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Hat problem on graphs with exactly three

cycles

Tayebe Balegh, Nader Jafari Rad

Abstract

This paper is devoted to investigation of the hat problem on
graphs with exactly three cycles. In the hat problem, each of n
players is randomly fitted with a blue or red hat. Everybody can
try to guess simultaneously his own hat color by looking at the hat
colors of the other players. The team wins if at least one player
guesses his hat color correctly, and no one guesses his hat color
wrong; otherwise the team loses. The aim is to maximize the
probability of winning. Note that every player can see everybody
excluding himself. This problem has been considered on a graph,
where the vertices correspond to the players, and a player can
see each player to whom he is connected by an edge. We show
that the hat number of a graph with exactly three cycles is 3

4
if

it contains a triangle, and 1

2
otherwise.
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1 Introduction

In the hat problem there are n players who may coordinate a strategy
before the game begins. Each player gets a hat whose color is selected
randomly and independently to be blue with probability 1/2 and red
otherwise. Each player can see the colors of all other hats but not of
his own. Simultaneously, each player may guess a color or pass. The
players win if at least one player guesses correctly the color of his own
hat, and no player guesses wrong. The goal is to find a strategy that
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maximizes the probability of winning. This maximum probability is
called the value of the game. This problem was formulated by Ebert [2],
and further considered for example in [4], [5], [11].

The hat problem on a graph was considered by Krzywkowski [6].
The players are placed on the vertices of a graph, and a player can only
see the colors of hats of his neighbors. The requirement for winning
remains the same. If the graph is a complete graph, this is exactly
Ebert’s original problem. Krzywkowski in [6] showed that if the graph
is a tree, the value of the corresponding game is 1/2. In [7] the same
result is shown when the graph is a cycle on four vertices. The hat
problem on bipartite graphs, cycles, unicyclic graphs, and graphs with
exactly two cycles are studied in [1], [3], [7]–[10], [12]. In this paper we
study the hat problem in graphs with exactly three cycles. Let h(G)
denotes the value of the hat problem on a graph G. We shall prove the
following.

Theorem 1 Let G be a graph with exactly three cycles. Then h(G) = 3
4

if G contains a triangle, and h(G) = 1
2 otherwise.

2 Notations

For notation and terminology not given here we refer to [13]. Let
G = (V (G), E(G)) be a graph. For a vertex v ∈ V (G), the open
neighborhood of v, is NG(v) = {x ∈ V (G) : vx ∈ E(G)}. The degree
of a vertex v is degG(v) = deg(v) = |NG(v)|. We say that a vertex
v is neighborhood-dominated if there is some other vertex u such that
NG(v) ⊆ NG(u). If H is a subgraph of G, then we write H ⊆ G.

Let V (G) = {v1, v2, ..., vn}. A function c : V (G) → {b, r} is a
vertex coloring, where b refers to the blue color and r refers to the red
color. If vi ∈ V (G), then c(vi) is the color of vi. By a case for the
graph G we mean a sequence (c(v1), c(v2), ..., c(vn)). We denote the
set of all cases for the graph G by C(G). Note that |C(G)| = 2|V (G)|.
If vi ∈ V (G), then by si we denote a function si : V (G) → {b, r, ∗},
where si(vj) is the first letter of the color of vj if vi sees vj, and mark
∗ otherwise, that is, si(vj) = c(vj) if vj ∈ NG(vi), while si(vj) = ∗ if
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vj ∈ V (G) − NG(vi). By a situation of the vertex vi in the graph G
we mean the sequence (si(v1), si(v2), ..., si(vn)). The set of all possible
situations of vi in the graph G is denoted by Sti(G). Observe that
|Sti(G)| = 2|NG(vi)|. If vi ∈ V (G), then we say that a case (c1, c2, ..., cn)
for the graph G corresponds to a situation (t1, t2, ..., tn) of the vertex
vi in the graph G if it is created from this situation only by changing
every mark ∗ to the letter b or r. So, a case corresponds to a situation
of vi if every vertex adjacent to vi, in that case has the same color
as in that situation. To every situation of the vertex vi in the graph
G correspond 2|V (G)|−degG(vi) cases, because every situation of vi has
|V (G)| − degG(vi) mark ∗.

By a statement of a vertex we mean its declaration about the color it
guesses it is. By the effect of a case we mean a win or a loss. According
to the definition of the hat problem, the effect of a case is a win if at
least one vertex states its color correctly and no vertex states its color
wrong. The effect of a case is a loss if no vertex states its color or
somebody states its color wrong. By a guessing instruction for the
vertex vi ∈ V (G) (denote by gi) we mean a function gi : Sti(G) →
{b, r, p} which, for a given situation, gives the first letter of the color vi
guesses it is or a letter p if vi passes. Thus a guessing instruction is a
rule which determines the conduct of the vertex vi in every situation.
By a strategy for the graph G we mean a sequence (g1, g2, ..., gn). By
F (G) we denote the family of all strategies for the graph G.

Let vi ∈ V (G) and S ∈ F (G). We say that vi never states its
color in the strategy S if vi passes in every situation. We say that
vi always states its color in strategy S if vi states its color in every
situation, that is, for every T ∈ Sti(G) we have gi(T ) ∈ {b, r} (gi(T ) 6=
p, equivalently). If S ∈ F (G), then by Cw(S) and Cl(S) we denote
the sets of cases for the graph G in which the team wins or loses,
respectively. Observe that |Cw(S)| + |Cl(S)| = |C(G)|. Consequently,
by the chance of success of the strategy S we mean the number p(S) =
|Cw(S)|
|C(G)| . By the hat number of the graph G we mean the number

h(G) = max{p(S) : S ∈ F (G)}. Note that p(S) ≤ h(G). We say that
the strategy S is optimal for the graph G if p(S) = h(G). By F 0(G)
we denote the family of all optimal strategies for the graph G.
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3 Known results

In this section we state some known results that we need to prove our
main result. We denote by Pn, Cn and Kn the path, the cycle and
the complete graph with n vertices, respectively. We begin with the
following theorem.

Theorem 2 (Krzywkowski, [6]) If H is a subgraph of G, then
h(H) ≤ h(G).

Corollary 1 (Krzywkowski, [6]) For every graph G, h(G) ≥ 1
2 .

Let ω(G) denotes the clique number of a graph G, i.e. the maximum
number of vertices that each pair of them are adjacent. Also let χ(G)
denotes the chromatic number of G, i.e. the minimum number of colors
in a vertex coloring such that adjacent vertices receive different colors.
Feige, [3] presented the following important results.

Theorem 3 (Feige, [3]) For every graph, h(G) = h(Kω(G)), if
χ(G) = ω(G).

Theorem 4 (Feige, [3]) If ω(G) + 1 is a power of 2, then h(G) =
ω(G)

ω(G)+1 .

Lemma 1 (Feige, [3]) If v is a neighborhood-dominated vertex of a
graph G, then h(G) = h(G− v).

Lemma 2 (Feige, [3]) If a graph G is a disjoint union of two graphs
G1 and G2, then h(G) = max{h(G1), h(G2)}.

We denote by G1 ∪G2 the disjoint union of two graphs G1 and G2.
The hat number of several classes of graphs including paths, cycles,
unicyclic graphs, and graphs with precisely two cycles are determined
as follows.

Theorem 5 (Krzywkowski, [6]) For every path Pn we have h(Pn) =
1
2 .

246



Hat problem on graphs with exactly three cycles

Theorem 6 (Feige, [3], Krzywkowski, [7], [8]) For every cycle Cn

with n > 3, h(Cn) =
1
2 .

Lemma 3 (Krzywkowski, [10]) If G is a unicyclic graph with no
triangle, then h(G) = 1

2 .

Theorem 7 (Balegh, Jafari Rad, [1]) If G is a graph with no tri-
angle and exactly two cycles, then h(G) = 1

2 .

The next two theorems consider optimal strategies such that some
vertex always (never, respectively) states its color.

Theorem 8 (Krzywkowski, [6]) Let v be a vertex of a graph G. If
S ∈ F 0(G) is a strategy such that v always states its color, then h(G) =
1
2 .

Theorem 9 (Krzywkowski, [6]) Let v be a vertex of a graph G. If
S ∈ F 0(G) is a strategy such that v never state its color, then h(G) =
h(G − v).

Remark 1 Let the strategy S is optimal for a graph G, then we have
h(G) = p(S), we get p(S) ≥ 1

2 .

The next lemma is about the non-necessity of statements of any
further vertices in a case in which some vertex already states its color.

Lemma 4 (Krzywkowski, [7]) Let G be a graph and let S be a strat-
egy for G. Let C be a case in which some vertex states its color. Then
a statement of any other vertex cannot improve the effect of the case
C.

4 Proof of Theorem 1

Let G be a graph with exactly three cycles. Assume that δ(G) = 1.
Clearly any vertex of degree one is a neighborhood-dominated vertex.
If y1 is a vertex of degree one in G, then by Lemma 1, h(G−y1) = h(G).
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If δ(G − y1) = 1 and y2 is a vertex of degree one in G − y1, then by
Lemma 1, h(G−y1−y2) = h(G−y1) = h(G). Continuing this process,
there is an integer k such that h(G) = h(G − y1 − y2 − ... − yk), and
δ(G − y1 − y2 − ... − yk) ≥ 2. Thus we may assume that δ(G) ≥ 2.
Assume G has a triangle. Clearly ω(G) = 3 since G has exactly three
cycles. Then by Theorem 4, we have h(G) = 3

4 . Thus for the next
we assume that G contains no triangle. The following lemma plays an
important role for the next.

Lemma 5 Suppose P = v1v2v3v4 is a path in G with degG(v2) =
degG(v3) = 2, and v4 6∈ NG(v1). Let H be the graph obtained from G
by deleting the vertices v2 and v3 and, adding an edge between v1 and
v4. Then h(G) ≤ h(H).

Proof. Let H1 be obtained from G by adding the edge v1v4. By
Theorem 2, h(G) ≤ h(H1). Then v3 is a neighborhood dominated
vertex in H1, and thus by Theorem 2 and Lemma 1, h(H1) = H(H1 −
v3). But v2 is a neighborhood dominated vertex in H1 − v3, and thus
by Theorem 2 and Lemma 1, H(H1 − v3) = h(H1 − v3 − v1). Now
h(G) ≤ h(H1) = h(H1 − v3) = h(H1 − v3 − v1) = h(H), as desired. �

4.1 G has no cut-vertex

Since G has no cut-vertex, it is obtained from a cycle by adding a path
P = x0x1....xk between two non-consecutive vertices u and v, where
u = x0 and v = xk. Thus G contains two cycles C1 and C2 such that
V (C1) ∩ V (C2) = {x0, ..., xk}. Let |V (C1)| = n1 and |V (C2)| = n2. If
both n1 and n2 are even, then χ(G) = ω(G) = 2, and so by Theorem
3, h(G) = 1

2 . Thus assume that at least one of n1 or n2 is odd. We
aim to obtain a graph G∗ with h(G) ≤ h(G∗) and h(G∗) = 1/2, and
then the result follows by Theorem 1. We do this in some stages, and
in each stage of the proof, without loss of generality, we assume that
in each stage G has the properties of the desired G∗.

By applying Lemma 5, we may assume that k ≤ 3.

Lemma 6 If k = 1, then h(G) ≤ 1
2 .
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Proof. By applying Lemma 5, we may assume that n2 = 5 and
n1 ∈ {4, 5}. Assume first that n1 = 5. Let n1 = n2 = 5, C1 =
x0x1a1a2a3x0, and C2 = x0x1b1b2b3x0. Let G1 = G + b1a2. Then
a1 is a neighborhood dominated vertex in G1, and thus by Theorem
2 and Lemma 1, h(G) ≤ h(G1) = h(G1 − a1). Let G2 = G1 − a1,
and G3 = G2 + a2b3. Then b2 is a neighborhood dominated vertex in
G3, and thus by Theorem 2 and Lemma 1, h(G3) = h(G3 − b2). Let
G4 = G3− b2. Then a3 is a neighborhood dominated vertex in G4, and
thus by Theorem 2 and Lemma 1, h(G4) = h(G4 − a3). But G4 − a3 is
a cycle, and by Theorem 6, h(G4 − a3) = 1/2. Thus h(G) ≤ h(G1) ≤
h(G2) ≤ h(G3) ≤ h(G4) ≤ 1/2.

Next assume that n1 = 4. Let C1 = abx1x0a, where NG(b) =
{a, x1}. Since NG(b) ⊆ NG(x0), by Lemma 1, h(G) = h(G − b). But
G− b is a unicyclic graph, and so by Lemma 3, h(G) = h(G− b) = 1/2.
�

Lemma 7 If k = 2, then h(G) ≤ 1/2.

Proof. Assume that k = 2. By applying Lemma 5, we may assume
that n2 = 5, and n1 ∈ {4, 5}. First assume that n1 = 5. Let C1 =
x0x1x2a1a2x0, and C2 = x0x1x2b1b2x0. Let G1 = G+ b2a1. Then b1 is
a neighborhood dominated vertex in G1, and thus by Theorem 2 and
Lemma 1, h(G) ≤ h(G1) = h(G1 − b1). Let G2 = G1 − b1. Then b2 is
a neighborhood dominated vertex in G2, and thus by Theorem 2 and
Lemma 1, h(G2) = h(G2− b2). But G2− b2 is a cycle, and by Theorem
6, h(G2 − b2) = 1/2. Thus h(G) ≤ h(G1) ≤ h(G2) ≤ 1/2.

Next assume that n1 = 4. Then C1 has a neighborhood-dominated
vertex, say x, which x 6∈ {x0, x1, x2}, and thus by Theorem 2 and
Lemma 1, we find that h(G) ≤ h(G − x) = h(C2) =

1
2 , implying that

h(G) ≤ 1/2. �

Lemma 8 If k = 3, then h(G) ≤ 1/2.

Proof. Assume that k = 3. Since G has no triangle, {n1, n2} 6= {4, 5}.
If n1 = 4, then x1 is a neighborhood-dominated vertex, and thus by
Theorem 2 and Lemma 1, we find that h(G) ≤ h(G− x1) = 1/2. Thus
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n1 > 4, and similarly n2 > 4. Let n1 be even. Let x1x0v1v2 be a path
on C1 with v1 6= x1, and let H be obtained from G by joining x1 to
v2. Then v1 is a neighborhood-dominated vertex in H, and thus by
Lemma 1, h(G) ≤ h(H − v1). But h(H − v1) ≤ 1/2 by Lemma 7. Thus
h(G) ≤ 1/2. Similarly if n1 is odd, then h(G) ≤ 1/2. �

4.2 G has some cut-vertex

Assume that G has precisely one cut-vertex. Then G contains pre-
cisely three cycles C1, C2 and C3 with one common vertex, say w.
For convenience we denote G by G1(n1, n2, n3), where ni = |V (Ci)|
for i = 1, 2, 3. If ni is even for all i = 1, 2, 3, then by Theorem 3, we
have χ(G) = ω(G) = 2, and so h(G) = 1

2 . Thus without loss of gen-
erality assume that n1 is odd. By applying Lemma 5, we may assume
that n1 = 5, n2 ∈ {4, 5} and n3 ∈ {4, 5}. Assume that n2 = 4. Let
V (C2) = {a, b, c, w}, where NG(b) = {a, c}. Then b is a neighborhood-
dominated vertex, and thus by Theorem 2 and Lemma 1, we find that
h(G) = h(G − b). But G − b is a graph with exactly two cycles, and
by Theorem 7, h(G) = 1/2. Thus we assume that n2 = n3 = 5. Thus
G = G1(5, 5, 5).

Let V (G) = {a1, a2, a3, a4, v, b1, b2, b3, b4, c1, c2, c3, c4}, whereN(v) =
{a1, a4, b1, b4}, ai is adjacent to ai+1 for i = 1, 2, 3, bj is adjacent to
bj+1 for j = 1, 2, 3, and ck is adjacent to ck+1 for k = 1, 2, 3. Let
H1 = G+a4b3. Then b4 is a neighborhood-dominated vertex inH1, and
by Theorem 2 and Lemma 1, h(H1) = h(H1−b4). Let H2 = H1−b4 and
H3 = H2 + a1b2. Then b1 is a neighborhood-dominated vertex in H3,
and by Theorem 2 and Lemma 1, h(H3) = h(H3−b1). Let H4 = H3−b1
and H5 = H4 + a3b2. Then a2 is a neighborhood-dominated vertex
in H5, and by Theorem 2 and Lemma 1, h(H5) = h(H5 − a2). Let
H6 = H5−a2. We now see that b3 is a neighborhood-dominated vertex
inH6, and by Theorem 2 and Lemma 1, h(H6) = h(H6−b3). ButH6−b3
is a graph with two cycles, and thus by Theorem 7 h(H6 − b3) = 1/2.
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Thus

h(G) ≤ h(H1) ≤ h(H2) ≤ h(H3)

≤ h(H4) ≤ h(H5)

≤ h(H6) ≤ h(H6 − b3) = 1/2

as desired.
Assume now that G has at least two cut-vertices. Assume that G

has two cut vertices w1, w2 such that w1 ∈ V (C1), w2 ∈ V (C2) and
the shortest path from w1 to w2 (say P ) does not intersect C3. Let
z1 ∈ N(w2) be a vertex on P . Let v1v2w2z1 be a path on C3, and
let H = G + v1z1. Clearly by Theorem 2, we have h(G) ≤ h(H).
Observe that v2 is a dominated vertex. By Lemma 1, we get h(H) =
h(H − v2). If z1 6= w1, then we consider a vertex z2 ∈ N(z1) on P , and
continue this process. Continuing this process, we obtain a graph H∗

with precisely three cycles C1, C3 and C ′
2, where V (C1)∩V (C ′

2) = {w1}.
A similar argument holds for C1, C3, or C2, C3. Thus we may assume
that G has two cut vertices w1, w2 such that V (C1) ∩ V (C2) = {w1}
and V (C2) ∩ V (C3) = {w2}, and w1 6∈ N(w2). As before, we may
assume that |V (Ci)| = ni for i = 1, 2, 3. Also for convenience, we
denote G = G2(n1, n2, n3). By applying Lemma 5, we may assume
that n1, n3 ∈ {4, 5}. Assume that n1 = 4. Let V (C1) = {a, b, c, w1},
where NG(b) = {a, c}. Since NG(b) ⊆ NG(w1), by Lemma 1, h(G) =
h(G− b). Since G−u is a graph with precisely two cycles, by Theorem
7, h(G) ≤ 1/2. Thus n1 = 5 and similarly n2 = 5. Assume that n2 ≥ 4
is even. By applying Lemma 5, we may assume that n2 = 4. Let
V (C2) = {w1, v1, w2, v2}, where w1 ∈ V (C1∩C2) and w2 ∈ V (C2∩C3).
Without loss of generality, observe NG(v1) = {w1, w2}. Clearly b is a
neighborhood-dominated vertex, and so by Lemma 1, h(G) = h(G−b).
But G − b is a graph with exactly two cycles, and by Theorem 7,
h(G) = 1/2. Thus assume that n2 ≥ 5 is odd. By applying Lemma 5,
we may assume that n2 = 5.

Lemma 9 h(G2(5, 5, 5) = 1/2.

Proof. Let S be an optimal strategy for G. Let us assume that some
vertices, say vi, never states its color. Then by Theorem 9, we have
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h(G) = h(G− vi). If deg(vi) = 2, then G− vi is a graph with precisely
two cycles. By Theorem 7, we get h(G) = h(G−vi) =

1
2 . If deg(vi) > 2,

then G−vi = P4∪G
′, where G′ is a unicyclic graph. Then by Theorems

2, 5 and Lemma 3, we get h(G) = h(G−vi) = max{h(P4), h(G
′)} = 1

2 .
Thus we assume that every vertex guesses its color. If there exists a
vertex that always states its color, then by Theorem 8, h(G) = 1

2 . Thus
assume that no vertex in G always states its color. Now let us assume
that every vertex states its color in at least one situation. We consider
the following two possibilities.

(1) Every vertex states its color in exactly one situation.

Every statement of every vertex in any situation is wrong in ex-
actly 2|V (G)|−dG(vi)−1 cases, because every situation of any vertex
vi is corresponded to 2|V (G)|−|NG(vi)| cases, and in half of them
the vertex vi has the color it states it. Since every vertex states
its color in exactly one situation, there are exactly 212 correct
statements, and then the team can win in at most 212 cases, even
if every of the 212 correct statements is in another cases. This
implies that p(S) = |Cw(S)|

|C(G)| ≤ 1
2 . Since S ∈ F 0(G), we have

h(G) ≤ 1
2 . Since by Corollary 1, we have h(G) ≥ 1

2 , we get
h(G) = 1

2 .

(2) There is a vertex that states its color in more than one situation.

Since we seek minimal number of cases with wrong statements,
let us assume that there is a vertex, say vi, that states its color
in exactly two situations. This vertex states its color when views
an even number of blue or red colors. Without loss of generality,
let vi and vj state their colors if it view an even number of blue
colors. Let S′ be an optimal strategy different from S such that
for any pair of vertices vi and vj, one of vi or vj states its color
when views an even number of blue colors, and the other one does
not state its color when views an even number of blue colors. Let
vj does not state its color when views an even number of blue
colors. Then clearly the other vertex, vi, states its color when
views an even number of blue colors. By Lemma 4 the statement
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of vj cannot improve the result of any of these cases. Therefore,
p(S′) ≤ p(S). Since S′ ∈ F 0(G), then strategy S is also optimal
for G. Note that if vj never states its color in the strategy S′,
then S′ = S and we have a possibility already considered.

�
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