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Bell Numbers of Complete Multipartite Graphs

Julian Allagan & Christopher Serkan

Abstract

The Stirling number S(G; k) is the number of partitions of the
vertices of a graph G into k nonempty independent sets and the
number of all partitions of G is its Bell number, B(G). We find
S(G; k) and B(G) when G is any complete multipartite graph,
giving the upper bounds of these parameters for any graph.

Keywords: Bell number, Bell polynomial, Partition, Stirling
numbers.

1 Introduction

Throughout this paper, the graph G = (V,E) will be a finite simple
graph with vertex set V = V (G) and edge set E = E(G). The join
of two graphs G1 and G2, denoted by G1 ∨ G2, is the graph G whose
vertex set is V (G) = V (G1)∪ V (G2), a disjoint union, and whose edge
set is E(G) = E(G1) ∪ E(G2) ∪ {u1u2 | u1 ∈ V (G1), u2 ∈ V (G2)}.
For example, Kn1

∨ Kn2
∨ . . . ∨ Knl

= K(n1, n2, . . . , nl), a complete
l-partite graph (l ≥ 1) with parts sizes n1, n2, . . . , nl. The special case
when l = 1, G = Kn1

= En1
, the null graph. See Figure 1 for the case

when l = 2 and n1 = n2 = 3. A partition σ = σ(n) of an n-set X
is a set of nonempty subsets of X such that each element of X is in
exactly one of the subsets of X. The elements or parts of σ are often
called blocks, and the number of blocks of σ is its rank. For simplicity,
we refer to a partition of rank k as a k-partition. B. Duncan and R.
Peele [5] called the number of k-partitions of a graph G the (graphical)
Stirling number of G and it is denoted by S(G, k); this is the number
of (vertex) independent sets of G. So when G = En, S(G; k) =

{

n
k

}

,
the Stirling number of the second kind, which counts the number of
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k-partitions of a set of n elements. The (total) number of distinct
partitions of G is its Bell number which we denote by B(G). In other

words, B(G) =
∑n

k=1 S(G; k) and when G = En, B(En) =

n
∑

i=1

{

n

i

}

=

Bn, where Bn is the nth Bell number. It is well documented that the
exponential generating function for Bell numbers is exp(ex − 1) i.e.,
∑

n≥0

Bn

n!
xn = ee

x−1. We call the rank-generating function F (G;x) =

n
∑

k=1

S(G; k)xk the partition polynomial of the graph G. Some basic

properties of this polynomial were first studied by Korfhage [9] and
later by Brenti et al. [2], [3], [17]. D. Galvin and D.T. Thanh have
recently named this polynomial, the Stirling polynomial [6]. It is worth
noting that F (G; 1) = B(G). If S(G; k) =

{

n
k

}

, then F (G;x) = F (x)
is the Bell polynomial which is a very well studied mathematical tool
in combinatorial analysis [4], [13]. When xi is replaced by the falling
factorial xi = x(x− 1)(x− 2) . . . (x− i+ 1), the polynomial F (G;x) =

χ(G;x) =

n
∑

k=1

S(G; k)xk is the chromatic polynomial, which gives the

number of proper colorings of a graph with n vertices, using at most
x colors (see for e.g., [1], [12], [14], [15]). Clearly, there are χ(En;x) =
n
∑

k=1

{

n

k

}

xk = xn colorings (with no restriction) of En. We call the

sequence
(

S(G; p)
)

c≤p≤|V (G)|
the partition sequence. When c = χ, the

chromatic number, this sequence is referred to as chromatic vector by
Goldman et al. [7] and as chromatic spectrum by Voloshin [16].
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Figure 1: Complete Bipartite K(3, 3)

The Bell numbers of special graphs have been well researched [4]–
[6], [8], [10], [18]. Recently, W. Yan [18] showed that the Bell number
of a k-tree on n vertices is Bn−k, k ≥ 1; this is the number of k-
nonconsecutive partitions of a set with n elements. This result is a
generalization of that of A. O. Munagi [11] for paths, and the work
of Duncan and Peele [5] for generalized paths and acyclic graphs. We
record these and a few other results for some special graphs G in Table
1; the values found in the table can be obtained through either of the
following:

(a) The transformation S(G; k) =
1

k!

∑

x≥0

(

k

x

)

(−1)k−xχ(G;x)

(b) The recursion F (G;x) = F (G − e;x) − F (G/e;x), where G − e
and G/e are the deletion and contraction graph operations on the
edge e in G, respectively.
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This paper was primarily inspired by the work of the previously men-
tioned authors as it adds to the results listed in Table 1, by extending
those in rows 1, 2 and 6. In Section 2 we give a basic example of a
general case which we present in Section 3.

In Table 1, En,Kn, T
m
n , S

(m)
n , P

(m)
n , Cn,Wn,K(m,n), and G denote

a null graph, a complete graph, an m-tree, an m-star, an m-path, a
cycle, a wheel, a complete bipartite graph, and the complement of G,
respectively. For basic notions of these graphs see [19]. This table
is adapted from the one produced by Z. Kereskényi-Balogh and G.
Nyul [6].

Table 1. Partition sequences and Bell numbers of some graphs

G Partition sequence B(G)

En

(

{

n
p

}

)

p≥1
Bn

Kn

(

1
)

p=n
1

Tm
n , S

(m)
n , P

(m)
n

(

{

n−m
p−m

}

)

p≥m
Bn−m

Cn

(

∑n−1
j=p−1(−1)n−1−j

{

j
p−1

}

)

p≥2

∑n−1
j=1 (−1)n−1−jBj

Wn, n ≥ 4
(

∑n−2
j=p−2(−1)n−2−j

{

j
p−1

}

)

p≥3

∑n−2
j=1 (−1)n−2−jBj

K(m,n)
(

∑p
j=1

{

m
j

}{

n
p−j

}

)

p≥2
Bm ·Bn

Sn, n ≥ 2
(

n− 1
)

p=n−1
and

(

1
)

p=n
n

Pn, n ≥ 2
(

(

p
n−p

)

)

p≥⌈n

2
⌉

Fn+1

(Fibonacci number)

Cn, n ≥ 4
(

n
p

(

p
n−p

)

)

p≥⌈n

2
⌉

Ln

(Lucas number)
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2 Example

Consider the bipartite graph G = K(3, 3) with parts U = {u1, u2, u3}
and V = {v1, v2, v3} in Figure 1. Because U = V = E3, it follows that
each set has the partition sequence (

{

3
1

}

,
{

3
2

}

,
{

3
3

}

) which is (1, 3, 1) and
the distinct partitions of, say U are:

• rank 1: u1u2u3

• rank 2: u1|u2u3; u2|u1u3; u3|u1u2

• rank 3: u1|u2|u3

Hence the partition polynomial F (U ;x) = F (V ;x) = 1x1 + 3x2 + 1x3.
Since no element x ∈ U can be in the same block as an element y ∈ V ,
a q-partition of G is therefore composed of all the i-partitions of U and
all the j-partitions of V such that i+ j = q. If we denote by ai and bj
the terms of the partition sequences of U and V respectively, for each
1 ≤ i, j ≤ 3, then the q-partitions of G form the 3× 3 array (Table 2).

Table 2. An array of q-partitions of G = K(3, 3) with q = 2, . . . , 6

b1 b2 b3
a1 a1b1 a1b2 a1b3
a2 a2b1 a2b2 a2b3
a3 a3b1 a3b2 a3b3

Observe that the indices of the off-diagonal entries add up to q, the
power of x in the polynomial F (G;x) = a1b1x

2 + (a1b2 + a2b1)x
3 +

(a1b3 + a2b2 + a3b1)x
4 + (a2b3 + a3b2)x

5 + a3b3x
6. Since a1 = a3 =

b1 = b3 = 1 and a2 = b2 = 3, it follows that F (G;x) = 1x2 + 6x3 +
11x4 + 6x5 + 1x6 = F (U ;x) · F (V ;x). The corresponding partition
sequence is (0, 1, 6, 11, 6, 1) with S(G; 1) = 0, S(G; 2) = 1, S(G; 3) =
6, S(G; 4) = 11, S(G; 5) = 6, S(G; 6) = 1 and the Bell number is
B(G) = 25 = B(V ) · B(U).
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3 Bell numbers of complete multipartite graphs

Theorem 1. Suppose G1, . . . , Gl are graphs, each with a partition vec-
tor (a1k, . . . , a

nk

k ), 1 ≤ k ≤ l. If G = G1 ∨ . . . ∨ Gl, then the partition
polynomial

F (G;x) =

n1+...+nl
∑

q=l

(

∑

(j1,...,jl)
j1+...+jl=q

aj11 . . . ajll

)

xq for all l ≥ 1.

Proof. When l = 1, F (G;x) =

n1
∑

q=1
j1=q

aj1xq is the partition polynomial of

G = G1. For 1 ≤ k ≤ l, F (Gk;x) =
∑nk

i=1 a
i
kx

i, by definition. Now
suppose each of the following k columns represents the terms of each
partition polynomial, F (Gk;x).

a11x a12x . . . a1l x
1 (1)

a21x
2 a22x

2 . . . a2l x
2

...
...

...

an1

1 xn1 an2

2 xn2 . . . anl

l xnl

Since, for any partition of V (G), no element u ∈ V (Gi) can be in
the same block with an element w ∈ V (Gj), i 6= j, this implies that

F (G;x) =

l
∏

k=1

F (Gk;x). Moreover, a term of F (G;x) that involves, say

xq, is obtained by taking ajkk xjk from the kth column and forming the

product
l

∏

k=1

ajkk xjk , with the exponents of x satisfying
∑l

k=1 jk = q.

This implies that all the terms of xq are
∑

(j1,...,jl)∑
jk=n

l
∏

k=1

ajkk xjk . Because

a sum over all the terms of xq for l ≤ q ≤
∑nk

i=1 is the polynomial
F (G;x), this gives the result.
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Corollary 1. The partition polynomial of a complete l-partite graph
with part sizes ni is

F (G;x) =

n1+...+nl
∑

q=l

(

∑

(j1,...,jl)
j1+...+jl=q

{

n1

j1

}

. . .

{

nl

jl

}

)

xq.

Proof. Because G = Kn1
∨Kn2

∨ . . .∨Knl
and ajk =

{

nk

j

}

for 1 ≤ j, k ≤
l, the result follows from Theorem 1.

Corollary 2. The partition sequence of a complete l-partite graph with

part sizes ni ≥ 1 is
(

∑

(j1,...,jl)∑
jk=p

{

n1

j1

}

. . .

{

nl

jl

}

)

p≥l
, l ≥ 1.

Since each F (Knk
; 1) = Bnk

and F (G; 1) =

l
∏

k=1

F (Knk
; 1), the next

result follows.

Corollary 3. The Bell number of a complete l-partite graph with parts

sizes ni is B(G) =

l
∏

i=1

Bni
.

Remarks. Observe that Corollaries 2 and 3 generalize the result
on row 6 of Table 1, which extends those of rows 1 and 2. As mentioned
in the introduction, the lower bound for the Stirling numbers of any
l-colorable graph H is its chromatic number χ(H) = l. Because every
l-colorable graph H is a subgraph of some complete l-partite graph G,
the previous two results give the upper bounds for S(H; k) and B(H).
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