

Julian Allagan & Christopher Serkan

Abstract

The Stirling number S(G; k) is the number of partitions of the vertices of a graph G into k nonempty independent sets and the number of all partitions of G is its Bell number, B(G). We find S(G; k) and B(G) when G is any complete multipartite graph, giving the upper bounds of these parameters for any graph.

Keywords: Bell number, Bell polynomial, Partition, Stirling numbers.

1 Introduction

Throughout this paper, the graph G = (V, E) will be a finite simple graph with vertex set V = V(G) and edge set E = E(G). The *join* of two graphs G_1 and G_2 , denoted by $G_1 \vee G_2$, is the graph G whose vertex set is $V(G) = V(G_1) \cup V(G_2)$, a disjoint union, and whose edge set is $E(G) = E(G_1) \cup E(G_2) \cup \{u_1 u_2 \mid u_1 \in V(G_1), u_2 \in V(G_2)\}$. For example, $\overline{K}_{n_1} \vee \overline{K}_{n_2} \vee \ldots \vee \overline{K}_{n_l} = K(n_1, n_2, \ldots, n_l)$, a complete *l*-partite graph $(l \ge 1)$ with parts sizes n_1, n_2, \ldots, n_l . The special case when $l = 1, G = \overline{K}_{n_1} = E_{n_1}$, the null graph. See Figure 1 for the case when l = 2 and $n_1 = n_2 = 3$. A partition $\sigma = \sigma(n)$ of an *n*-set Xis a set of nonempty subsets of X such that each element of X is in exactly one of the subsets of X. The elements or parts of σ are often called *blocks*, and the number of blocks of σ is its *rank*. For simplicity, we refer to a partition of rank k as a k-partition. B. Duncan and R. Peele [5] called the number of k-partitions of a graph G the (graphical) Stirling number of G and it is denoted by S(G, k); this is the number of (vertex) independent sets of G. So when $G = E_n$, $S(G; k) = {n \atop k}^n$, the Stirling number of the second kind, which counts the number of

^{©2016} by J. Allagan & C. Serkan

k-partitions of a set of n elements. The (total) number of distinct partitions of G is its Bell number which we denote by B(G). In other words, $B(G) = \sum_{k=1}^{n} S(G;k)$ and when $G = E_n$, $B(E_n) = \sum_{i=1}^{n} {n \\ i} =$ B_n , where B_n is the n^{th} Bell number. It is well documented that the exponential generating function for Bell numbers is $\exp(e^x - 1)$ i.e., $\sum_{n\geq 0} \frac{B_n}{n!} x^n = e^{e^x - 1}.$ We call the rank-generating function $F(G; x) = \sum_{k=1}^n S(G; k) x^k$ the partition polynomial of the graph G. Some basic properties of this polynomial were first studied by Korfhage [9] and later by Brenti et al. [2], [3], [17]. D. Galvin and D.T. Thanh have recently named this polynomial, the Stirling polynomial [6]. It is worth noting that F(G; 1) = B(G). If $S(G; k) = {n \\ k}$, then F(G; x) = F(x)is the Bell polynomial which is a very well studied mathematical tool in combinatorial analysis [4], [13]. When x^i is replaced by the falling factorial $x^{\underline{i}} = x(x-1)(x-2)\dots(x-i+1)$, the polynomial F(G;x) = $\chi(G; x) = \sum_{k=1}^{n} S(G; k) x^{\underline{k}}$ is the chromatic polynomial, which gives the number of proper colorings of a graph with *n* vertices, using at most x colors (see for e.g., [1], [12], [14], [15]). Clearly, there are $\chi(E_n; x) =$ $\sum_{k=1}^{n} {n \\ k} x^{\underline{k}} = x^{n} \text{ colorings (with no restriction) of } E_{n}. We call the$ sequence $(S(G; p))_{c \le p \le |V(G)|}$ the partition sequence. When $c = \chi$, the chromatic number, this sequence is referred to as chromatic vector by Goldman et al. [7] and as chromatic spectrum by Voloshin [16].

Figure 1: Complete Bipartite K(3,3)

The Bell numbers of special graphs have been well researched [4]– [6], [8], [10], [18]. Recently, W. Yan [18] showed that the Bell number of a k-tree on n vertices is B_{n-k} , $k \ge 1$; this is the number of knonconsecutive partitions of a set with n elements. This result is a generalization of that of A. O. Munagi [11] for paths, and the work of Duncan and Peele [5] for generalized paths and acyclic graphs. We record these and a few other results for some special graphs G in Table 1; the values found in the table can be obtained through either of the following:

(a) The transformation
$$S(G;k) = \frac{1}{k!} \sum_{x \ge 0} \binom{k}{x} (-1)^{k-x} \chi(G;x)$$

(b) The recursion F(G; x) = F(G - e; x) - F(G/e; x), where G - e and G/e are the deletion and contraction graph operations on the edge e in G, respectively.

This paper was primarily inspired by the work of the previously mentioned authors as it adds to the results listed in Table 1, by extending those in rows 1, 2 and 6. In Section 2 we give a basic example of a general case which we present in Section 3.

In Table 1, $E_n, K_n, T_n^m, S_n^{(m)}, P_n^{(m)}, C_n, W_n, K(m, n)$, and \overline{G} denote a null graph, a complete graph, an *m*-tree, an *m*-star, an *m*-path, a cycle, a wheel, a complete bipartite graph, and the complement of G, respectively. For basic notions of these graphs see [19]. This table is adapted from the one produced by Z. Kereskényi-Balogh and G. Nyul [6].

G	Partition sequence	B(G)
E_n	$\left(\binom{n}{p}\right)_{p\geq 1}$	B_n
K_n	$(1)_{p=n}$	1
$T_n^m, S_n^{(m)}, P_n^{(m)}$	$\left(\left\{ \substack{n-m\\p-m} \right\} \right)_{p \ge m}$	B_{n-m}
C_n	$\left(\sum_{j=p-1}^{n-1} (-1)^{n-1-j} {j \atop p-1} \right)_{p \ge 2}$	$\sum_{j=1}^{n-1} (-1)^{n-1-j} B_j$
$W_n, n \ge 4$	$\left(\sum_{j=p-2}^{n-2} (-1)^{n-2-j} {j \atop p-1} \right)_{p \ge 3}$	$\sum_{j=1}^{n-2} (-1)^{n-2-j} B_j$
K(m,n)	$\left(\sum_{j=1}^{p} {m \atop j} {n \atop p-j} \right)_{p \ge 2}$	$B_m \cdot B_n$
$\overline{S_n}, n \ge 2$	$(n-1)_{p=n-1}$ and $(1)_{p=n}$	n
$\overline{P_n}, n \ge 2$	$\left(\binom{p}{n-p}\right)_{p\geq \lceil \frac{n}{2}\rceil}$	$\begin{array}{c} F_{n+1} \\ \text{(Fibonacci number)} \end{array}$
$\overline{C_n}, n \ge 4$	$\left(\frac{n}{p}\binom{p}{n-p}\right)_{p\geq \lceil \frac{n}{2}\rceil}$	$\begin{array}{c} L_n \\ (Lucas number) \end{array}$

Table 1. Partition sequences and Bell numbers of some graphs

J. Allagan & C. Serkan

2 Example

Consider the bipartite graph G = K(3,3) with parts $U = \{u_1, u_2, u_3\}$ and $V = \{v_1, v_2, v_3\}$ in Figure 1. Because $U = V = E_3$, it follows that each set has the partition sequence $({3 \atop 1}, {3 \atop 2}, {3 \atop 3})$ which is (1,3,1) and the distinct partitions of, say U are:

- rank 1: $u_1 u_2 u_3$
- rank 2: $u_1|u_2u_3; u_2|u_1u_3; u_3|u_1u_2$
- rank 3: $u_1|u_2|u_3$

Hence the partition polynomial $F(U; x) = F(V; x) = 1x^1 + 3x^2 + 1x^3$. Since no element $x \in U$ can be in the same block as an element $y \in V$, a *q*-partition of *G* is therefore composed of all the *i*-partitions of *U* and all the *j*-partitions of *V* such that i + j = q. If we denote by a_i and b_j the terms of the partition sequences of *U* and *V* respectively, for each $1 \leq i, j \leq 3$, then the *q*-partitions of *G* form the 3×3 array (Table 2).

Table 2. An array of q-partitions of G = K(3,3) with $q = 2, \ldots, 6$

	b_1	b_2	b_3
a_1	a_1b_1	a_1b_2	a_1b_3
a_2	a_2b_1	a_2b_2	a_2b_3
a_3	a_3b_1	a_3b_2	a_3b_3

Observe that the indices of the off-diagonal entries add up to q, the power of x in the polynomial $F(G; x) = a_1b_1x^2 + (a_1b_2 + a_2b_1)x^3 + (a_1b_3 + a_2b_2 + a_3b_1)x^4 + (a_2b_3 + a_3b_2)x^5 + a_3b_3x^6$. Since $a_1 = a_3 = b_1 = b_3 = 1$ and $a_2 = b_2 = 3$, it follows that $F(G; x) = 1x^2 + 6x^3 + 11x^4 + 6x^5 + 1x^6 = F(U; x) \cdot F(V; x)$. The corresponding partition sequence is (0, 1, 6, 11, 6, 1) with S(G; 1) = 0, S(G; 2) = 1, S(G; 3) = 6, S(G; 4) = 11, S(G; 5) = 6, S(G; 6) = 1 and the Bell number is $B(G) = 25 = B(V) \cdot B(U)$.

Theorem 1. Suppose G_1, \ldots, G_l are graphs, each with a partition vector $(a_k^1, \ldots, a_k^{n_k})$, $1 \leq k \leq l$. If $G = G_1 \vee \ldots \vee G_l$, then the partition polynomial

$$F(G;x) = \sum_{q=l}^{n_1 + \dots + n_l} \Big(\sum_{\substack{(j_1, \dots, j_l) \\ j_1 + \dots + j_l = q}} a_1^{j_1} \dots a_l^{j_l} \Big) x^q \text{ for all } l \ge 1.$$

Proof. When l = 1, $F(G; x) = \sum_{\substack{q=1 \\ i_1 = q}}^{n_1} a^{j_1} x^q$ is the partition polynomial of

 $G = G_1$. For $1 \le k \le l$, $F(G_k; x) = \sum_{i=1}^{n_k} a_k^i x^i$, by definition. Now suppose each of the following k columns represents the terms of each partition polynomial, $F(G_k; x)$.

$$a_{1}^{1}x \qquad a_{2}^{1}x \qquad \dots \qquad a_{l}^{1}x^{1} \qquad (1)$$

$$a_{1}^{2}x^{2} \qquad a_{2}^{2}x^{2} \qquad \dots \qquad a_{l}^{2}x^{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \\a_{1}^{n_{1}}x^{n_{1}} \qquad a_{2}^{n_{2}}x^{n_{2}} \qquad \dots \qquad a_{l}^{n_{l}}x^{n_{l}}$$

Since, for any partition of V(G), no element $u \in V(G_i)$ can be in the same block with an element $w \in V(G_j)$, $i \neq j$, this implies that $F(G; x) = \prod_{k=1}^{\iota} F(G_k; x)$. Moreover, a term of F(G; x) that involves, say x^{q} , is obtained by taking $a_{k}^{j_{k}}x^{j_{k}}$ from the k^{th} column and forming the product $\prod_{k=1}^{l} a_k^{j_k} x^{j_k}$, with the exponents of x satisfying $\sum_{k=1}^{l} j_k = q$. This implies that all the terms of x^q are $\sum_{\substack{(j_1,\ldots,j_l) \\ \sum j_k=n}} \prod_{k=1}^l a_k^{j_k} x^{j_k}$. Because a sum over all the terms of x^q for $l \leq q \leq \sum_{i=1}^{n_k}$ is the polynomial

F(G; x), this gives the result.

Corollary 1. The partition polynomial of a complete *l*-partite graph with part sizes n_i is

$$F(G;x) = \sum_{q=l}^{n_1 + \dots + n_l} \Big(\sum_{\substack{(j_1,\dots,j_l)\\j_1 + \dots + j_l = q}} {n_1 \\ j_1} \cdots {n_l \\ j_l} \Big) x^q.$$

Proof. Because $G = \overline{K}_{n_1} \vee \overline{K}_{n_2} \vee \ldots \vee \overline{K}_{n_l}$ and $a_k^j = {n_k \atop j}$ for $1 \le j, k \le l$, the result follows from Theorem 1.

Corollary 2. The partition sequence of a complete *l*-partite graph with part sizes $n_i \ge 1$ is $\left(\sum_{\substack{(j_1,\ldots,j_l)\\\sum j_k=p}} {n_1 \atop j_1} \ldots {n_l \atop j_l}\right)_{p\ge l}, l\ge 1.$

Since each $F(\overline{K}_{n_k}; 1) = B_{n_k}$ and $F(G; 1) = \prod_{k=1}^{l} F(\overline{K}_{n_k}; 1)$, the next soult follows

result follows.

Corollary 3. The Bell number of a complete *l*-partite graph with parts sizes n_i is $B(G) = \prod_{i=1}^{l} B_{n_i}$.

Remarks. Observe that Corollaries 2 and 3 generalize the result on row 6 of Table 1, which extends those of rows 1 and 2. As mentioned in the introduction, the lower bound for the Stirling numbers of any *l*-colorable graph H is its chromatic number $\chi(H) = l$. Because every *l*-colorable graph H is a subgraph of some complete *l*-partite graph G, the previous two results give the upper bounds for S(H; k) and B(H).

References

 C.D. Birkhoff and D.C. Lewis, "Chromatic polynomials," Trans. Amer. Math. Soc., vol. 60, pp. 335–351, 1946.

- [2] F. Brenti, "Expansions of chromatic polynomials and logconcavity," *Trans. Amer. Math. Soc.*, vol. 332, no2, pp. 729–756, August 1992.
- [3] F. Brenti, G. Royle and D. Wagner, "Location of zeros of chromatic and related polynomials of graphs," *Canad. J. Math.*, vol. 46, pp. 55–80, 1994.
- [4] C.B. Collins, "The role of Bell polynomials in Integration," J. Comput. Appl. Math., vol. 131, pp. 195–222, 2001.
- [5] B. Duncan and R. Peele, "Bell and Stirling numbers for graphs," J. Integer Seq., vol. 12, Article 09.7.1, 2009.
- [6] D. Galvin and D.T. Thanh, "Stirling numbers of forests and cycles," *Electron. J. Combin.*, vol. 20, no. 1, P73, 2013.
- [7] J. Goldman, J. Joichi and D. White, "Rook Theory III. Rook polynomials and the Chromatic structure of graphs," J. Combin. Theory Ser. B, vol. 25, pp. 135–142, 1978.
- [8] Z. Kereskényi-Balogh and G. Nyul, "Stirling numbers of the second kind and Bell numbers for graphs" Australas. J. of Combin., vol. 58, no.2, pp. 264–274, 2014.
- [9] R. Korfhage, "σ-polynomials and graph coloring," J. Combin. Theory Ser. B, vol. 24, pp. 137–153, 1978.
- [10] A. Mohr and T.D. Porter, "Applications of chromatic polynomials involving Stirling numbers," J. Combin. Math. Combin. Comput., vol. 70, pp. 57–64, 2009.
- [11] A.O. Munagi, "k-complementing subsets of nonnegative integers," Int. J. Math. Math. Sci., pp. 215–224, 2005.
- [12] R.C. Read, "An introduction to chromatic polynomials," J. Combin. Theory, vol. 4, pp. 52–71, 1968.
- [13] J. Riordan, An Introduction to Combinatorial Analysis, New York, NY, USA: Wiley, 1958.

J. Allagan & C. Serkan

- [14] R.P. Stanley, "Acyclic orientations of graphs," *Discrete Math.*, vol. 5, pp. 171–178, 1973.
- [15] W.T. Tutte, "On chromatic polynomials and the golden ratio," J. Combin. Theory, vol. 9, pp. 289–296, 1970.
- [16] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications (AMS and Fields Institute Monographs), Providence, RI, USA: AMS, 2002.
- [17] D. Wagner, "The partition polynomial of a finite set system," J. Combin. Theory Ser. A, vol. 56, pp. 138–159, 1991.
- [18] W. Yang, "Bell numbers and k-trees," Discrete Math., vol. 156, pp. 247–252, 1996.
- [19] D. West, Introduction to Graph Theory, Prentice Hall, 2001.

Julian Allagan, Christopher Serkan

Received June 9, 2016

Julian Allagan University of North Georgia Watkinsville, Georgia, U.S.A E-mail: julian.allagan@ung.edu

Christopher Serkan University of North Georgia Watkinsville, Georgia, U.S.A E-mail: christopher.serkan@ung.edu