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Abstract

The paper relates to the theoretical and practical aspects of
insertion modeling. Insertion modeling is a theory of agents and
environments interaction where an environment is considered as
agent with a special insertion function. The main notions of
insertion modeling are presented. Insertion Modeling System is
described as a tool for development of different kinds of insertion
machines. The research and industrial applications of Insertion
Modeling System are presented.
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1 Introduction

Insertion modeling is an approach for research of distributed multi-
agent systems and for development of tools for verification of its models.
The first papers about insertion modeling were published about 20
years ago [1], [2]. A model of the agents and environments interaction
which helps the insertion function notion was presented in these papers.

The main sources of insertion modeling are in a model of inter-
acting control and operating automata, which were found by V.M.
Glushkov [3], [4] for the computers description. An algebraic abstrac-
tion of this model has been studied in the theory of discrete trans-
formers and has provided some important results on the problem of
equivalence of programs, their equivalent transformation and optimiza-
tion. Macroconveyor models of parallel computing [5] are even closer
to the model of interaction between agents and environments. In these

c©A. Letichevsky, O. Letychevskyi, V. Peschanenko

357



A. Letichevsky, O. Letychevskyi, V. Peschanenko

models processes corresponding to parallel processors can be regarded
as agents interacting in distributed environment data structures. In
recent years the insertion simulation becomes a tool for development
applications of verification of systems requirements and specifications
of distributed interacting systems [6]–[10].

Another source of insertion modeling is a general theory of inter-
acting information processes, which was created in previous century
and is the basis for modern research in this area. It includes CCS
(Calculus of Communicated Processes) [11], [12] and π-calculus of R.
Milner [13], CSP (Communicated Sequential Processes) of T. Hoar [14],
ACP (Algebra of Communicated Processes) [15] and many other dif-
ferent branches of these basic theories. A quite complete review of the
classical theory of processes is represented in the handbook on algebra
processes [16], which was published in 2001.

The second section is defined by the algebra of behaviors and the
bisimulation equivalence of transition systems. The third section in-
troduces the concepts of environment and agents features. The fourth
section is devoted to the Insertion modeling system. The fifth section
deals with the application of insertion modeling, and finally discusses
the possibilities for further development and possible new applications.

2 Behavior algebras

2.1 Transition System

A common approach for describing the dynamics of systems in modern
computer science is the notion of transition system, which is defined
by sets of states and transitions. Usually this notion is enriched by
the additional structures, the most important of which are the tran-
sition labelling (labelled transition system introduced by Park [8] to
describe the behavior of automata on infinite words). The basic notion
in the insertion modeling is an attribute transition system [10], which
is defined as follows:

< S,A,U, T, ϕ > (1)

358



IM and Its Applications

where S is a set of states, A is a set of actions, which are used for
marking the transition, U is a set of labeled attributes, which are used
for marking the states, T is transition relation: T ⊆ S×A×S ∪S×S,
which consists of labeled transitions s

a
−→ s′ and not labeled transitions

s → s′.

Function ϕ : S → U is a function of labeling states. U could be
defined as a set U = DR of mapping of a set R of attributes in a set

of data D (a range of values of attributes) or as a U =
(

D
Rξ

ξ

)

ξ∈Ξ
,

where Ξ is a set of data types. A formula of some logic language L(R)
is used for symbolic modeling as attributes labels U ⊆ L(R), where R
is a set of attributes or a set of attributes with types R = (Rξ)ξ. It
could be interpreted by first order language, which could be expanded
by some temporal logic modality. States labeling is considered as some
equivalence for symbolic case.

Transition system can also be configured by highlighting some spe-
cific sets of states from the set of states S. Among them there are the
most important set of initial states S0, a set of termination states S∆

and a set of non-defined states S⊥. The last one is used in the theory
to determine the relationship of approximation and to build infinite
systems in form of finite limits.

As in the theory of automata states the transition systems are con-
sidered as some equivalence. In the branch of different equivalences
which are considered in the [19] the most important are the trace and
bisimulation equivalence (strongest and weakest respectively).

For simplicity, we consider only the system with no hidden tran-
sitions. History of operation of attribute transition system is de-
fined as a finite or infinite sequence s1

a1−→ s2
a2−→ . . . of transitions,

and a trace corresponding to this history is defined as a sequence
ϕ (s1)

a1−→ ϕ (s2)
a2−→ . . .

The trace is called maximal if it can’t be continued. Let L(s) be
the set of all maximal traces which are started in a state s. The states
s and s′ are called trace equivalent, if L(s) = L(s′).

Bisimulation equivalence is weaker than trace and defined by thin-
ner manner. A binary relation R on the set of states of the system 1
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is called a relation of bisimulation, if for every pair (s, s′) of its states
the following rules are true:

• (s, s′) ∈ R ⇒ ϕ (s) = ϕ (s′),

• (s, s′) ∈ R ∧ s
a
−→ t ⇒ ∃t′

(

(t, t′) ∈ R ∧ s′
a
−→ t′

)

,

• (s, s′) ∈ R ∧ s′
a
−→ t′ ⇒ ∃t

(

(t, t′) ∈ R ∧ s
a
−→ t

)

.

The states s and s′ of the system 1 are called bisimulation equivalent
if a bisimulation relation R exists, such as (s, s′) ∈ R.

Equivalence of systems is usually defined in terms of their equiv-
alence of states. For example, for the initial systems two systems are
declared to be equivalent, if the initial state of each of them is equiva-
lent to the initial state of another. The difference between the trace and
bisimulation equivalence occurs only in the case of non-deterministic
systems. A labeled system is called deterministic if

s
a
−→ s′ ∧ s

a
−→ s′′ ⇒

(

s′, s′′
)

∈ R.

Two deterministic systems are bisimulation equivalent if and only
if they are trace equivalent.

2.2 Behavior algebra

In contrast to the trace equivalence for which the invariant of equiva-
lence (a set of traces) is given together with the definition, the invariant
of bisimulation equivalence is not so obvious. In insertion modeling as
invariants (generally infinite) expressions or system of equations in al-
gebra behavior are used. A behavior algebra is arranged simply. It
is a two-sorted algebra < U,A >, the first component U is a set of
behaviors, and the second A is a set of actions. The signature of the
behavior algebra consists of two operations, one relation and three con-
stants. The first operation a.u is called prefixing. Its arguments are
action a and behavior u. The result is a new behavior. The second
operation is the operation of a non-deterministic choice of u+ v. This
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is a binary operation defined in the set of behaviors. It is commutative,
associative and idempotent. The behavior algebras constants are the
successful termination ∆, undefined behavior ⊥ and the deadlock be-
havior 0, which is a neutral element of non-deterministic choice. On the
set of behaviors a binary relation of approximation ⊆ is defined, which
is a relation of a partial order with the smallest element ∆. Prefixing
and non-deterministic choice operation are monotonous and continu-
ous with respect to this relation. The main role is played by a full
behavior algebra F (A), which contains all limits of directed sets and,
therefore, a theorem on the minimal fixed point is applied. The exact
structure algebra F (A) (for any, including infinite number of actions)
is presented in [17].

In the full algebra of behavior each element has the following rep-
resentation:

u =
∑

i∈I

ai.ui + εu,

which is uniquely defined (up to commutativity and associativity), if
all ai.ui are different.

With each state s of transition system a behavior beh(s) = us
of system S is associated as the lowest component of the system of
equations

us =
∑

s
a
−→t

a.ut + εs,

where εs = 0,∆,⊥,∆+ ⊥ depends on the conditions s /∈ S∆ ∪ S⊥, s ∈
S∆ \ S⊥, s ∈ S⊥ \ S∆, s ∈ S∆ \ S⊥, respectively. The main theo-
rem, which characterizes a bisimulation equivalence claims that two
states are bisimulation equivalent if and only if they have equal behavior.
Other approaches to the characterization of a bisimulation equivalence
can be found in [20].
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3 Agents and Environments

Agent is a transition system, which defines a state up to bisimulation
equivalence.

Environment is an agent that has an insertion function. In ad-
ditional environments there is < E,C,A, Ins >, where E is a set of
states of an environment, C is a set of actions which could be in-
serted into an environment, Ins : E × F (a) → E is an insertion func-
tion. Since the states transition systems are considered as bisimulation
equivalence, they can be identified with the behavior and talk about
continuity of an insertion function. The main requirement for the en-
vironment is a continuity of an insertion function. This assumption
implies a number of useful effects. For example, the fact that an in-
sertion function can be set with the help of systems of rewriting rules
as the minimal fixed point of the system of functional equations. A
result Ins(e, u) of agents insertion, which is in a state u, is defined
as e [u]. Assuming e [u, v] = (e [u]) [v] we get the opportunity to talk
about the combination of agents that are inserted in an environment
and to consider the state of an environment of the form e [u1, u2, . . .].
Taking into account that an environment is an agent, it can be in-
serted in a top level environment, considering the multi-level envi-
ronments like e

[

e1 [u11, u12, . . .]E1
, e2 [u21, u22, . . .]E2

, . . .
]

, where defi-
nition e [u1, u2, . . .]E clearly shows environment E, which belongs to the
state e. The behavior u of initialized agent defines relation [u] : E → T ,
which is defined by the relation [u] (e) = e [u] and an insertional equiv-
alence of agents ∼E relative to environment E, which is defined by
relation u ∼E v ⇐⇒ [u] = [v]. This equivalence is usually weaker than
bisimulation and plays main role in the applications, because a trans-
formation of algorithms and software implementations of the agents
which live in some environment should be executed as transformation
which saves insertional equivalence.

In [17] some classification of the insertion functions and the ob-
tained results on a reduction of the complex class of functions to the
simple ones are presented.
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Figure 1. Architecture of Insertion Machine

4 Insertion Modeling System

Insertion modeling system [21] is an environment for the development of
insertion machines and performing experiments with them. The notion
of insertion machine was used as a tool for programming with some
special class of insertion functions. Later this notion was extended for
wider area of applications, different levels of abstraction, and multilevel
structures.

Insertion model of a system represents this system as a composition
of environment and agents inserted into it. Contrariwise the whole sys-
tem as an agent can be inserted into another environment. In this case
we talk about internal and external environment of a system. Agents
inserted into the internal environment of a system themselves can be
environments with respect to their internal agents. In this case we talk
about multilevel structure of agent or environment and about high level
and low level environments.

The general architecture of insertion machine is represented in Fig-
ure 1.

The main component of insertion machine is model driver, the com-
ponent which controls the machine movement along the behavior tree
of a model. The state of a model is represented as a text in the in-
put language of insertion machine and is considered as an algebraic
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expression. The input language includes the recursive definitions of
agent behaviors, the notation for insertion function, and possibly some
compositions for environment states. Before computing insertion func-
tion the state of a system must be reduced to the form E [u1, u2, ...].
This functionality is performed by the module called agent behavior
unfolder. To make the movement, the state of environment must be
reduced to the normal form

∑

i∈I

ai.Ei + ε,

where ai are actions, Ei are environment states, ε is a termination
constant. This functionality is performed by the module environment
interactor. It computes the insertion function calling if it is necessary
the agent behavior unfolder. If the infinite set I of indices in the normal
form is allowed, then the weak normal form a.F +G is used, where G
is arbitrary expression of input language.

Two kinds of insertion machines are considered: real time or inter-
active and analytical insertion machines. The first ones exist in the real
or virtual environment, interacting with it in the real or virtual time.
Analytical machines are intended for model analyses, investigation of
its properties, solving problems etc. The drivers for two kinds of ma-
chines correspondingly are also divided into interactive and analytical
drivers.

Interactive driver after normalizing the state of environment must
select exactly one alternative and perform the action specified as a
prefix of this alternative. Insertion machine with interactive driver
operates as an agent inserted into external environment with insertion
function defining the laws of functioning of this environment.

Analytical insertion machine as opposed to interactive one can con-
sider different variants of making decision about performed actions,
returning to choice points (as in logic programming) and consider dif-
ferent paths in the behavior tree of a model. The model of a system
can include the model of external environment of this system, and
the driver performance depends on the goals of insertion machine. In
the general case analytical machine solves the problems by search of
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Figure 2. Architecture of Insertion Modeling System

states, having the corresponding properties (goal states) or states in
which given safety properties are violated. The external environment
for insertion machine can be represented by a user who interacts with
insertion machine, sets problems, and controls the activity of insertion
machine.

Analytical machine enriched by logic and deductive tools is used for
generating traces of symbolic models of systems. The state of symbolic
model is represented by means of properties of the values of attributes
rather than their concrete values.

General architecture of insertion modeling system is represented in
Figure 2.

High level model driver provides the interface between the system
and external environment including the users of the system. Design
tools based on Algebraic Programming system APS [21] are used for
the development of insertion machines and model drivers for different
application domains and modeling technologies. Verification tools are
used for the verification of insertion machines, proving their properties
statically or dynamically. Dynamic verification uses generating sym-
bolic model traces by means of special kinds of analytical model drivers
and deductive components.

365



A. Letichevsky, O. Letychevskyi, V. Peschanenko

The repository of insertion machines collects already developed ma-
chines and their components which can be used for the development of
new machines as their components or templates for starting. Special
library of APLAN functions supports the development and design in
new projects. The C++ library for IMS supports APLAN compilers
and efficient implementation of insertion machines. Deductive system
provides the possibility of verification of insertion models [22].

5 Applications

Based on the ideas of insertion modeling the Verification of Require-
ment Specification (VRS) system was developed by researchers from
V.M. Glushkov Institute of Cybernetics of National Academy of Sci-
ence of Ukraine.

The language of basic protocols is implemented in VRS, which sup-
ports the usage of numerical attributes and symbolic types, arrays, lists
and functional data types. The deductive system provides proof of the
identities in the theory of the first order logic, which is the integration of
theories of real and integer linear inequalities, free uninterpreted func-
tion symbols and theory query. Symbolic modeling in the VRS is based
on satisfiability checking and predicate transformer functions [23].

Proving Programming System is a new and modern system that is
designed to maintain a high level of training of qualified specialists in
programming. This system is created based on the Insertion Model-
ing system and Algebraic Programming System which was developed at
the V.M. Glushkov Institute of Cybernetics of NAS of Ukraine with the
participation of authors from Kherson State University. This system
implements Floyds algorithm of proving partial correctness of anno-
tated programs [24].

Insertion Modeling system was successfully used for implementation
of theory for building of invariants of the models [25] and loops in
software [26], for the set of school computer algebra systems[27], for
interleaving reduction in symbolic insertion models [28].
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6 Conclusion

In this paper the main notions of insertion modeling are given. In-
sertion modeling theory is one of the most general theories of process
algebra. Its main difference consists in the fact that an environment
is considered as an agent with insertion function. Insertion Modeling
System was developed for supporting this theory in practice and is used
for developing industrial and research insertion machines.

In the nearest future we are planning to use such theory and system
for research of models which came from law and economics.
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