclude that the program is partially
correct, i.e. if the program terminates, then a = b = gcd(x, y), so it in-
deed computes the greatest common divisor of x and y. Thus for prov-
ing the property of partial correctness of this program it is sufficient to
show that its input-output mapping (P ) is an increasing function in the
sense of some transitive relation. Now our observation is that to prove
that P defines an 6-increasing function, it may be sufficient to check
that all basic transformations of data (e.g. assignments) which appear
in the program’s source code are 6-increasing without analyzing how
these basic transformations are composed using various programming
constructs like the conditional operator (if) and cycle operator (while).

The benefit of this approach to proving partial correctness (or other
properties) of a program is that when this approach is applicable, it
gives its user the ability to reuse the proof of a program’s property when
a program undergoes various changes/improvements/optimizations
that do not change the set of basic operations (transformations) of
data which appear in it. For example, if we modify the above men-
tioned version of the GCD algorithm in the following way:

Input: x, y (integer), local variables: a, b (integer)

a:=x; b:=y;
while a 6= b do begin

while a>b do a:=a-b;
while b>a do b:=b-a;
end

then the modified algorithm still consists of the same basic operations
as the original one, so it is still partially correct.

To describe formally our approach we need a formal model of com-
plex data structures used in programming and of programs that op-
erate on such data. We choose the formal models of data, programs
and programming constructs provided by the composition-nominative
approach [5]. In accordance with this approach, the denotational se-
mantics of a program is a function on nominative data [5] (a class of
abstract models of data which is able to represent many concrete types
of structured and semistructured data that appear in programming)
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constructed from basic operations on nominative data using compo-
sitions (operations on functions) which represent programming lan-
guage constructs. The model of nominative data is particularly suit-
able for our purposes since, it was demonstrated [11] that nominative
data with complex names and/or values can adequately represent many
data structures used in programming practice. For example, the data
representable in JSON (JavaScript Object Notation) data-interchange
format, which is very popular in web development, can be naturally
modeled using nominative data.

Besides data formalization, we will need the formalizations of com-
mon programming language constructs in terms of operations on pro-
grams on nominative data. As such formalizations we will use the op-
erations of the Associative Nominative Glushkov Algorithmic Algebra
(ANGAA) introduced in [11] which is a rich, but tractable general-
ization of Glushkov algorithmic algebras [14] to programs on complex
data structures.

We give the necessary preliminaries about the composition-nomina-
tive approach in the next section.

We will use the following notation:

- f : A → B denotes a total function from a set A to B;

- f : A→̃B denotes a partial function from a set A to B;

- f(x) ↓ means that a partial function f is defined on a value x;

- f(x) ↑ means that a partial function f is undefined on a value x;

- ∼= denotes the strong equality: f(x) ∼= g(x) means that either f
and g are both defined on x and have the same value on x, or f and g
are both undefined on x.

2 Composition-Nominative Approach

The composition-nominative approach [5] aims to propose a mathemat-
ical basis for development of formal methods of analysis and synthesis
of software systems. According to this approach, program models are
specified as composition-nominative systems (CNS) which consist of
simpler systems: composition, description, and denotation systems.
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Composition system defines semantic aspects of programs, descrip-
tion system defines syntactical aspects, and denotation system specifies
meanings of descriptions. Semantics of programs are defined as partial
functions over a class of data processed by programs and means of con-
struction of complex programs from simpler programs (e.g. branching,
cycle, etc.) are defined as n-ary operations (called compositions) over
functions over data. A composition system can be specified as two
algebras: data algebra and function algebra. Syntactically programs
are represented as terms in the function algebra. The corresponding
term algebra defines a descriptive system and the ordinary procedure
of term interpretation gives a denotation system.

Data on which programs operate are modeled as nominative data
[5]. Such data are special kinds of associations between names and
values. There are several types of nominative data [8], [9], [10]. Among
them the simplest type is the class of nominative sets, where a nom-
inative set is a partial function from a set of abstract names to a set
of abstract values [5], [8]. Nominative sets are frequently used in de-
notational semantics for formalizing program state [17]. In the general
case, nominative data are classified in accordance with the following
parameters:

• values can be simple (unstructured) or complex (structured),

• names can be simple (unstructured) or complex (structured).

Here “complex values” mean that the values corresponding to
names in a nominative data can be nominative data themselves. Com-
plex (structured) names are understood as strings consisting of simple
(unstructured) names. The possible values of the mentioned parame-
ters give four types of nominative data which are denoted as follows:
TNDSS – nominative data with simple names and simple values,
TNDCS – nominative data with complex names and simple values,
TNDSC – nominative data with simple names and complex values,
TNDCC – nominative data with complex names and complex values.

The formal definitions of the mentioned types of nominative data
are given below.
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• For any fixed sets of names V and values A, the class of data of
the type TNDSS over V and A is defined as D0(V,A) = V

n
→A,

where V
n
→A denotes the set of partial functions from V to A

which have a finite graph. The elements of this class are denoted
using notation [v1 7→ a1, ..., vn 7→ an], where vi ∈ V are names
and ai ∈ A are the corresponding values. For example, data
d = [u 7→ 1, v 7→ 2] belongs to D0(V,A), where u, v ∈ V are
distinct elements and {1, 2} ⊆ A, dom(d) = {u, v} and d(u) = 1,
d(v) = 2.

• For any fixed sets of names V and values A, the class of data of
the type TNDSC over V and A is D1(V,A) = ND(V,A), where

– ND(V,A) =
⋃

k≥0NDk(V,A),

– ND0(V,A) = A ∪ {∅},

– NDk+1(V,A) = A ∪
(

V
n

−→NDk(V,A)
)

, k ≥ 0.

Here, we denote by ∅ the empty nominative data, i.e. a function
with an empty graph (this notation is also used for the empty
set).

Data of type TNDSC are hierarchically constructed. An example
of such data is [u 7→ 1, v 7→ [w 7→ 2]], where u, v, w ∈ V , 1, 2 ∈ A.
Such data can be represented by oriented trees (of varying arity)
with arcs labelled by names and with leafs labelled by elements
from A or ∅.

A path is a nonempty finite sequence (v1, v2, ..., vk), v1, ..., vk ∈ V .

For a given data d, a value of a path (v1, v2, ..., vk) in d is defined
by the expression d(v1, v2, ..., vk) ∼= (...((d(v1))(v2))...(vk)).

We say that a path (v1, v2, ..., vk) is a path in a data d ∈
ND(V,A), if a value of (v1, v2, ..., vk) in d is defined, i.e.
d(v1, v2, ..., vk) ↓ (a path in data corresponds to a path from the
root to a node in an oriented tree). A terminal path in a data
d ∈ ND(V,A) is a path in d such that its value belongs to A∪{∅}.
The least k such that d ∈ NDk(V,A) is the rank of a data d.
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• For any fixed sets of names V and values A, the class of data
of the type TNDCS over V and A is defined as D2(V,A) =
NDV S(V,A), where NDV S(V,A) is the set of all elements of
A∪(V + n

→A) such that either d ∈ A, or d ∈ V + n
→A and all strings

from dom(d) are pairwise incomparable in the sense of the pre-
fix relation (principle of unambiguous associative naming). An
example of such data is [uv 7→ 1, uw 7→ 2, w 7→ 3], u, v, w ∈ V .
Such data have complex names i.e. names that are strings.

• For any fixed sets of names V and values A, the class of data
of the type TNDCC over V and A is defined as D3(V,A) =
NDV C(V,A), where NDV C(V,A) is the class of all data d ∈
ND(V +, A) such that for any two paths (u1, u2, ..., uk) and
(v1, v2, ..., vl) in d, neither of which is a prefix of another, the
words u1u2...uk and v1v2...vl are incomparable in the sense of
the prefix relation (principle of unambiguous associative naming).
Such data is also called complex-named data [10]. An example of
such data is [uv 7→ 1, w 7→ [uw 7→ ∅]], u, v, w ∈ V .

3 Basic Operations on Nominative Data

The basic operations on nominative data are the operations of
– denaming (taking the value of a name),
– naming (assigning a new value to a name),
– overlapping.
Let us define these operations for data of the most interesting and

complex type TNDCC .
Let V and A be fixed sets of names and basic values respectively.

Definition 1 (Denaming). The (associative) denaming is an operation
v ⇒a with a parameter v ∈ V + defined by induction on the length of v:

• if v ∈ V , then v ⇒a (d) ∼=











d(v), if d(v) ↓;

d/v, if d(v) ↑ and d/v 6= ∅;

undefined, if d(v) ↑ and d/v = ∅,

where d/u = [v1 7→ d(z) | d(z) ↓, z = uv1, v1 ∈ V +];

378



Proving Properties of Programs on Hierarchical . . .

• if v ∈ V +\V , then v ⇒a (d) ∼= v2 ⇒a (v1 ⇒a (d)), where v1 is
the first symbol of v and v2 is the suffix, i.e. v1, v2 are (unique)
words such that v = v1v2 and v1 ∈ V .

The following examples illustrate this operation:

• u ⇒a ([u 7→ 1, v 7→ 2]) = 1;

• (uv) ⇒a ([u 7→ [vw 7→ 1, u 7→ 2]]) = [w 7→ 1].

This operation has the following property (associativity) [10]:

u ⇒a (d) ∼= un ⇒a (un−1 ⇒a (... u1 ⇒a (d)...))

for all complex names u, u1, u2, ..., un ∈ V + such that u = u1u2...un.

Definition 2 (Naming). Naming is an unary operation ⇒ v with a
parameter v ∈ V + such that ⇒ v(d) = [v 7→ d].

Overlapping is a kind of updating operation which updates the val-
ues of names in its first argument with the values of names in its second
argument. For different types of nominative data different overlapping
operations can be considered. We will define two kinds of overlapping:
global and local overlapping. Global (associative or structural) over-
lapping ∇a updates several values in the first argument while the local
one ∇v

a (with a parameter name v) updates only one value which is
associated with the name v.

Global overlapping can be used, e.g. for formalizing procedures
calls, while the local overlapping can be used as a formalization of the
assignment operator in programming languages.

Definition 3 (Global overlapping). For nominative data of the type
TNDCC , global overlapping is a binary operation ∇a defined induc-
tively by the rank of the first argument as follows.

Let NDVCk(V,A) = NDV C(V,A)∩NDk(V
+, A) be the data from

the set NDV C(V,A), the rank of which is ≤ k.
Induction base of the definition. If d1 ∈ NDV C0(V,A), then

d1∇ad2 ∼=

{

d2, if d1 = ∅ and d2 ∈ NDV C(V,A)\A;

undefined, if d1 ∈ A or d2 ∈ A.
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Induction step of the definition. Assume that the value d1∇ad2 is al-
ready defined for all d1, d2 such that d1 ∈ NDV Ck(V,A). Let

d1 ∈ NDV Ck+1(V,A)\NDV Ck(V,A).

Then d1∇ad2 = d, where d is defined for each name u ∈ V + as follows:
1) d(u) = d2(u), if u ∈ dom(d2) and u does not have a proper prefix

which belongs to dom(d1);
2) d(u) = d1(u)∇a(d2/u), if d1(u) is defined and does not belong to

A and u is a proper prefix of some element of dom(d2), where d2/u =
[v1 7→ d2(v) | d2(v) ↓, v = uv1, v1 ∈ V +];

3) d(u) = d2/u, if d1(u) is defined and belongs to A and u is a
proper prefix of some element of dom(d2);

4) d(u) = d1(u), if d1(u) is defined and u is not comparable (in the
sense of the prefix relation) with any element of dom(d2);

5) d(u) ↑, otherwise.

The global overlapping has the following properties [10]:

• [u 7→ d1]∇a[v 7→ d2] = [u 7→ d1, v 7→ d2], u, v ∈ V, u 6= v;

• [uv 7→ d1]∇a[u 7→ d2] = [u 7→ d2], u, v ∈ V +, i.e. the value under
a name u in the second argument overwrites the values under
names in the first argument which are extensions of u;

• [u 7→ d1]∇a[uv 7→ d2] = [u 7→ (d1∇a[v 7→ d2])], if u, v ∈ V +,
d1 /∈ A, i.e. the value under a name uv in the second argument
modifies values under prefixes of uv in the first argument.

Definition 4 (Local overlapping). For nominative data of the type
TNDCC local overlapping is a binary operation ∇v

a with a parameter
v ∈ V + defined as follows: d1∇

v
ad2

∼= d1∇a(⇒ v(d2)).

Definition 5. Name checking predicate u! on NDV C(V,A) with a
parameter u ∈ V + is defined as follows:

u!(d) = T , if u ⇒a (d) ↓; u!(d) = F , if u ⇒a (d) ↑.

Definition 6. Emptiness checking predicate IsEmpty on NDV C(V,A)
is defined as follows:

IsEmpty(d) = T , if d = ∅; IsEmpty(d) = F , if d 6= ∅.
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Using the basic operations on nominative data, we can define an
algebraic structure of nominative data.

Definition 7. An algebraic structure of nominative data of the type
TNDCC is defined as follows:

NDASCC(V,A) = (NDV C(V,A); ∅, {v ⇒a}v∈V + ,

{⇒ v}v∈V + , {∇v
a}v∈V + , {v!}v∈V + , IsEmpty),

where ∅ is a constant – the empty nominative data.

Note that NDASCC(V,A) is a structure without equality.
One can extend NDASCC(V,A) with additional unary predicates

and operations on nominative data.

Definition 8. Let k, l ∈ N ∪ {0}, p1, p2, ..., pk be partial predi-
cates on NDV C(V,A) and f1, ..., fl be partial functions of the type
NDV C(V,A)→̃NDV C(V,A). An extended algebraic structure of
nominative data of the type TNDCC with additional unary predicates
p1, ...pk and operations f1, ..., fl is defined as follows:

NDASCC(V,A; p1, ..., pk; f1, ..., fl) = (NDV C(V,A);

∅, {v ⇒a}v∈V + , {⇒ v}v∈V + , {∇v
a}v∈V + , {v!}v∈V + , IsEmpty,

p1, ..., pk, f1, ..., fl),

where ∅ is a constant – the empty nominative data.

Definition 9. A path in d ∈ NDV C(V,A) is a nonempty sequence
(v1, v2, ..., vn) of words from V + such that the value ((d(v1))(v2)...)(vn)
is defined. This value ((d(v1))(v2)...)(vn) is called the value of the path
(v1, v2, ..., vn) in d. A path is called a terminal path in d, if its value in
d belongs to A ∪ {∅}.

Definition 10. 1) d1 ∈ NDV C(V,A) is nominatively included in
d2 ∈ NDV C(V,A), if either d1, d2 ∈ A and d1 = d2, or d1, d2 /∈ A
and for each terminal path (v1, v2, ..., vn) in d1 there is a terminal
path (v′1, v

′
2, ..., v

′
m) in d2 such that v1v2...vn = v′1v

′
2...v

′
m and the

values of (v1, v2, ..., vn) in d1 and (v′1, v
′
2, ..., v

′
m) in d2 coincide.

2) d1, d2 are nominative equivalent (d1 ≈ d2), if d1 is nominatively
included in d2 and d2 is nominatively included in d1.
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4 Associative Nominative Glushkov Algorith-

mic Algebra

Programs on nominative data can be formalized as functions from
nominative data (input data) to nominative data (output data) which
can be constructed from the operations of the algebraic structure
NDASCC(V,A) using compositions which represent programming lan-
guage constructs, e.g. sequential execution, branching, cycle, etc.

The set of such programs together with compositions forms an al-
gorithmic algebra similar to, e.g. Glushkov algorithmic algebras [14].

In [11] the authors of this paper proposed a generalization of
Glushkov algorithmic algebras to algebras of functions and predicates
over nominative data of the type TNDCC (i.e. data with complex
names and complex values) in order to obtain a rich, but tractable
formal language for specifying and reasoning about programs. This
generalization is called an Associative Nominative Glushkov Algorith-
mic Algebra (ANGAA).

Let V and A be fixed sets of basic names and values. Denote

PrCC(V,A) = NDV C(V,A)→̃{T, F},

FnCC(V,A) = NDV C(V,A)→̃NDV C(V,A).

We will assume that T and F do not belong to NDV C(V,A).

We will call the elements of PrCC(V,A) (partial nominative) predi-
cates and the elements of FnCC(V,A) (partial binominative) functions.

Let us denote by Ū the set of all tuples (u1, u2, ..., un), n ≥ 1 of
complex names from V + such that whenever i 6= j, ui and uj are
incomparable in the sense of the prefix relation.

• Sequential composition of functions (denoted using the infix no-
tation) • : Fn(V,A)×Fn(V,A) → Fn(V,A) is defined as follows:
for all f, g ∈ Fn(V,A) and data d: (f • g)(d) ∼= g(f(d)).

• Prediction composition [14] · : Fn(V,A) × Pr(V,A) → Pr(V,A)
is defined as follows: for all f ∈ Fn(V,A), p ∈ Pr(V,A), and
data d: (f · p)(d) ∼= p(f(d)).
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• Assignment composition Asgu : Fn(V,A) → Fn(V,A) with a
parameter u ∈ V + is defined as follows: for each f ∈ Fn(V,A)
and data d, (Asu(f))(d) ∼= d∇u

af(d).

• The composition of superposition into a function

Su1,u2,...,un

F : Fn(V,A)× (Fn(V,A))n → Fn(V,A)

with parameters n ≥ 1 and u1, ..., un ∈ V + such that (u1, ..., un) ∈
Ū is defined as follows:

Su1,...,un

F (f, f1, ..., fn)(d) ∼= f(...(d∇u1

a f1(d))...∇
un

a fn(d))...).

We will also use the following notation for this composition: for
each tuple ū = (u1, u2, ..., un) ∈ Ū , Sū

F denotes Su1,u2,...,un

F .

• The composition of superposition into a predicate

Su1,u2,...,un

P : Pr(V,A)× (Fn(V,A))n → Pr(V,A)

with parameters n ≥ 1 and u1, ..., un ∈ V + such that (u1, ..., un) ∈
Ū is defined as follows:

Su1,...,un

P (p, f1, ..., fn)(d) ∼= p(...(d∇u1

a f1(d))...∇
un

a fn(d))...).

We will also use the following notation for this composition: for
each tuple ū = (u1, u2, ..., un) ∈ Ū , Sū

P denotes Su1,u2,...,un

P .

• Branching composition IF : Pr(V,A)× Fn(V,A)× Fn(V,A) →
Fn(V,A) is defined as follows: for each p ∈ Pr(V,A), f, g ∈
Fn(V,A):

IF (p, f, g)(d) ∼= f(d), if p(d) ↓= T .

IF (p, f, g)(d) ∼= g(d), if p(d) ↓= F .

IF (p, f, g)(d) undefined, if p(d) ↑.

• Cycle composition WH : Pr(V,A) × Fn(V,A) → Fn(V,A) is
defined as follows: for each p ∈ Pr(V,A), f ∈ Fn(V,A), and d:
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WH(p, f)(d) ↓= f (n)(d), if there exists n ≥ 0 such that (f (i) ·
p)(d) ↓= T for all i ∈ {0, 1, ..., n−1} and (f (n) ·p)(d) ↓= F , where
f (n) is a n-times sequential composition of f with itself (f (0) is
the identity function), and WH(p, f)(d) is undefined otherwise.

• Negation ¬ : Pr(V,A) → Pr(V,A) is a composition such that
for each p ∈ Pr(V,A) and data d: (¬p)(d) ∼= T , if p(d) ↓= F ;
(¬p)(d) ∼= F , if p(d) ↓= T ; (¬p)(d) is undefined, if p(d) ↑.

• Disjunction ∨ : Pr(V,A)×Pr(V,A) → Pr(V,A) is a composition
defined as follows: for each p1, p2 ∈ Pr(V,A) and data d:

(p1 ∨ p2)(d) ∼=











T, if p1(d) ↓= T or p2(d) ↓= T ;

F, if p1(d) ↓= F and p2(d) ↓= F ;

undefined, otherwise.

• Identity composition Id : Fn(V,A) → Fn(V,A) is defined as
follows: Id(f) = f for all f ∈ Fn(V,A).

• True constant predicate (null-ary composition) True ∈ Pr(V,A)
is defined as follows: True(d) ↓= T for all data d.

• Bottom function (null-ary composition) ⊥F∈ Fn(V,A) is defined
as follows: ⊥F (d) ↑ for all data d.

• Bottom predicate (null-ary composition) ⊥P∈ Pr(V,A) is defined
as follows: ⊥P (d) ↑ for all data d.

• Name checking predicate (null-ary composition) with a parameter
u ∈ V +: u!(d) = T , if u ⇒a (d) ↓; u!(d) = F , if u ⇒a (d) ↑.

• Empty constant function (null-ary composition): Empty(d) = ∅.

• Emptiness checking predicate (null-ary composition):

IsEmpty(d) = T , if d = ∅; IsEmpty(d) = F , if d 6= ∅.

Our generalization of Glushkov algorithmic algebras to an algebra
of programs on hierarchical data is defined below.
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Definition 11. An Associative Nominative Glushkov Algorithmic Al-
gebra (ANGAA) is a two-sorted algebra

NGAa
CC(V,A) = (PrCC(V,A), FnCC (V,A); •, IF,WH, ·, {Asgu}u∈V +,

{Sū
F }ū∈Ū , {S

ū
P }ū∈Ū ,∨,¬, Id, T rue,⊥F ,⊥P , {u!}u∈V + ,

Empty, IsEmpty)

One can further extend ANGAA by adding constant symbols which
denote certain fixed predicates from PrCC(V,A) and/or functions from
FnCC(V,A) to its signature.

Definition 12. Let k, l ∈ N ∪ {0}, p1, p2, ..., pk ∈ PrCC(V,A) and
f1, f2, ..., fl ∈ FnCC(V,A).

An extended Associative Nominative Glushkov Algorithmic Algebra
(eANGAA) with predicate constants p1, ..., pk and function constants
f1, ..., fl is a two-sorted algebra

NGAa
CC(V,A; p1, ..., pk; f1, ...fl) =

(PrCC(V,A), FnCC(V,A); •, IF,WH, ·, {Asgu}u∈V + ,

{Sū
F }ū∈Ū , {S

ū
P }ū∈Ū ,∨,¬, Id, T rue,⊥F ,⊥P , {u!}u∈V + , Empty, IsEmpty,

p1, p2, ..., pk, f1, f2, ...fl).

5 Effective Definitional Schemes and General-

ization of eds Definability

The generalized recursion theory as proposed by H. Friedman [15] and
subsequently developed in [16] investigates generalized notions of com-
putability on objects of algebraic structures. In this context in [15] H.
Friedman defined the notion of a generalized Turing algorithm and the
equivalent notion of an effective definitional scheme (eds) [15]. Basi-
cally, eds are definitions by infinite cases which have a recursive enumer-
able structure. They can be used to give a very general definition of a
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computable function; in fact it was argued [16] that for reasonable def-
initions of computable functions over algebraic structures computable
functions need to be eds definable.

Such a definition of a computable function can be described as fol-
lows [16]. Consider a language L with finitely many constant, relation,
operation symbols interpreted in an algebraic structure M with some
domain, constants, relations and operations. Then a function f (on
the domain of M) is eds definable, if there is a set S of conditions
of the form ϕi(v, v1, ..., vn) → ti(v, v1, ..., vn) (eds) consisting of terms
ti(v, v1, ..., vn) in L and basic semialgebraic conditions (i.e. finite con-
junctions of atomic formulas and their negations) ϕi(v, v1, ..., vn) in L,
where v, v1, ..., vn are formal variable names, such that S is effective
(recursively enumerable as a set of strings) and there exist elements
a1, ..., an of the domain of M (parameters of the definition) such that
for each i: f(x) = ti(x, a1, ..., an), if ϕi(x, a1, ..., an).

It is known [16, Theorem 2] that in a suitable formalization, pro-
grams expressible in imperative programming languages with variables
ranging over M and assignments, stacks of values from the domain of
M with the operations Push and Pop, conditional operators (If-Then-
Else), and jumps (Goto) define eds definable functions.

However, as it is, the notion of eds definability has a limited ap-
plicability to semantics of programming languages, since it tells only
what are computable functions from M (or more generally, Mn) to M
or Mm, where the elements of M are considered as unstructured data.

In contrast, in the context of semantics of programming languages
[17], [2], [3], it is more important to describe computability of the steps
taken by the program during execution, which are usually transforma-
tions of structured program states to structured program states.

Below we generalize eds definability of functions on a structure M
to eds definability of transformations of program execution states for
programs operating on complex data structures (e.g. multidimensional
arrays, lists, trees and tree-like structures, etc.) over M .

Let V = {v1, v2, ..., vm} be a fixed finite set of basic names and A
be a fixed set of basic values.

Let p1, ..., pk ∈ PrCC(V,A), f1, ..., fl ∈ FnCC(V,A) be fixed fi-
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nite sequences of predicates and functions. If x1, ..., xn are vari-
able names, denote by Tx1,x2,...,xn

(V ; p1, ..., pk; f1, ..., fl) the set of
all terms in NDASCC(V,A; p1, ..., pk; f1, ..., fl) in x1, ..., xn, and by
Φx1,...,xn

(V ; p1, ..., pk; f1, ..., fl) the set of all basic semalgebraic condi-
tions, i.e. formulas which have a form of a finite conjunction of atomic
formulas in NDASCC(V,A; p1, ..., pk; f1, ..., fl) or their negations (note
that equality is not allowed).

For each term t in Tx1,x2,...,xn
(V ; p1, ..., pk; f1, ..., fl) or formula ϕ

in Φx1,...,xn
(V ; p1, ..., pk; f1, ..., fl), denote by [t] and [ϕ] their standard

interpretations (i.e. the corresponding partial function and predicate
on tuples of elements of NDV C(V,A)).

Definition 13. A function f ∈ FnCC(V,A) is eds definable with re-
spect to p1, ..., pk and f1, ..., fl, if there exists a natural number n, data
d1, d2, ..., dn ∈ NDV C(V,A), and a finite or countable set S of pairs
of the form

{(ϕi(x, x1, x2, ..., xn), ti(x, x1, ..., xn)) | i ∈ I}
(I is a set of indices I = N or I = {1, 2, ...,K} for some natu-
ral K), where ϕi(x, x1, ..., xn) ∈ Φx,x1,...,xn

(V ; p1, ..., pk; f1, ..., fl) and
ti(x, x1, ..., xn) ∈ Tx,x1,...,xn

(V ; p1, ..., pk; f1, ..., fl) and x, x1, ..., xn are
different variable names, such that

1) the set of all strings of the form ϕ(x, x1, ..., xn) → t(x, x1, ..., xn)
for (ϕ(x, x1, ..., xn), t(x, x1, ..., xn)) ∈ S in the alphabet {v1, v2, ..., vm, ,,
(, ), x, x1, ..., xn, ∅,⇒, a, !, IsEmpty,¬,∧, p1, ..., pk, f1, ..., fl} is recursive-
ly enumerable (it is assumed that symbols with sub/superscripts ∇v

a in
terms are represented as ∇av).

2) For each d ∈ NDV C(V,A) and i ∈ I, if [ϕi](d, d1, ..., dn) ↓= T ,
then f(d) ∼= [ti](d, d1, ..., dn).

3) For each d ∈ NDV C(V,A), if [ϕi](d, d1, ..., dn) ↑ for all i ∈ I,
then f(d) ↑.

Note that the problem of checking whether a given set of the form
{(ϕi(x, x1, x2, ..., xn), ti(x, x1, ..., xn)) | i ∈ I} defines an eds definable
function as in Definition 13 may be algorithmically undecidable. How-
ever, this does not have any implications on applicability of the notion
of eds definable functions to the problems considered in this paper.
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Definition 14. A predicate p ∈ PrCC(V,A) is eds definable with re-
spect to p1, ..., pk and f1, ..., fl, if there exists a natural number n, data
d1, d2, ..., dn ∈ NDV C(V,A), and a finite or countable set S of pairs
of the form

{(ϕi(x, x1, x2, ..., xn), bi) | i ∈ I}
(I is a set of indices I = N or I = {1, 2, ...,K} for a natural K, bi is a
Boolean value), where ϕi(x, x1, ..., xn) ∈ Φx,x1,...,xn

(V ; p1, ..., pk; f1, ..., fl)
and bi ∈ {T, F} and x, x1, ..., xn are different variable names, such that

1) the set of all strings of the form ϕ(x, x1, ..., xn) → b for
(ϕ(x, x1, ..., xn), b) ∈ S in the alphabet {v1, v2, ..., vm, ,, (, ), x, x1, ..., xn,
∅,⇒, a, !, IsEmpty,¬,∧, p1, ..., pk, f1, ..., fl} is recursively enumerable
(it is assumed that symbols with superscripts ∇v

a in terms are repre-
sented as ∇av).

2) For each d ∈ NDV C(V,A) and i ∈ I, if [ϕi](d, d1, ..., dn) ↓= T ,
then p(d) ∼= bi.

3) For each d ∈ NDV C(V,A), if [ϕi](d, d1, ..., dn) ↑ for all i ∈ I,
then p(d) ↑.

6 Main results

Let us introduce the following notation.

• PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) is the set of all predicates in
PrCC(V,A) which are eds definable with respect to p1, ..., pk and
f1, ..., fl.

• FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) is the set of all functions in
FnCC(V,A) which are eds definable with respect to p1, ..., pk and
f1, ..., fl.

The following theorem shows that all programs of eANGAA with
predicate constants p1, ..., pk and function constants f1, ..., fl are eds
definable with respect to p1, ..., pk and f1, ..., fl.

Theorem 1 (eds definability of programs of eANGAA). The sets
PrEdsCC(V,A; p1, ..., pk; f1, ..., fl), FnEdsCC(V,A; p1, ..., pk; f1, ..., fl)
form a subalgebra of NGAa

CC(V,A; p1, ..., pk; f1, ..., fl).
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Proof. (Sketch)
It is easy to check that all null-ary compositions of the algebra

NGAa
CC(V,A; p1, ..., pk; f1, ..., fl) are eds definable by Definition 13 and

Definition 14.
The fact that all unary and binary compositions of the algebra

NGAa
CC(V,A; p1, ..., pk; f1, ..., fl) (sequential composition, branching,

cycle, etc.) preserve eds definability can be proven similarly to [16].
This implies the statement of the theorem.

For any transitive binary relation 6 on NDVC(V,A) let us denote:

• PrMCC(V,A,6) is the set of all p ∈ PrCC(V,A) such that for all
d1, d2, if p(d1) ↓ and d1 6 d2, then p(d2) ↓= p(d1). The elements
of PrMCC(V,A,6) are called 6 -equitone predicates.

• FnICC(V,A,6) is the set of all f ∈ FnCC(V,A) such that for
each d, if f(d) ↓, then d 6 f(d). The elements of FnICC(V,A,6)
are called 6-increasing functions.

• FnMCC(V,A,6) is the set of all f ∈ FnCC(V,A) such that for
each d1, d2, if f(d1) ↓ and d1 6 d2, then f(d2) ↓ and f(d1) 6

f(d2). The elements of FnMCC(V,A,6) are called 6-monotone
functions.

• PrMn
CC(V,A,6) is the set of all p ∈ PrnCC(V,A) such that for

all d1, d2, ..., dn, d
′
1, d

′
2, ..., d

′
n, if p(d1, d2, ..., dn) ↓ and d1 6 d′1,

d2 6 d′2, ..., dn 6 d′n, then p(d′1, d
′
2, ..., d

′
n) ↓= p(d1, d2, ..., dn).

The elements of FnMn
CC(V,A,6) are called 6-equitone n-ary

predicates.

• FnInCC(V,A,6) is the set of all f ∈ Fnn
CC(V,A) such that for

each d1, d2, ..., dn, if f(d1, d2, ..., dn) ↓, then di 6 f(d1, d2, ..., dn)
for each i = 1, 2, ..., n. The elements of FnMCC(V,A,6) are
called 6-increasing n-ary functions.

• FnMn
CC(V,A,6) is the set of all f ∈ Fnn

CC(V,A) such that for
each d1, d2, ..., dn, d

′
1, d

′
2, ..., d

′
n, if f(d1, d2, ..., dn) ↓ and d1 6 d′1,

d2 6 d′2, ..., dn 6 d′n, then f(d′1, d
′
2, ..., d

′
n) ↓ and f(d1, d2, ..., dn) 6
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f(d′1, d
′
2, ..., d

′
n). The elements of FnMn

CC(V,A,6) are called 6-
monotone n-ary functions.

Lemma 1. Let 6 be a transitive binary relation on NDV C(V,A).
Assume that:

f1, f2, ...., fl,⇒ u, u ⇒a,∇
u
a ∈ FnICC(V,A,6) for each u ∈ V +.

Then for each n ∈ N, distinct variable names x1, ..., xn, and a term
t(x1, ..., xn) ∈ Tx1,...,xn

(V ; p1, ..., pk; f1, ..., fl) we have
[t] ∈ FnInCC(V,A,6).

Proof. The proof can be straightforwardly done by induction on the
structure of the term t(x1, ..., xn) of the algebraic structure of nomina-
tive data NDASCC(V,A; p1, ..., pk; f1, ..., fl) (note that the base of the
induction follows from the assumptions).

Lemma 2. Let 6 be a transitive binary relation on NDV C(V,A).
Assume that:

f1, f2, ...., fl,⇒ u, u ⇒a,∇
u
a ∈ FnICC(V,A,6) for each u ∈ V +.

p1, p2, ..., pk, IsEmpty ∈ PrMCC(V,A,6), u!, for each u ∈ V +.
Then for each n ∈ N, distinct variable names x1, ..., xn, a term
t(x1, ..., xn) ∈ Tx1,...,xn

(V ; p1, ..., pk; f1, ..., fl), and a formula
ϕ(x1, ..., xn) ∈ Φx1,...,xn

(V ; p1, ..., pk; f1, ..., fl) we have
[t] ∈ FnInCC(V,A,6) and [ϕ] ∈ PrMn

CC(V,A,6).

Proof. The proof can be straightforwardly done by induction on the
structure of the term t(x1, ..., xn) and the formula ϕ(x1, ..., xn) of the al-
gebraic structure of nominative dataNDASCC(V,A; p1, ..., pk; f1, ..., fl)
(note that the base of the induction follows from the assumptions).

Lemma 3. Let 6 be a preorder NDV C(V,A).
Assume that:

f1, f2, ..., fl,⇒ u, u ⇒a,∇
u
a, u! ∈ FnMCC(V,A,6) for each u ∈ V +

and p1, p2, ..., pk, IsEmpty ∈ PrMCC(V,A,6).

Then for each n ∈ N, distinct variable names x1, ..., xn, and
a term t(x1, ..., xn) ∈ Tx1,...,xn

(V ; p1, ..., pk; f1, ..., fl), and a formula
ϕ(x1, ..., xn) ∈ Φx1,...,xn

(V ; p1, ..., pk; f1, ..., fl) we have

[t] ∈ FnMn
CC(V,A,6) and [ϕ] ∈ PrMn

CC(V,A,6).
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Proof. The proof can be straightforwardly done by induction on the
structure of the term t(x1, ..., xn) and the formula ϕ(x1, ..., xn) of the al-
gebraic structure of nominative dataNDASCC(V,A; p1, ..., pk; f1, ..., fl).

Theorem 2. (1) If 6 is a transitive relation on NDV C(V,A) and
the conditions of Lemma 1 hold, then

FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnICC(V,A,6).

(2) If 6 is a transitive relation on NDV C(V,A) and the conditions
of Lemma 2 hold, then

PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ PrMCC(V,A,6) and

FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnICC(V,A,6).

(3) If 6 is a preorder on NDV C(V,A) and the conditions of Lemma
3 hold, then

PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ PrMCC(V,A,6) and

FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnMCC(V,A,6).

Proof. (1) Let us show that FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆
FnICC(V,A,6). Let f ∈ FnEdsCC(V,A; p1, ..., pk; f1, ..., fl), d ∈
NDV C(V,A), and f(d) ↓. Then using notations of Definition 13
we can say that there exists i such that [ϕi](d, d1, ..., dn) ↓= T and
[ti](d, d1, ..., dn) ↓= f(d). By Lemma 2, we have [ti] ∈ FnIn+1

CC (V,A,6),
so d 6 [ti](d, d1, ..., dn) = f(d). Since d is arbitrary, we have f ∈
FnICC(V,A,6).

(2) Let us show that

PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ PrMCC(V,A,6).

Let p ∈ PrEdsCC(V,A; p1, ..., pk; f1, ..., fl), d
′, d′′ ∈ NDV C(V,A) and

d′ 6 d′′. Assume that p(d′) ↓. Then using notations of Definition 14 we
can say that there exists i such that p(d′) = bi and [ϕi](d

′, d1, ..., dn) ↓=
T . By Lemma 2, [ϕi] ∈ PrMn+1

CC (V,A,6), so [ϕi](d
′′, d1, ..., dn) ↓=

T . Then p(d′′) ↓= bi = p(d′). Since d is arbitrary, we have p ∈
PrMCC(V,A,6).
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That FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnICC(V,A,6) can be
shown similarly to the case (1) above.

(3) Let us show that
PrEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ PrMCC(V,A,6).

Let p ∈ PrEdsCC(V,A; p1, ..., pk; f1, ..., fl), d
′, d′′ ∈ NDV C(V,A) and

d′ 6 d′′. Assume that p(d′) ↓. Then using notations of Definition 14 we
can say that there exists i such that p(d′) = bi and [ϕi](d

′, d1, ..., dn) ↓=
T . By Lemma 3, [ϕi] ∈ PrMn+1

CC (V,A,6), so [ϕi](d
′′, d1, ..., dn) ↓=

T . Then p(d′′) ↓= bi = p(d′). Since d is arbitrary, we have p ∈
PrMCC(V,A,6).

Let us show that
FnEdsCC(V,A; p1, ..., pk; f1, ..., fl) ⊆ FnMCC(V,A,6).
Let f ∈ FnEdsCC(V,A; p1, ..., pk; f1, ..., fl), d, d

′ ∈ NDV C(V,A),
d 6 d′, and f(d) ↓. Then using notations of Definition 13 we
can say that there exists i such that [ϕi](d, d1, ..., dn) ↓= T and
[ti](d, d1, ..., dn) ↓= f(d). By Lemma 3, [ti] ∈ FnMn+1

CC (V,A,6)
and [ϕi] ∈ PrMn+1

CC (V,A,6), so [ti](d
′, d1, ..., dn) ↓ and f(d) =

[ti](d, d1, ..., dn) 6 [ti](d
′, d1, ..., dn). Moreover, [ϕi](d

′, d1, ..., dn) ↓= T ,
so f(d′) ↓= [ti](d

′, d1, ..., dn) and f(d) 6 f(d′). Since d is arbitrary, we
have f ∈ FnMCC(V,A,6).

Corollary 1. Under the conditions of Lemma 1 or Lemma 2, all unary
functions (programs) expressible in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl)
belong to FnICC(V,A,6).

Proof. Follows immediately from Theorem 1 and Theorem 2.

Corollary 2. Under the conditions of Lemma 3, all unary functions
(programs) expressible in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl) belong to
FnMCC(V,A,6).

Proof. Follows immediately from Theorem 1 and Theorem 2.

Corollary 1 implies that in order to show that a program express-
ible in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl) has the property (d, f(d)) ∈6
which expresses the fact that the input and output of f belong to a

392



Proving Properties of Programs on Hierarchical . . .

transitive relation 6, it is sufficient to check several properties of basic
operations on nominative data with respect to 6 which are formulated
in Lemma 1. It is not necessary to prove preservation of this prop-
erty by the compositions of NGAa

CC(V,A; p1, ..., pk; f1, ..., fl), since this
preservation follows automatically from eds definability of all programs
expressible in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl).

It is easy to see that the results similar to corollaries from Theorem
2 hold not only for eANGAA, but for a reduct of ANGAA [18], i.e. an
algebra with narrower carriers and/or sets of operations (in particular,
constants) and predicates:

1) if all function constants of a reduct of eANGAA are 6-increasing,
then all unary functions (programs) expressible in this reduct are 6-
increasing.

2) if in a reduct of eANGAA all function constants are 6-monotone
and all predicate constants are 6-equitone, then all unary functions
(programs) expressible in this reduct are 6-monotone.

Using this observation, e.g., we can show partial correctness of the
GCD program mentioned in the introduction by considering a reduct
of eANGAA of functions and predicates over NDV C({x, y, a, b},Z)
which has as function constants the functions which perform assign-
ment operations which appear in this program: f1(d) = d∇a[a 7→ d(x)],
f2(d) = d∇a[b 7→ d(y)], f3(d) = d∇a[a 7→ d(a)−d(b)], f4(d) = d∇a[b 7→
d(b) − d(a)] and showing that they are 6-increasing.

Corollary 2 implies that in order to show that a program expressible
in NGAa

CC(V,A; p1, ..., pk; f1, ..., fl) is monotone with respect to some
preorder on data, it is sufficient to check several properties of basic
operations on nominative data with respect to 6 which are formulated
in Lemma 3.

An example of application of the obtained results is given below.
In [11] the authors considered a special property of programs which
is called nominative stability [11], [8], [9], [10]. This property is a
formalization of the idea of stability of program semantics when the
data structures used in the program are changed to equivalent in the
sense of information content and supported operations.

It can be illustrated by the following feature of the Pascal pro-
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gramming language: the two-dimensional array definitions var A:

array [1..n, 1..m] of real and var A:array [1..n] of array [1..m]

of real are equivalent and both the A[i,j] and A[i][j] syntax can be
used to access the array elements regardless of the form of its definition
(it should be noted that the languages like C++ and Java do not have
this feature). This implies that one can safely swap two-dimensional
array definitions in a program without changing the rest of the text of
the program while preserving program semantics.

Nominative stability is defined using the nominative equivalence
relation on nominative data of the type TNDCC . This relation is a
formalization of the idea that data are equivalent, if they have essen-
tially the same information content, but may have different hierarchical
naming structure. For example, the following data are nominatively
equivalent: [v1 7→ [v2 7→ [v3 7→ 1]]] and [v1v2v3 7→ 1], as they differ only
in the naming hierarchy, but contain the same basic names and values.
A function on nominative data is nominative stable, if on nominative
equivalent data it gives nominative equivalent results.

Formally,

Definition 15. 1) Data d1 ∈ NDV C(V,A) is nominatively in-
cluded in d2 ∈ NDV C(V,A), if either d1, d2 ∈ A and d1 = d2,
or d1, d2 /∈ A and for each terminal path (v1, v2, ..., vn) in d1
there is a terminal path (v′1, v

′
2, ..., v

′
m) in d2 such that v1v2...vn =

v′1v
′
2...v

′
m and the values of (v1, v2, ..., vn) in d1 and (v′1, v

′
2, ..., v

′
m)

in d2 coincide.

2) Data d1, d2 are nominative equivalent (d1 ≈ d2), if d1 is nomina-
tively included in d2 and d2 is nominatively included in d1.

3) The elements of FnMCC(V,A,≈) are called nominative stable
functions (programs).

Using Corollary 2 formulated above we can easily show that all pro-
grams expressible in NGAa

CC(V,A) (i.e. ANGAA without additional
predicates and functions) are nominative stable.

In [11] it was shown that ≈ is an equivalence on NDV C(V,A) (and
thus is a preorder) and the functions ⇒ u, u ⇒a, ∇

u
a are nominative
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stable. It is trivial to check by the definition that u! is ≈-equitone
binary predicate on NDV C(V,A) and IsEmpty is ≈-monotone (i.e.
nominative stable). Then by Corollary 2, all functions expressible in
NGAa

CC(V,A) are nominative stable.

7 Conclusions

We have investigated methods of proving properties of programs on hi-
erarchical nominative data on the basis of the composition-nominative
approach. The proofs of properties of programs depend on proofs of
properties of compositions and basic operations on data. The complex-
ity of such proofs can be lowered, if one is able to reduce the proofs
of properties of various compositions to proofs of properties of opera-
tions on data. We have proposed a way of achieving such a reduction
by representing compositions using effective definitional schemes of H.
Friedman. The achieved reduction permits us to consider proofs in
data algebras (which are simpler to derive, automate, etc.) instead of
proofs in program algebras. Using this approach we have demonstrated
that the properties of programs related to structural transformations
of data can be reduced to the data level. The obtained results can be
used in software development and verification.
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