
Computer Science Journal of Moldova, vol.24, no.3(72), 2016

About Applications of Distances on Monoids of

Strings

Mitrofan Choban, Ivan Budanaev

Dedicated to Professor, Corresponding Member of the Academy of Science of

Moldova Constantin Gaindric on the occasion of his seventy-fifth anniversary

Abstract

In this article we show that there are invariant distances on
the monoid L(A) of all strings closely related to Levenshtein’s
distance. We will use a distinct definition of the distance on
L(A), based on the Markov - Graev method, proposed by him
for free groups. As result we will show that for any quasimetric
d on alphabet A in union with the empty string there exists a
maximal invariant extension d∗ on the free monoid L(A). This
new approach allows the introduction of parallel and semipar-
allel decompositions of two strings. In virtue of Theorem 3.1,
they offer various applications of distances on monoids of strings
in solving problems from distinct scientific fields. The discus-
sion covers topics in fuzzy strings, string pattern search, DNA
sequence matching etc.

Keywords: String pattern matching, parallel decomposi-
tion, semiparallel decomposition, free monoid, invariant distance,
quasimetric, Levenshtein distance, Hamming distance, proper
similarity.

1 Introduction

The dynamic transition of our technological civilization to digital pro-
cessing and data transmission systems created many problems in the
design of modern systems in computer science and telecommunications.
Providing robustness and noise immunity is one of the most impor-
tant and difficult tasks in data transmission, recording, playback, and

c©2016 by M. Choban, I. Budanaev

335

M. Choban, I. Budanaev

storage. The distance between information plays a paramount role in
mathematics, computer science, and other interdisciplinary research
areas. The first among many scientists in the field, who presented the
theoretical solutions to error detection and error correction problems,
were C. Shannon, R. Hamming, and V. Levenshtein (see [11],[12],[18]).
We begin this section with introductions into the field, focusing mainly
on abstract monoid of strings L(A).

A monoid is a semigroup with an identity element. Fix a non-empty
set A. The set A is called an alphabet. Let L(A) be the set of all finite
strings a1a2 . . . an with a1, a2, . . . , an ∈ A. Let ε be the empty string.
Consider the strings a1a2 . . . an such that ai = ε for some i ≤ n. If
ai 6= ε, for any i ≤ n or n = 1 and a1 = ε, the string a1a2 . . . an is
called a canonical string. The set

Sup(a1a2 . . . an) = {a1, a2, . . . , an} ∩A

is the support of the string a1a2 . . . an and

l(a1 . . . an) = |Sup(a1 . . . an)|

is the length of the string a1a2 . . . an. For two strings a1 . . . an and
b1 . . . bm, their product(concatenation) is a1 . . . anb1 . . . bm. If n ≥
2, i < n and ai = ε, then the strings a1 . . . an and a1 . . . ai−1ai+1 . . . an
are considered equivalent. In this case any string is equivalent to
one unique canonical string. We identify the equivalent strings. In
this case L(A) becomes a monoid with identity ε. Let Sup(a, b) =
Sup(a) ∪ Sup(b) ∪ {ε}, and Sup(a, a) = Sup(a) ∪ {ε}.

It is well known that any subset L ⊂ L(A) is an abstract language
over the alphabet A.

2 Distances on spaces

2.1 Definitions

Let A be a non-empty set and d : X ×X → R be a mapping such that
for all x, y ∈ X we have:

336

About Applications of Distances on Monoids of Strings

(im) d(x, y) ≥ 0;
(iim) d(x, x) = 0.
Then (X, d) is called a pseudo-distance space and d is called a

pseudo-distance on X. In addition,
(iiim) d(x, y) + d(y, x) = 0 if and only if x = y,

then (X, d) is called a distance space and d is called a distance on X.
Furthermore,

(ivm) d(x, y) = 0 if and only if x = y,
then (X, d) is called a strong distance space and d is called a strong
distance on X.

General problems in distance spaces were studied by different au-
thors (see [1], [3], [4], [8], [15]). The notion of a distance space is more
general than the notion of o-metric spaces in sense of A. V. Arhangel-
skii [1] and S. I. Nedev [15]. A distance d is an o-metric if from d(x, y)
= 0 it follows that x = y, i.e. d is a strong distance.

Let X be a non-empty set and d be a pseudo-distance on X. Then:

• (X, d) is called a pseudo-symmetric space and d is called a pseudo-
symmetric on X if for all x, y ∈ X

(vm)d(x, y) = d(y, x);

• (X, d) is called a symmetric space and d is called a symmetric on
X if d is a distance and a pseudo-symmetric simultaneously;

• (X, d) is called a pseudo-quasimetric space and d is called a
pseudo-quasimetric on X if for all x, y, z ∈ X

(vim)d(x, z) ≤ d(x, y) + d(y, z);

• (X, d) is called a quasimetric space and d is called a quasimetric
on X if d is a distance and a pseudo-quasimetric simultaneously;

• (X, d) is called a pseudo-metric space and d is called a pseudo-
metric if d is a pseudo-symmetric and a pseudo-quasimetric si-
multaneously;

• (X, d) is called a metric space and d is called a metric if d is both
symmetric and quasimetric;

337

M. Choban, I. Budanaev

• a distance d is called discrete if d(x, y) ∈ ω = {0, 1, 2, . . .} for all
x, y ∈ X.

LetG be a semigroup and d be a pseudo-distance on G. The pseudo-
distance d is called:

• Left (respectively, right) invariant if d(xa, xb) ≤ d(a, b) (respec-
tively, d(ax, bx) ≤ d(a, b)) for all x, a, b ∈ G;

• Invariant if it is both left and right invariant.

A distance d on a semigroup G is called stable if d(xy, uv) ≤
d(x, u) + d(y, v) for all x, y, u, v ∈ G.

Proposition 1. Let d be a pseudo-quasimetric on a semigroup G. The
next assertions are equivalent:

1. d is invariant,

2. d is stable.

2.2 Extension of pseudo-quasimetrics on free monoids

Fix an alphabet A and let Ā = A∪{ε}. We assume that ε ∈ Ā ⊆ L(A)
and ε is the identity of the monoid L(A). Let ρ be a pseudo-quasimetric
on the set Ā and Q(ρ) be the set of all stable pseudo-quasimetrics d on
L(A) for which d(x, y) ≤ ρ(x, y) for all x, y ∈ Ā. The set Q(ρ) is non-
empty since it contains the trivial pseudo-quasimetric d(x, y) = 0 for
all x, y ∈ L(A). For all a, b ∈ L(A) let ρ̂(a, b) = sup{d(a, b) : d ∈ Q(ρ)}.
We say that ρ̂ is the maximal stable extension of ρ on L(A).

The following properties are proved in [5].

Property 2.1. ρ̂ ∈ Q(ρ).

For any r > 0 let dr(a, a) = 0 and dr(a, b) = r for all distinct points
a, b ∈ L(A). Then dr is an invariant metric on L(A).

Property 2.2. Let r > 0 and ρ(x, y) ≥ r for all distinct points x, y ∈
A. Then ρ̂ is a quasimetric on L(A), dr ∈ Q(ρ), and ρ̂(a, b) = r for all
distinct points a, b ∈ L(A).

338

About Applications of Distances on Monoids of Strings

For any a, b ∈ L(A) let

ρ̄(a, b) = inf{Σ{ρ(xi, yi) : i ≤ n}},

where n ∈ N = {1, 2, . . .}, x1, y1, x2, y2, . . . , xn, yn ∈ Ā, a =
x1x2 . . . xn, b = y1y2 . . . yn. Let

ρ∗(a, b) = inf{ρ̄(a, z1) + · · ·+ ρ̄(zi, zi+1) + · · ·+ ρ̄(zn, b)},

where n ∈ N, z1, z2, . . . , zn ∈ L(A).

Property 2.3. ρ̄ is a pseudo-distance on L(A) and ρ̄(x, y) ≤ ρ(x, y)
for all x, y ∈ Ā.

Property 2.4. ρ̄(x, y) = ρ(x, y) for all x, y ∈ X.

Property 2.5. The pseudo-distance ρ̄ is invariant on L(A).

Property 2.6. The pseudo-distance ρ∗ is a stable pseudo-quasimetric
on L(A) and ρ∗ ∈ Q(ρ).

Property 2.7. If ρ is a quasimetric on X, then ρ̄ is a distance on
L(A).

Property 2.8. Let a, b ∈ L(A) be two distinct points in L(A) and
r(a, b) = min{ρ(x, y) : x ∈ Sup(a, a), y ∈ Sup(b, b), x 6= y}. Then

ρ̂(a, b) = ρ∗(a, b) ≥ r(a, b).

The following properties follow from Property 2.8.

Property 2.9. If ρ is a quasimetric on Ā, then ρ∗ and ρ̂ are quasi-
metrics on L(A).

Property 2.10. If ρ is a strong quasimetric on Ā, then ρ∗ and ρ̂ are
strong quasimetrics on L(A).

Property 2.11. Let ρ be a pseudo-quasimetric on Ā, Y be a subspace
of Ā, and ε ∈ Ȳ . Let M(Y) = L(Y) be the submonoid of the monoid
L(A) generated by the set Y , and by dY be the extension ρ̂|Y on M(Y)
of the pseudo-quasimetric ρY on Y , where ρY (y, z) = ρ(y, z) for all
y, z ∈ Ȳ . Then

339

M. Choban, I. Budanaev

1. dY (a, b) = ρ̂(a, b) for all a, b ∈ M(Y),

2. If ρ is a (strong) quasimetric on Y , then ρ̂ is a (strong) quasi-
metric on M(Y),

3. If ρ is a metric on Y , then ρ̂ is a metric on M(Y),

4. If a, b ∈ L(A) are distinct points and ρ is a quasimetric on
Sup(a, b), then ρ̂(a, b) + ρ̂(b, a) > 0,

5. If a, b ∈ L(A) are distinct points and ρ is a strong quasimetric
on Sup(a, b), then ρ̂(a, b) > 0 and ρ̂(b, a) > 0,

6. For any a, b ∈ L(A) there are n ∈ N, x1, x2, . . . , xn ∈ Sup(a, a)
and y1, y2, . . . , yn ∈ Sup(b, b) such that a = x1x2 · · · xn, b =
y1y2 · · · yn ρ, n ≤ l(a) + l(b) and ρ̄(a, b) = Σ{ρ(xi, yi) : i ≤ n},

7. ρ̂ = ρ̄ = ρ∗.

Property 2.12. For any a=a1a2 . . . an we put a−1=an . . . a2a1. Then
ρ∗(a, b)=ρ∗(a−1, b−1) and (ab)−1=b−1a−1 for all a, b ∈ L(A).

Remark 2.1. The method of extensions of distances for free groups,
used by us, was proposed by A. A. Markov [13] and M. I. Graev [9].
For free universal algebras it was extended in [3], for free groups and
varieties of groups it was examined in [6], [17].

2.3 Discrete distances on L(A)

Fix an alphabet A and Ā=A∪{ε}. Consider on A some linear ordering
for which ε < x for any x ∈ A. On Ā consider the following distances ρl,
ρr, ρs, where ρl(x, x) = ρr(x, x) = 0 for any x ∈ Ā; if x, y ∈ Ā and x <

y, then ρl(x, y) = 1, ρl(y, x) = 0, ρr(x, y) = 0, ρr(y, x) = 1, ρs(x, y) =
ρl(x, y) + ρr(x, y). By construction, ρl and ρr are quasimetrics and ρs
is a metric on Ā. Then ρl*(x, y) and ρr*(x, y) are invariant discrete
quasimetrics on L(A) and ρs* is a discrete invariant metric on L(A).

Theorem 2.1. Let ρ be a quasimetric on Ā, and ρ(a, ε) = ρ(b, ε) for all
a, b ∈ A. Then ρ∗(ac, bc) = ρ∗(ca, cb) = ρ∗(a, b) for all a, b, c ∈ L(A).

Corollary 2.1. If ρ∗ = ρ∗s, then ρ∗(ac, bc) = ρ∗(ca, cb) = ρ∗(a, b) for
all a, b, c ∈ L(A).

340

About Applications of Distances on Monoids of Strings

3 Parallel decompositions of two strings

The longest common substring and pattern matching in two or more
strings is a well known class of problems. For any two strings a, b ∈
L(A) we find the decompositions of the form a = v1u1v2u2 · · · vkukvk+1

and b = w1u1w2u2 · · ·wkukwk+1, which can be represented as a =
a1a2 · · · an, b = b1b2 · · · bn with the following properties:

• some ai and bj may be empty strings, i.e. ai = ε, bj = ε;

• if ai = ε, then bi 6= ε and if bj = ε, then aj 6= ε;

• if u1 = ε, then a = v1 and b = w1;

• if u1 6= ε, then there is a sequence 1 ≤ i1 ≤ j1 < i2 ≤ j2 < · · · <
ik ≤ jk ≤ n such that:

– u1 = ai1 · · · aj1 = bi1 · · · bj1 , u2 = ai2 · · · aj2 = bi2 · · · bj2 ,
uk = aik · · · ajk = bik · · · bjk ;

– if v1 = w1 = ε, then i1 = 1;

– if vk+1 = wk+1 = ε, then jk = n;

– if k ≥ 2, then for any i ∈ {2, · · · , k} we have vi 6= ε or
wi 6= ε.

In this case

l(u1) + l(u2) + · · ·+ l(uk) = |{i : ai = bi}|.

The above decomposition forms are called parallel decompositions of
strings a and b. For any parallel decompositions a = v1u1 · · · vkukvk+1

and b = w1u1 · · ·wkukwk+1 the number

E(v1u1 · · · vkukvk+1, w1u1 · · ·wkukwk+1) =
∑

i≤k+1

{max{l(vi), l(wi)}}

is called the efficiency of the given parallel decompositions. The num-
ber E(a, b) is equal to the minimum of the efficiencies of all parallel

341

M. Choban, I. Budanaev

decompositions of the strings a, b and is called the common efficiency
of the strings a,b. It is obvious that E(a, b) is well determined. We
say that the parallel decompositions a = v1u1v2u2 · · · vkukvk+1 and
b = w1u1w2u2 · · ·wkukwk+1 are optimal if

E(v1u1v2u2 · · · vkukvk+1, w1u1w2u2 · · ·wkukwk+1) = E(a, b).

These types of parallel decompositions are associated with the prob-
lem of approximate string matching [14]. If the decompositions a =
v1u1 · · · vkukvk+1 and b = w1u1 · · ·wkukwk+1 are optimal and k ≥ 2,
then we may consider that ui 6= ε for any i ≤ k.

Any parallel decompositions a = a1a2 · · · an = v1u1 · · · vkukvk+1

and b = b1b2 · · · bn = w1u1 · · ·wkukwk+1 generate a common sub-
sequence u1u2 · · · uk. The number

m(a1a2 · · · an, b1b2 · · · bn) = l(u1) + l(u2) + · · · + l(uk)

is the measure of similarity of the decompositions [2], [16]. There
are parallel decompositions a = v1u1v2u2 · · · vkukvk+1 and b =
w1u1w2u2 · · ·wkukwk+1 for which the measure of similarity is maximal.
The maximum value of the measure of similarity of all decompositions
is denoted by m∗(a, b). The maximum value of the measure of simi-
larity of all optimal decompositions is denoted by mω(a, b). We can
note that mω(a, b) ≤ m∗(a, b). For any two parallel decompositions
a = a1a2 · · · an and b = b1b2 · · · bn as in [16], we define the penalty
factor as

p(a1a2 · · · an, b1b2 · · · bn) = |{i ≤ n : ai = ε}|+ |{j ≤ n : bj = ε}|

and

M (a1a2 · · · an, b1b2 · · · bn)

= m(a1a2 · · · an, b1b2 · · · bn)− p(a1a2 · · · an, b1b2 · · · bn)

as the measure of proper similarity. The number

dH(a1a2 · · · an, b1b2 · · · bn) = |{i ≤ n : ai 6= bi}|

342

About Applications of Distances on Monoids of Strings

is the Hamming distance between decompositions and it is another type
of penalty. We have that

p(a1 · · · an, b1 · · · bn) ≤ dH(a1 · · · an, b1 · · · bn).

Theorem 3.1. Let a and b be two non-empty strings, a = a1a2 · · · an
and b = b1b2 · · · bn be the initial optimal decompositions, and a =
a′1a

′
2 · · · a

′
q and b = b′1b

′
2 · · · b

′
q be the second decompositions, which are

arbitrary. Denote by

m0 = m(a1a2 · · · an, b1b2 · · · bn), m1 = m(a′1a
′
2 · · · a

′
n, b

′
1b

′
2 · · · b

′
q),

p0 = p(a1a2 · · · an, b1b2 · · · bn), p1 = p(a′1a
′
2 · · · a

′
n, b

′
1b

′
2 · · · b

′
q),

r0 = dH(a1a2 · · · an, b1b2 · · · bn), r1 = dH(a′1a
′
2 · · · a

′
n, b

′
1b

′
2 · · · b

′
q),

M0 = m0 − p0, M1 = m1 − p1.

The following assertions are true

1. If m1 ≥ m0, then M0 ≥ M1 and p1−p2 = 2(m1−m0)+2(r1−r0),

2. If m1 ≥ m0 and the second decompositions are non-optimal, then
M0 > M1,

3. If m1 = m0 and the second decompositions are optimal, then
p0 = p1 and M0 = M1,

4. If m1 ≤ m0 and the second decompositions are non-optimal, then
m1 − r1 < m0 − r0.

Proof. Firstly, we prove the following claims:

Claim 1. If m1 > m0, then M0 > M1 and p1 − p2 = 2(m1 − m0) +
2(r1 − r0).

Assume that M0 ≤ M1. Hence,

m0 − p0 ≤ m1 − p1, p0 ≤ r0, p1 ≤ r1, n = m0 + r0, q = m1 + r1.

Moreover, l(a) + l(b) = 2n − p0 = 2q − p1. Since m0 < m1, r0 ≤ r1
and m0 = n − r0 < q − r1 = m1, we obtain that n < q. From
l(a) + l(b) = 2n− p0 = 2q − p1 it follows that p0 < p1.

343

M. Choban, I. Budanaev

Let m1 = m0 + δ0 and p1 = p0 + δ1, with δ0 > 0 and δ1 > 0. Then,
from assumptions, we have that m0−p0 ≤ m1−p1 = m0+δ0−p0−δ1 =
(m0 − p0) + (δ0 − δ1). Hence

δ1 ≤ δ0. (1)

On the other hand, q = m1 + r1 = m0 + δ0 + r1 = n− r0 + δ0 + r1 and
q = (n+δ0)+(r1−r0). Since p1 = 2q−l(a)−l(b) and p0 = 2n−l(a)−l(b),
after substitutions, we obtain that p1 + l(a) + l(b) = p0 + l(a) + l(b) +
2δ0 + 2(r1 − r0), or p0 + δ1 = p0 + 2δ0 + 2(r1 − r0), or

δ1 = 2δ0 + 2(r1 − r0). (2)

From (2), δ1 > δ0, a contradiction with inequality (1). Hence M0 >

M1 provided that m1 > m0. From (2) it follows that p1 − p0 = 2(m1 −
m0) + 2(r1 − r0), provided that m1 > m0. The claim is proved.

Claim 2. If m1 = m0, then M0 ≥ M1 and p1 − p2 = 2(r1 − r0).

We have that n = m0 + r0 and q = m0 + r1. Since r0 ≤ r1, we
have that n ≤ q. Assume that M0 < M1. Then m0 − p0 < m0 − p1,
p1 = 2q−l(a)−l(b) and p0 = 2n−l(a)−l(b). Hencem0−2n+l(a)+l(b) <
m0 − 2q + l(a) + l(b), or −2n < −2q and n > q, a contradiction.

From Claims 1 and 2, Assertions 1-3 of the Theorem 3.1 follow
immediately. Since r1 > r0, from m1 ≤ m0 it follows that m1 − r1 <

m0 − r0. Assertion 4 and Theorem 3.1 are proved.

Remark 3.1. From Assertions 1 and 3 of Theorem 3.1 it follows that
on the class of all optimal decompositions of two strings:

• The maximal measure of proper similarity is attained on the opti-
mal parallel decomposition with minimal penalties (minimal mea-
sure of similarity),

• The minimal measure of proper similarity is attained on the opti-
mal parallel decomposition with maximal penalties (maximal mea-
sure of similarity).

344

About Applications of Distances on Monoids of Strings

For any two non-empty strings there are parallel decompositions
with maximal measure of similarity and optimal decompositions on
which the measure of similarity is minimal.

The following example shows that there are some exotic non-
optimal parallel decompositions a = a′1a

′
2 · · · a

′
q and b = b′1b

′
2 · · · b

′
q, such

that for optimal decompositions a = a1a2 · · · an and b = b1b2 · · · bn we
have m1 < m0, p1 < p0, and M1 > M0.

Example 3.1. Let

A A A A C C C

C C C B B B B

be trivial optimal decompositions of strings a, b, and

A A A A

ε ε ε ε

(

C C C

C C C

)

ε ε ε ε

B B B B

be their non-optimal decompositions. Then

m1 = 3, r1 = 8, p1 = 8,

m0 = 0, r0 = 7, p0 = 0.

In this example we have that −5 = m1 − r1 > m0 − r0 = −7 and
−5 = m1 − p1 = M1 < M0 = m0 − p0 = 0.

Example 3.2. Let

A B C D

C D E F

(

E

E

)

F

D

be trivial non-optimal decompositions of strings a, b and

A B

ε ε

(

C D E F

C D E F

)

ε ε

E D

be their optimal decompositions. Then

m1 = 1, r1 = 5, p1 = 0,

m0 = 4, r0 = 4, p0 = 4.

We have that m1 − p1 = M1 > M0 = m0 − p0, and m1 − r1 < m0 − r0.

345

M. Choban, I. Budanaev

The above examples show that Theorem 3.1 cannot be improved in
the case of m1 < m0.

Decompositions with minimal penalty and maximal proper similar-
ity are of significant interest. Moreover, if we solve the problem of text
editing and correction, the optimal decompositions are more favorable.
Therefore, the optimal decompositions are the best parallel decompo-
sitions and we may solve the string match problems only on class of
optimal decompositions.

Remark 3.2. The optimal decompositions:

• describe the proper similarity of two strings,

• permit to obtain long common sub-sequences,

• permit to calculate the distance between strings,

• permit to appreciate changeability of information over time.

4 Relations to Hamming and Levenshtein

Distances

If a, b ∈ L(a, b) and a = a1a2 · · · an, b = b1b2 · · · bm are the canonical
decompositions, then for m ≤ n the number

dH(a, b) = dH(b, a) = |{i ≤ m : ai 6= bi}|+ n−m

is called the Hamming distance [11] between strings a and b.
The Levenshtein distance [12] between two strings a = a1a2 · · · an

and b = b1b2 · · · bm is defined as the minimum number of insertions,
deletions, and substitutions required to transform one string to the
other. A formal definition of Levenshtein’s distance dL(a, b) is given by
the following formula:

dL(a1 · · · ai, b1 · · · bj)=































i, if j=0,

j, if i=0,

min











dL(a1 · · · ai−1, b1 · · · bj) + 1

dL(a1 · · · ai, b1 · · · bj−1) + 1

dL(a1 · · · ai−1, b1 · · · bj−1) + 1(ai 6=bj),

346

About Applications of Distances on Monoids of Strings

where 1(ai 6=bj) equals to 0 if ai = bj and to 1 otherwise.

Theorem 4.1. dL(a, b) = ρ∗(a, b) ≤ dH(a, b) for any a, b ∈ L(A).

Proof. To prove the equality dL(a, b) = ρ∗(a, b), we will first prove that
dL(a, b) ≤ ρ∗(a, b), and then that dL(a, b) ≥ ρ∗(a, b).

We begin with the observation that the parallel decompositions of
two strings a, b allow more transparent evaluation of the Levenshtein
distance dL(a, b). If a = v1u1v2u2 · · · vn and b = w1u1w2u2 · · ·wn are
optimal parallel decompostions, then for transformation of b to a it is
sufficient to transform any wi to vi. The cost of transformation of wi

to vi is ≤ max{l(wi), l(vi)}. Hence dL(a, b) ≤ ρ∗(a, b).

The proof of the inequality dL(a, b) ≥ ρ∗(a, b) is based on the
Levenshtein distance formula, as well as the construction of the trans-
formation of string a to string b. We observe that the Levenshtein
distance is calculated recursively using the memoization matrix and
dynamic programming technique [7, pp. 359–378]. A small snapshot
of the memoization matrix calculation is presented below.

Table 1. Construction of memoization matrix for Levenshtein distance

Diag Above

Left
min(Above + delete,

Left + insert, Diag + 1ai 6=bj)

Distance dL calculated on subtrings a1 · · · ai of string a and sub-
string b1 · · · bj of string b is equal to the minimum of the following
values:

• dL(a1 · · · ai−1, b1 · · · bj) + 1, (1)

• dL(a1 · · · ai, b1 · · · bj−1) + 1, (2)

• dL(a1 · · · ai−1, b1 · · · bj−1) + 1ai 6=bj . (3)

Remark : the operation (1) is the delete operation, (2) is the insert
operation, and (3) is the substitution operation.

347

M. Choban, I. Budanaev

Once all of the above values are calculated and the memoization
matrix is filled, the distance is given by the value in the cell on the nth

row and mth column.
The construction of the transformation of string a into string b is

based on the values of the memoization matrix. At each point of the
construction process, we will execute operations on both strings a and
b, and obtain another pair of strings a′ and b′ equivalent to the initial
pair a and b. We use the top-down analysis approach to describe the
transformation process step by step. The process below starts with
i = n, j = m, p = 0, q = 0 and both a′, b′ as empty strings:

• if when calculating dL(a1 · · · ai, b1 · · · bj) we used operation (1),
then we deleted a character from string a at position i, which is
equivalent to inserting the ε character in string b at the corre-
sponding position. In this case, in the building process of a′ and
b′, we put p := p+1, v′p = {ai},w

′
p = {ε}, a′ := v′p∪a

′, b′ := w′
p∪b

′.
Next, we proceed to calculate dL(a1 · · · ai−1, b1 · · · bj).

• if when calculating dL(a1 · · · ai, b1 · · · bj) we used operation (2),
then we inserted the ε character in string a at position i. In this
case, in the building process of a′ and b′, we put p := p + 1,
v′p = {ε},w′

p = {bj}, a
′ := v′p ∪ a′, b′ := w′

p ∪ b′. Next, we proceed
to calculate dL(a1 · · · ai, b1 · · · bj−1).

• if when calculating dL(a1 · · · ai, b1 · · · bj) we used operation (3),
then we either substituted the character at position i of string a

with the character at position j of string b, or we did not make any
change in case if ai = bj . If ai = bj, we put q =: q + 1,u′q = {ai},
a′ := u′q ∪a′, b′ := u′q ∪ b′. If ai 6= bj , we put p =: p+1, v′p = {ai},
w′
p = {bj}, a′ := v′p ∪ a′, b′ := w′

p ∪ b′. Next, we proceed to
calculate dL(a1 · · · ai−1, b1 · · · bj−1).

According to the above steps, we observe that string a′ is equivalent
to string a, and string b′ is equivalent to b by construction. But, we
also have that the decomposition a′ = v′pu

′
qv

′
p−1u

′
q−1 · · · u

′
1v

′
1 and a′ =

w′
pu

′
qw

′
p−1u

′
q−1 · · · u

′
1w

′
1 obtained from the above construction process,

represent a parallel decomposition of strings a and b. Thus, we have

348

About Applications of Distances on Monoids of Strings

that dL(a, b) = E(a, b) ≥ ρ∗(a, b). This completes the proof of the
equality dL(a, b) = ρ∗(a, b).

We will now prove the second part of the theorem, namely that
ρ∗(a, b) ≤ dH(a, b). Let dH(a, b) < max{l(a), l(b)} = n, where n =
l(a) ≥ l(b) = m. Then a = a1a2 · · · an, b = b1b2 · · · bm, ai 6= ε for any
i ≤ n, and or m = 1 and b1 = ε, or bj 6= ε for any j ≤ m. In this
case dH(a, b) = n− |{i ≤ m : ai = bi}| and we have the representations
a = (a1)(a2) · · · (am)(am+1 · · · an) and b = (b1)(b2) · · · (bm)(ε) which
generate two parallel decompositions α, β with E(α, β) = dH(a, b).
Therefore ρ∗(a, b) ≤ E(α, β) = dH(a, b). The proof is complete.

Corollary 4.1. Distance dL is strictly invariant, i.e. dL(ac, bc) =
dL(ca, cb) = dL(a, b) for any a, b, c ∈ L(A).

Remark 4.1. The Hamming distance dH is not invariant.

Example 4.1. Let n = m + p and strings a = (01)n, b = (10)m,
c = (01)p. We obtain the following distance values for the above strings:

dL(a, b) = 2p, ρ∗(a, b) = 2p, dH(a, b) = 2n,

dL(ac, bc) = 2p, ρ∗(ac, bc) = 2p, dH(ac, bc) = 2n.

Remark 4.2. If l(a) = l(b), then dH(ac, bc) = dH(a, b) for any a, b, c ∈
L(A). Additionally, the following equality always holds:

dH(ca, cb) = dH(a, b).

5 Applications

First and foremost let us look at how we can apply the results of this
article in information distance problems such as string search, text
correction, and pattern matching. We have presented one such example
in the previous section – the edit distance.

We also mentioned the problem of DNA/RNA sequence alignment,
which goes back as early as 1970 [16]. Other bioinformatic applica-
tions of the distance ρ∗ include phylogenetic analysis, whole genome
phylogeny, and detection of acceptable mutations.

349

M. Choban, I. Budanaev

We begin this section with the pseudo-codes of two algorithms:
distance calculation and decompositions alignment.

The first algorithm describes how to calculate the distance between
two strings a and b. The approach is based on dynamic programming
and it has a complexity of O(mn), where m and n are the lengths of a
and b.

Algorithm 1.

Description: Computes the metric ρ∗ on strings a and b.
Input: Strings a, b ∈ L(A)
Output: Value of ρ∗(a, b)
Initialisation: m := l(a), n := l(b), D[m,n] := 0
Pseudocode:
for i := 0 to m D[i,0] := i;
for j := 0 to n D[0,j] := j;
for j := 1 to n do

for i := 1 to m do
if a[i]= b[j] then

D[i,j] := D[i-1,j-1]
else

D[i,j] := min(D[i-1,j] + 1,
min(D[i,j-1] + 1, D[i-1,j-1] + 1));

return D[m,n];

The algorithm that follows constructs the optimal parallel decom-
positions of strings a and b that give the value of distance ρ∗. This algo-
rithm uses the memoization matrix D[m,n] calculated in the previous
algorithm. The idea is to traverse from the bottom right cell D[m,n]
to the top left cell D[0, 0] and at each step to evaluate whether the
minimal distance was obtained by replacement, deletion or insertion.
The algorithm uses recursive backtracking to reconstruct all decom-
positions of strings a and b. We modified the classical version of the
pseudo-code to print only the most optimal decomposition, instead of
printing all possible paths.

350

About Applications of Distances on Monoids of Strings

Algorithm 2.

Description: Constructs optimal parallel decompositions
of strings a and b.
Input: n,m - current indexes in matrix D

ar, br - recontructed decompositions
Output: Optimal parallel decompositions of strings a, b
Initialisation: Read D[m,n] from Algorithm 1
Pseudocode:
if (n=0) and (m=0) then return ar, br
if ((n>0)and(m>0)) and((D[n,m]=D[n-1,m-1]+cdist)

or ((D[n,m]=D[n-1,m-1]) and (cdist=0)))
then recOPD(n-1, m-1, ar +a[n], br + b[m])

else
if (n>0) and (D[n,m]=D[n-1,m] +costr)

then recOPD(n-1, m, ar+a[n], br+ε)
else
if (m>0) and (D[n,m]=D[n,m-1] +costi)

then recOPD(n, m-1, ar+ε, br+b[m])

In the worst case scenario its complexity is O(m+n) (this happens
when we separately traverse the matrix horizontally and vertically).
This result is achieved with the help of prioritizing the direction of
analysis when traversing the matrix. We first look to the north-west
and only afterwards to the northern and western cell values. We stop
the reconstruction process once the algorithm reaches the cell atD[0, 0].
The reasoning behind this decision is to find the most optimal decom-
position among all possible decompositions of strings a and b. The
example that follows is a good illustration of this approach.

Example 5.1. Let’s investigate the example where a = industry and
b = interest. In this case we have ρ∗(a, b) = 6. The possible decompo-
sitions of strings a and b are as follows:

industry inεεdustry inεdεustry indεεustry inεduεstry
interest interestεε interestεε interestεε interestεε

The first pair of parallel string decompositions is the optimal one
as it has minimal string length. Another good example of two strings

351

M. Choban, I. Budanaev

decomposition into their building blocks ui, vj , and wj is illustrated
below.

Example 5.2. Consider the alphabet Ā = {ε,X, Y, Z,W} and two
strings a = XXY YWZYX and b = Y XXWZWXY . For this exam-
ple we obtain that ρ∗(a, b) = 5 as well as the following optimal decom-
position:

ε

Y

(

X X

X X

)

Y Y

W Z

(

W

W

)

Z

X

(

Y

Y

)

X

ε

Lets look at results in detection of the mutational events. We ex-
tend the parallel decompositions and present the construction of the
semiparallel decompositions. We take into consideration the ordering
� and the corresponding distance ρ∗l . From this point of view, for
any two strings a, b ∈ L(A) we find the decompositions of the form
a = v1u1v2u2 · · · vkukvk+1 and b = w1u

′
1w2u

′
2 · · ·wku

′
kwk+1, where

• ui, u
′
i are canonical substrings of the strings a and b and ui, u

′
i

may be empty strings;

• vj is a substring of a and vj may be an empty string;

• wj is a substring of b and wj may be an empty string;

• ρ∗l (ui, u
′
i) = 0 for all i ≤ k.

Like in the case with parallel decompositions, the semiparallel de-
compositions are optimal if

ρ∗l (a, b) = Σ{ρ(vi, wi) : i ≤ k + 1}.

This given interpretation of the metric and string decompositions can
be used in the study of the minimum number of acceptable and unac-
ceptable (when metric ρ∗r is used)mutational events required to convert
one sequence to another.

To illustrate the application of the semiparallel decomposition let
us partition the strings from the previous example.

352

About Applications of Distances on Monoids of Strings

Example 5.3. Let a = XXY YWZYX and b = Y XXWZWXY ,
with the alphabet Ā = {ε,X, Y, Z,W}, on which we consider the classic
ordering �, meaning that ρ∗l (zi, zj) = 0 for all zi, zj ∈ Ā, where zi � zj .
This time we obtain that ρ∗l (a, b) = 3, as well as the following optimal
decomposition:

(

X X

Y X

)

Y

X

(

Y

W

)

W

Z

(

Z

W

)

Y

X

(

X

Y

)

For semiparallel decompositions we can define measure of similarity,
penalty, and proper similarity.

Remark 5.1. Our algorithms are effective for any quasimetric on Ā.
Some authors consider the possibility to define the generalized Leven-
shtein metric with distinct values ρ(a, b) and ρ(b, a). It is necessary
to require that ρ(a, b) is a quasimetric. In other cases we may obtain
some confusions as will be seen from the next example.

Example 5.4. Let A = {a, b}, Ā = {ε, a, b}. The following table de-
fines the distance ρ on Ā:

0 0 1 ε

1 0 0 a

0 1 0 b

ε a b y x

In this example we have 0 = ρ(a, b) + ρ(b, ε) < ρ(a, ε) = 1 and:
1. for u = aba, v = ba we get ρ̄(u, v) = ρ̄(v, u) = 0,
2. for u = a, v = b we get ρ̄(u, v) = ρ̄(v, u) = 0, when ρ(v, u) = 1.

Example 5.5. Let us examine the example from [16] in the context of
the results achieved. We have strings a = AJCJNRCKCRBP and
b = ABCNJROCLCRPM for which there are eight pairs of optimal
decompositions. We present two of them, the shortest and the longest:
(

A

A

)

J

B

(

C

C

)

ε

N

(

J

J

)

N R

R O

(

C

C

)

K

L

(

C R

C R

)

B P

P M

353

M. Choban, I. Budanaev

(

A

A

)

J

B

(

C

C

)

J

ε

(

N

N

)

ε

J

(

R

R

)

ε

O

(

C

C

)

K

L

(

C R

C R

)

B

ε

(

P

P

)

ε

M

For the first pair we have ρ∗ = 7, m = 6, p = 1, and M = 5. For the
second pair we have ρ∗ = 7, m = 8, p = 5, and M = 3. Our algorithms
allow us to calculate all optimal decompositions with distinct measure
of similarity. Authors from [16] prefer the second pair of decomposition
since it has maximal possible measure of similarity. We consider more
preferable the first pair, which has the maximal proper similarity.

6 Conlusion

We showed that there are invariant distances on L(A) closely related to
Levenshtein’s distance, which help us solve various problems in math-
ematics, computer science, and bioinformatics. The results can be
applied in different areas such as data correction of signals transmit-
ted over channels with noise, finding matching DNA sequence after
mutations, text searching with possible typing errors, and estimation
of dialect pronunciations proximity [8], [14]. For construction of the
matching sequence we propose the method of optimal decompositions
of strings, priority of which is confirmed by Theorem 3.1. Our dis-
tances of ρ∗ type can be defined for distinct values ρ(a, b) of strings
a,b, in general, and for ρ(a, b) 6= ρ(b, a). In such a case, the metric can
be used in solving the stable marriage problem [10].

References

[1] A. V. Arhangel’skii, “Mappings and spaces,” Uspekhi Mat. Nauk,
vol. 21, no. 4, pp. 133–184, 1966. [in Russian] (English translation:
Russian Math. Surveys, vol. 21, no. 4, PP. 115–162, 1966).

[2] V. B. Barahnin, V. A. Nehaeva, and A. M. Fedotov, “Prescription
of the similarity measure for clustering text documents,” Vestnik
Novosib. Gos. Univ., Ser.: Informacionnye tehnologii, vol. 1, pp.
3–9, 2008. [in Russian]

354

About Applications of Distances on Monoids of Strings

[3] M. M. Choban, “The theory of stable metrics,” Math. Balkanica,
vol. 2, pp. 357–373, 1988.

[4] M. M. Choban, “Some topics in topological algebra,” Topol. Appl.,
vol. 54, pp. 183–202, 1993.

[5] M. M. Choban and I. A. Budanaev, “Distances on Monoids of
Strings and Their Applications,” In Conference on Mathemati-
cal Foundations of Informatics: Proceedings MFOI2016, July 25-
29, 2016, Chisinau, Republic of Moldova, Chişinău, Institute of
Mathematics and Computer Science, pp. 144–159, 2016. ISBN:
978–9975–4237–4–8

[6] M. M. Choban and L. L. Chiriac, “On free groups in classes
of groups with topologies,” Bul. Acad. Ştiinţe Repub. Moldova,
Matematica, no. 2-3, pp. 61–79, 2013.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, In-
troduction to Algorithms. (3rd ed.), MIT Press and McGraw-Hill,
2009. ISBN: 0–262–03384–4.

[8] M. M. Deza and E. Deza, Encyclopedia of Distances, Berlin:
Springer, 2009. ISBN: 978-3-642-00233-5; e-ISBN: 978-3-642-
00234-2; DOI 10.1007/978-3-642-00234-2.

[9] M. I. Graev, “Free topological groups,” Izv. Akad. Nauk SSSR
Ser. Mat., vol. 12, no. 3, pp. 279–324, 1948. [in Russian] (English
translation: Amer. Math. Soc. Transl. (1), vol. 8, pp. 305–364,
1962).

[10] D. Gusfield and R. W. Irving, The Stable Marriage Problem:
Structure and Algorithms, Cambridge, MIT Press, 1989. ISBN:
9780262515528.

[11] R. W. Hamming, “Error Detecting and Error Correcting Codes,”
The Bell System Technical Journal, vol. 29, no 2, pp. 147–160,
1952.

[12] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” DAN SSSR, vol. 163, no 4, pp. 845–848,
1965. [in Russian] (English translation: Soviet Physics – Doklady,
vol. 10, no. 8, pp. 707–710, 1966).

[13] A. A. Markov, “On free topological groups,” Izv. Akad. Nauk.
SSSP, Ser. Matem., vol. 9, no. 1, pp. 3–64, 1945. [in Russian]

355

M. Choban, I. Budanaev

(English translation: Amer. Math. Soc. Transl. (1), vol 8, no. 1,
pp. 195–272, 1962).

[14] G. Navarro, “A guided tour to approximate string matching,”
ACM Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[15] S. I. Nedev, “o-metrizable spaces,” Trudy Moskov. Mat.Ob-va, vol.
24, pp. 213–247, 1974. [in Russian] (English translation: Trans.
Moscow Math. Soc., vol. 24, pp. 213–247, 1974).

[16] S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” Journal of Molecular Biology, vol. 48, no 3, pp. 443–
453, 1970.

[17] S. Romaguera, M. Sanchis and M. Tkachenko, “Free paratopolog-
ical groups,” Topology Proceed., vol. 27, no 2, pp. 613–640, 2003.

[18] C. Shannon, “A Mathematical Theory of Communication,” The
Bell System Technical Journal, vol. 27, pp. 379–423, pp. 623–656,
1948.

Mitrofan Choban, Ivan Budanaev, Received September 22, 2016

Mitrofan Choban
Professor, Doctor of Science,
Academician of the Academy of Science of Moldova
Tiraspol State University, Republic of Moldova
str. Iablochkin 5, Chisinau, Moldova
Phone: +373 22 754906
E–mail: mmchoban@gmail.com

Ivan Budanaev
Doctoral School of Mathematics and Information Science
Institute of Mathematics and Computer Sciences of ASM
Tiraspol State University, Republic of Moldova
str. Academiei, 3/2, MD-2028, Chisinau, Moldova
Phone:+373 60926999
E–mail: ivan.budanaev@gmail.com

356

