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Propositional inquisitive logic: a survey∗

Ivano Ciardelli

Abstract

This paper provides a concise survey of a body of recent work on
propositional inquisitive logic. We review the conceptual founda-
tions of inquisitive semantics, introduce the propositional system,
discuss its relations with classical, intuitionistic, and dependence
logic, and describe an important feature of inquisitive proofs.

Keywords: questions, inquisitive logic, dependency, intermedi-
ate logics, proofs-as-programs.

1 Introduction

Inquisitive semantics stems from a line of work which, going back
to [12], has aimed at providing a uniform semantic foundation for the
interpretation of both statements and questions. The approach was
developed in an early version, based on pairs of models, in [13], [16];
it reached the present form, based on information states, in [3], [9],
where the associated propositional logic was also investigated. An al-
gebraic underpinning for the inquisitive treatment of logical operators
was given in [19]. The foundations of the inquisitive approach have
been motivated starting from a language-oriented perspective in [11],
and starting from logic-oriented perspective in [7], [8].

The aim of this paper is to provide a short survey of the work done
on propositional inquisitive logic, drawing mostly on [3],[6],[8],[9]. More
precise pointers to the literature will be provided when discussing spe-
cific topics. We will start in Section 2 by showing at a general level how
questions can be brought within the scope of logic by means of a simple
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but fundamental shift in the way semantics is viewed. In Section 3, we
instantiate this general approach in the propositional setting, introduc-
ing propositional inquisitive logic. In Sections 4, 5, and 6, we examine
the connections of this logic to the propositional versions of classical
logic, intuitionistic logic, and dependence logic. In Section 7 we dis-
cuss inquisitive proofs and their constructive content. In Section 8, we
present an extension and a generalization of propositional inquisitive
logic. Section 9 wraps up and concludes.

2 Bringing question into the logical landscape

Traditionally, logical entailment captures relations such as the one ex-
emplified by (1): the information that Alice and Bob live in the same
city, combined with the information that Alice lives in Amsterdam,
yields the information that Bob lives in Amsterdam.

(1) Alice and Bob live in the same city
Alice lives in Amsterdam

Bob lives in Amsterdam

Inquisitive logic brings questions into this standard picture, broadening
the notion of entailment so as to encompass patterns which we might
write as in (2): the information that Alice and Bob live in the same
city, combined with the information on where Alice lives, yields the
information on where Bob lives.

(2) Alice and Bob live in the same city
Where Alice lives

Where Bob lives

Notice the crucial difference between the two examples: in (1) we are
concerned with a relation holding between three specific pieces of in-
formation. The situation is different in (2): given the information that
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Alice and Bob live in the same city, any given piece of information
on Alice’s city of residence yields some corresponding information on
Bob’s city of residence. We may say that what is at play in (2) are
two types of information, which we may see as labeled by the questions
where Alice lives and where Bob lives. Entailment captures the fact
that, given the assumption that Alice and Bob live in the same city,
information of the first type yields information of the second type.

The entrance of questions into the logical arena is made possible
by a fundamental shift in the way the semantics of a sentence is con-
strued. In classical logic, the meaning of a sentence is given by laying
out in what states of affairs the sentence is true; however, this truth-
conditional view does not seem suitable in the case of questions. In
inquisitive logic, by contrast, the meaning of a sentence is given by
laying out what information is needed in order for a sentence to be sup-
ported. Accordingly, sentences are evaluated relative to objects called
information states, which formally encode bodies of information.

Unlike truth-conditional approach, the support approach is appli-
cable to both statements and questions. To give concrete examples, a
statement like (3-a) is supported by an information state s if the in-
formation available in s implies that Alice lives in Amsterdam; on the
other hand, a question like (3-b) is supported by an information state
s if the information available in s determines where Alice lives.

(3) a. Alice lives in Amsterdam.
b. Where does Alice live?

This more general semantic approach comes with a corresponding no-
tion of entailment, understood as preservation of support: an entail-
ment holds if the conclusion is supported whenever all the premises
are. Assuming a natural connection between the truth-conditions of a
statement and its support conditions—namely, that a state supports a
statement iff it implies that the statement is true—this notion of entail-
ment coincides with the truth-conditional one as far as statements are
concerned. The novelty, however, lies in the fact that now, questions
can also participate in entailment relations. Thus, for example, we can
indeed capture the pattern in (2) as a case of logical entailment. To
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see this, suppose an information state s supports the premises of (2):
this means that the information available in s implies that Alice and
Bob live in the same city, and also determines in which city Alice lives;
clearly, then, the information available in the state determines in which
city Bob lives, which means that the conclusion of (2) is supported.

The one discussed in this section is a very general approach to logic,
which can be instantiated by a range of concrete systems, differing
with respect to their logical language and to the relevant notion of
information states. Just as for classical logic, we have inquisitive logics
of different sorts: propositional, modal, first-order, etc. The remaining
sections of the paper provide an overview of the results obtained in the
most basic and best understood setting—the propositional one.1,2

3 Propositional inquisitive logic

The language of propositional inquisitive logic, InqB, is the proposi-
tional language built up from a set of atomic sentences and ⊥ by means
of conjunction, ∧, implication, →, and inquisitive disjunction,

>

.

φ ::= p | ⊥ | φ ∧ φ | φ→ φ | φ

>

φ

Negation and classical disjunction are defined by setting ¬φ := φ→ ⊥,
and φ ∨ ψ := ¬(¬φ ∧ ¬ψ). Formulas that contain no occurrence of

>

are called classical formulas.

In the propositional setting, an information state is construed as a
set of propositional valuations. The idea here is that a set s encodes
the information that the actual state of affairs corresponds to one of
the valuations in s. This means that if t ⊆ s, then t contains at least
as much information as s, and possibly more.

The clauses defining the relation of support relative to an informa-
tion state are the following ones:

1For discussion on the semantic foundations of the inquisitive approach, on the
role of questions in logic, and on the relation between truth and support, see [6], [8].

2The research in inquisitive modal logic and inquisitive first-order logic has also
been growing rapidly in these last few years. Recent work includes [4], [6], [10], [22].
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• s |= p ⇐⇒ w(p) = 1 for all w ∈ s

• s |= ⊥ ⇐⇒ s = ∅

• s |= φ ∧ ψ ⇐⇒ s |= φ and s |= ψ

• s |= φ

>

ψ ⇐⇒ s |= φ or s |= ψ

• s |= φ→ ψ ⇐⇒ ∀t ⊆ s : t |= φ implies t |= ψ.

A key feature of the semantics is persistency : if φ is supported by an
information state s, then it is also supported by any state t ⊆ s which
contains at least as much information. This means that as information
grows, more and more formulas become supported. In the information
state ∅, which represents the state of inconsistent information, every
formula is supported. This may be regarded as a semantic analogue of
the ex falso quodlibet principle.

4 Relations with classical logic

In inquisitive logic, the fundamental semantic notion is that of support
relative to an information state. However, the notion of truth relative
to a particular valuation w can be recovered by setting: w |= φ ⇐⇒
{w} |= φ. It is then easy to check that all classical formulas receive the
standard truth-conditions.

For some formulas, support at a state simply amounts to truth at
each world in the state. If this is the case, we say that the formula is
truth-conditional. More formally, φ is truth-conditional in case for all
states s: s |= φ ⇐⇒ ∀w ∈ s, w |= φ. We regard truth-conditional
formulas as corresponding to statements. The intuition is that there is
only one way for an information state s to support a statement: the
information available in s must imply that the statement is true.

As a matter of fact, large classes of formulas in InqB are truth-
conditional. In particular, all classical formulas are.

Proposition 1. All classical formulas are truth-conditional.
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This means that all classical formulas receive essentially the same treat-
ment as in classical propositional logic: their semantics is fully deter-
mined by their truth-conditions, which in turn are the standard ones.
This is reflected by the relation of entailment among these formulas.

Proposition 2 (Conservativity over classical logic).
Entailment restricted to classical formulas coincides with entailment in
classical propositional logic.

This means that the classical fragment of InqB can be identified for all
intents and purposes with classical propositional logic, and our logic
may be regarded as a conservative extension of classical propositional
logic with an inquisitive disjunction operator.

Formulas formed by means of inquisitive disjunction are typically
not truth-conditional. We take such formulas to correspond to ques-

tions. For instance, the formula p

>

¬p, abbreviated as ?p, corresponds
to the question whether p or not p. An information state can support
this formula in two different ways: either by implying that p is true, or
by implying that p is false. Similarly, the formula p

>

q can be regarded
as encoding the question whether p or q, which can be supported either
by establishing that p is true, or by establishing that q is true.3

Like in classical logic, formulas in inquisitive logic can be written
in a very constrained normal form: namely, any formula of InqB can
be written as an inquisitive disjunction of classical formulas.

Theorem 1 (Inquisitive normal form).
Recursively on φ, we can define a set R(φ) = {α1, . . . , αn} of classical
formulas, called the resolutions of φ, such that φ ≡ α1

>

. . .

>

αn.

Intuitively, we can regard the resolutions of a formula as capturing
the different ways in which the formula may be supported. If φ is a
classical formula, then it can be supported in only one way, by es-
tablishing that it is true; accordingly, we have R(φ) = {φ}. On the
other hand, if φ stands for a question, there will be multiple ways of

3An exclusive reading of the question whether p or q can be formalized as well,
by translating the question as (p ∧ ¬q)

>

(q ∧ ¬p).
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supporting the formula, and thus multiple resolutions; for instance, we
have R(?p) = {p,¬p}, and R(p

>

q) = {p, q}. Any formula in InqB can
thus be construed as offering a (possibly trivial) choice among classical
formulas.

We saw that entailments among classical formulas amount to entail-
ments in classical logic. On the other hand, we saw that our language
also includes formulas which can be regarded as questions. Instances
of entailment which involve such formulas capture interesting logical
relations that lack a counterpart in classical logic; notably, entailments
involving both question assumptions and question conclusions capture
relations of logical dependency among these questions, possibly within
the context of certain statements. For instance, the following entail-
ment captures the fact that, given the information that r ↔ p ∧ q, the
question ?r is completely determined by the questions ?p and ?q.

r ↔ p ∧ q, ?p, ?q |= ?r.

Summing up, then, propositional inquisitive logic can be regarded as a
conservative extension of classical propositional logic with an inquisi-
tive disjunction: while the classical fragment of the language coincides
with classical logic, by means of the operator

>

we can build formu-
las which express propositional questions, and capture dependencies
among such questions as special cases of the relation of entailment.4

5 Relations with intuitionistic logic

In the previous section, we saw that InqB can be viewed as a conser-
vative extension of classical logic if

>

is regarded as an additional,
non-standard connective. In this section we will show that if, on the
other hand, we regard

>

as the standard disjunction of the system,
then InqB turns out to be a special kind of intermediate logic, i.e., a
logic sitting in between intuitionistic and classical logic.

The first step in this direction is to notice that our semantics can
be regarded as a case of intuitionistic Kripke semantics on a particular

4For more on the relations between inquisitive logic and classical logic, see [6],[8].
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Kripke model, having consistent information states as its elements,
the relation ⊇ as accessibility relation, and the valuation function
V (p) = {s |w(p) = 1 for all w ∈ s}. Since Kripke semantics is sound
for intuitionistic logic, this implies that anything that can be falsified in
inquisitive logic can be falsified in intuitionistic propositional logic, IPL.
On the other hand, it is easy to see that singleton information states
{w} behave just like the corresponding propositional valuation w: this
ensures that anything that can be falsified in classical logic, CPL, can
also be falsified in inquisitive logic. If we identify a logic with the
corresponding set of validities, we can sum up our findings as follows.

Proposition 3. IPL ⊆ InqB ⊆ CPL

Thus, from this perspective InqB is a logic stronger than intuitionistic
logic, but weaker than classical logic. It is not, however, an interme-

diate logic in the usual sense of the term. This is because InqB is not
closed under the rule of uniform substitution: in particular, the double
negation law is valid for propositional atoms, but invalid when atoms
are replaced by questions: ¬¬p → p ∈ InqB, but ¬¬?p → ?p 6∈ InqB.
The conceptual point here is that atoms in InqB are not intended as
placeholders for arbitrary sentences, but only placeholders for arbitrary
statements. As we saw, statements are truth-conditional, and as such
they validate the double negation law, which is not generally valid. It
is worth emphasizing that this is not an accident, but a deliberate ar-
chitectural choice (see pp. 66-67 of [6]). This choice (i) enables InqB

to retain a classical fragment, which encodes the underlying logic of
statements; (ii) allows for a recursive decomposition of questions into
resolutions; and (iii) makes a neat proof system possible.

Besides this classical feature of atoms, inquisitive logic differs from
intuitionistic logic in that the space of information states has a special
structure, which renders valid some non-intuitionistic principles. The
best known of these is the Kreisel-Putnam scheme, first studied in [14]:

(KP) (¬φ→ ψ

>

χ) → (¬φ→ ψ)

>

(¬φ→ χ)

While this principle may look mysterious at first, it can be shown (see
p. 80 of [6]) to encode a fundamental relation between statements and
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questions: a statement only counts as resolving a question if it entails
a specific resolution to the question.

As shown in [9], the classicality of atoms and the validity of the
KP scheme, together with the underlying intuitionistic base, suffice to
characterize inquisitive propositional logic completely. More formally,
InqB can be characterized as the set of formulas obtained by extending
IPL with all instances of KP and with ¬¬p → p for all atoms p, and
closing the resulting set under modus ponens.

Theorem 2. InqB = IPL+ KP+ ¬¬p→ p

In fact, besides the Kreisel-Putnam logic axiomatized by the scheme
KP, there is a whole range of intermediate logics which, when ex-
tended with classical atoms, yield inquisitive logic: as shown in [9],
this range consists exactly of those intermediate logics which include
Maksimova’s logic [15] and are included in Medvedev’s logic of finite
problems [17], [18]. In particular, Medvedev’s logic is the largest stan-
dard intermediate logic included in InqB.

An important aspect of the relation between inquisitive logic and in-
tuitionistic logic can be observed based on the normal form result given
by Theorem 1. This result guarantees that any formula can be written
as an inquisitive disjunction of classical formulas. Since classical formu-
las behave as in classical logic, they are logically equivalent to their own
double negation. Thus, it follows that in InqB, any formula φ is equiva-
lent to an inquisitive disjunction of negations φDNT = ¬ψ1

>

. . .

>

¬ψn.
Now, the following theorem shows that the map (·)DNT is a translation
of inquisitive logic into intuitionistic logic.

Theorem 3. Φ |= ψ ⇐⇒ ΦDNT |=IPL ψ
DNT

This result can be extended to show that the Lindenbaum-Tarski alge-
bra for InqB is isomorphic to the sub-algebra of the Lindenbaum-Tarski
algebra for IPL consisting of equivalence classes of disjunctions of nega-
tions. Thus, while classical propositional logic can be regarded as the
negative fragment of intuitionistic logic, propositional inquisitive logic
can be regarded as the disjunctive-negative fragment of intuitionistic
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logic—the fragment consisting of disjunctions of negations.5

6 Relations with dependence logic

We mentioned above that in inquisitive logic, entailments involving
questions capture logical dependencies. The relation of dependency is
also the focus of recent work in the framework of dependence logic [23].
Dependence logic and inquisitive logic are tightly connected frame-
works, as discussed in detail in [7]. In the propositional setting, full
translations are possible between the two [25]. In both propositional
systems, formulas are interpreted relative to sets of assignments; while
propositional inquisitive logic enriches classical propositional logic with
questions, propositional dependence logic enriches it with formulas
called dependence atoms, written =(p1, . . . , pn, q), which capture the
fact that the truth-value of an atomic proposition q is determined by
the truth-values of other atomic propositions p1, . . . , pn. The semantics
of these atoms is given by the following clause:

s |= =(p1, . . . , pn, q) ⇐⇒ ∀w,w′∈s : if w(pi) = w′(pi) for all i,

then w(q) = w′(q)

It is easy to check that such a dependence atom can be expressed in
InqB by means of the formula ?p1 ∧ · · · ∧ ?pn → ?q. This is not an
accident: as shown in [7], in inquisitive logic, the fact that a question ν
is fully determined by questions µ1, . . . , µn is generally captured by the
implication µ1∧· · ·∧µn → ν. More precisely, the formula µ1∧· · ·∧µn →
ν is supported at a state s in case relative to s, any way of resolving
the questions µ1, . . . , µn determines a corresponding way to resolve the
question ν. What a dependence atom expresses is that the question ?q
is determined by the questions ?p1, . . . , ?pn, hence the representation
?p1 ∧ · · · ∧ ?pn → ?q.

Realizing that dependencies can be captured generally as implica-
tions between questions is interesting for various reasons. The first kind

5For more on the relations between propositional inquisitive logic, intuitionistic
logic, and intermediate logics, see [3] and [9].
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of reason is proof-theoretic: in inquisitive logic, all the connectives, in-
cluding those involved in a dependence formula, can be handled by
essentially standard inference rules. Thus, for instance, a dependency
?p → ?q may be formally proved to hold by assuming the question ?p
and trying to conclude the question ?q. In fact, this perspective brings
out the fact that the Armstrong axioms for functional dependency [2]
used in database theory are essentially nothing but the axioms of im-
plication in disguise—a fact that was first noted in [1].

Moreover, realizing that dependencies can be generally captured as
implications between questions allows us to see that dependence atoms
are a particular case of a more general pattern. Not just for atomic
polar questions of the form ?p, but for all sorts of questions µ1, . . . , µn, ν
expressible in the system—in fact, in any inquisitive system—the fact
that ν is determined by µ1, . . . , µn is expressed by µ1, . . . , µn → ν.

Finally, realizing that dependencies can be expressed as implica-
tions among questions allows us to use inquisitive logics to investigate
the logical properties of the notion of dependency. For example, con-
sider the valid entailment ?p, ?p ∧ ?q → ?r |= ?q → ?r. This captures
the fact that given the information whether p, from a dependency of ?r
on both ?p and ?q we can always compute a dependency of ?r on ?q.
If we think of a dependency as encoded by a function (cf. the notion of
dependence function in §2 of [6]), this amounts to the fact that we can
saturate one of the arguments of this function.6

7 Questions in proofs

An important feature of inquisitive logic is that it shows that questions
can meaningfully be manipulated in logical inferences, and that their
logical behavior is in fact rather familiar. In the propositional setting, a
natural deduction system for inquisitive logic is obtained by extending
a system for intuitionistic logic with the following two inference rules,
where α ranges over classical formulas, and φ,ψ over arbitrary formulas.

6For more on the relations between inquisitive and dependence logic, see [6], [7],
[26].
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α→ (φ

>

ψ)

(α→ φ)

>

(α→ ψ)
(split)

¬¬α

α
(dne)

The second of these rules captures the fact that classical formulas are
truth-conditional, and thus behave exactly as in classical logic. The
first—related to the Kreisel-Putnam scheme discussed above—captures
the interaction among statements and questions, stipulating that if a
statement resolves a question, it must do so by yielding a particular
resolution to it. The completeness of this system for InqB, proved in [6],
implies in particular that any valid propositional dependency can be
formally proved by making inferences with propositional questions in
this system. Thus, questions are interesting proof-theoretic tools: by
making inferences with them, we can establish the existence of certain
logical dependencies. Moreover, the following theorem, proved in [6],
shows that a proof of a dependency does not just witness that the
dependency holds, but actually encodes a method for computing it.

Theorem 4 (Constructive content of inquisitive proofs).
Suppose P is a natural deduction proof having assumptions φ1, . . . , φn
and conclusion ψ. Recursively on P , we can define a procedure fP
which, when given as input resolutions α1, . . . , αn of the assumptions,
outputs a resolution fP (α1, . . . , αn) of the conclusion with the property
that α1, . . . , αn |= fP (α1, . . . , αn).

What this theorem shows is that proofs in inquisitive logic have a spe-
cific kind of constructive content: they encode methods for turning
any given resolutions of the question assumptions into a resolution
of the conclusion which is determined by them. This is reminiscent
of the proofs-as-programs interpretation of intuitionstic logic, and it
shows once more that, while our logic coincides with classical logic on
statements, encoded by classical formulas, the logic of questions has a
constructive flavor to it.7

7For more on the role of questions in inference and on the constructive content
of inquisitive proofs, see [5], [6], [8].
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8 Extensions and generalization

In the last couple of years, the work on propositional inquisitive logic
presented in the previous sections has been extended in several di-
rections. First of all, it has been taken as the basis for logics that
go beyond the propositional realm, such as the modal logics given
in [4],[6],[10], and the first-order logics given in [6],[7]. Presenting these
richer logics goes beyond the scope of the present survey. However, in
this section I want to briefly discuss an extension and a generalization
of InqB, both due to Vı́t Punčochář, that remain within the domain of
propositional logic.

First, the system InqB is extended in [20] with a weak negation

connective, denoted ∼, which allows us to express the fact that a certain
formula fails to be supported at the evaluation state.

s |= ∼φ ⇐⇒ s 6|= φ

Evidently, the addition of this connective results in a system in which
support is no longer persistent: a formula ∼φ may be supported by a
state s, yet it may fail to be supported by a stronger state t ⊆ s. One
reason why such a system is interesting is that—while remaining within
the propositional inquisitive setting—it allows for the definition of for-
mulas ✸φ which express the fact that the state of evaluation can be
extended consistently to support φ. Interestingly, this logic is axioma-
tized by means of a proof system which allows for two different modes
of hypothetical proofs. In one mode, making the assumption φ corre-
sponds to supposing that the current information state supports φ. In
the other mode, it corresponds to supposing that the current informa-
tion state is extended so as to support φ. In this second mode, only
some formulas from outside the hypothetical context can be appealed
to when reasoning within the hypothetical context.

A generalization of propositional inquisitive logic is explored in
[21]. This paper defines an operation G which, given a logic Λ with
IPL ⊆ Λ ⊆ CPL, returns a corresponding logic G(Λ), called the global

variant of Λ. Logics of the form G(Λ) are called G-logics.8 Intuitively,

8Here, the logic Λ is assumed to be closed under modus ponens, but not neces-
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G(Λ) is a logic obtained by extending the

>

-free fragment of Λ with
an inquisitive disjunction connective. In Section 4, we saw that InqB

can be seen as arising from extending classical logic with inquisitive
disjunction. And indeed, we have InqB = G(CPL), which means that
inquisitive logic is the greatest of all G-logics. The smallest G-logic,
G(IPL), is the logic IPL+H axiomatized by extending intuitionistic logic
with the following scheme, where φ,ψ range over arbitrary formulas,
and α ranges over Harrop formulas, and closing under modus ponens.9

(H) (α→ φ
>

ψ) → (α→ φ)

>

(α→ ψ)

All other G-logics fall in between IPL+H and InqB, and share many of
the core features of inquisitive logic. All of them have the disjunction
property, meaning that a disjunction φ

>

ψ can only be valid if either
φ or ψ is valid. None of them is closed under uniform substitution.
All of them coincide with the base logic Λ in their

>

-free fragment,
and allow for an analogue of Theorem 1, stating that any formula is
equivalent to a disjunction α1

>

. . .

>

αn of classical formulas. Finally,
all G-logics can be characterized axiomatically in a uniform way: G(Λ)
amounts to the logic obtained by extending intuitionistic logic with the
scheme H and all

>

-free formulas which are valid in Λ, and closing this
set under modus ponens.

9 Conclusion

In this paper I have tried to give a bird’s eye view of propositional in-
quisitive logic, including its conceptual underpinnings, its main mathe-
matical features, and its relations to other logics. My hope is that this
survey, together with the pointers scattered through the paper, will
provide a valuable guide to the growing literature on the subject.

sarily under uniform substitution.
9A Harrop formula is defined as a formula in which disjunction is only allowed

to occur within the antecedent of an implication.
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