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Bell Numbers of Complete Multipartite Graphs
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Abstract

The Stirling number S(Gj; k) is the number of partitions of the
vertices of a graph G into k nonempty independent sets and the
number of all partitions of G is its Bell number, B(G). We find
S(G; k) and B(G) when G is any complete multipartite graph,
giving the upper bounds of these parameters for any graph.

Keywords: Bell number, Bell polynomial, Partition, Stirling
numbers.

1 Introduction

Throughout this paper, the graph G = (V, E) will be a finite simple
graph with vertex set V = V(G) and edge set E = E(G). The join
of two graphs (G; and Gs, denoted by Gp V Ga, is the graph G whose
vertex set is V(G) = V(G1) UV (G2), a disjoint union, and whose edge
set is E(G) = E(Gl) UE(GQ) U {U1UQ ‘ up € V(Gl), Uz € V(Gg)}
For example, K., V K, V...V K,, = K(ny,n2,...,n), a complete
[-partite graph (I > 1) with parts sizes nj, ng,...,n;. The special case
when | =1, G = K,,, = E,,,, the null graph. See Figure 1 for the case
when | = 2 and ny = ny = 3. A partition o = o(n) of an n-set X
is a set of nonempty subsets of X such that each element of X is in
exactly one of the subsets of X. The elements or parts of ¢ are often
called blocks, and the number of blocks of ¢ is its rank. For simplicity,
we refer to a partition of rank k as a k-partition. B. Duncan and R.
Peele [5] called the number of k-partitions of a graph G the (graphical)
Stirling number of G and it is denoted by S(G, k); this is the number
of (vertex) independent sets of G. So when G = E,,, S(G;k) = {Z},
the Stirling number of the second kind, which counts the number of
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k-partitions of a set of n elements. The (total) number of distinct
partitions of G is its Bell number which we denote by B(G). In other
n
words, B(G) = Y4, S(G;k) and when G = E,,, B(E,) = {”} -
i
i=1
B,,, where B, is the n'* Bell number. It is well documented that the
exponential generating function for Bell numbers is exp(e® — 1) i.e.,

B @

g —Tm” = ¢“ 71, We call the rank-generating function F(G;z) =
n!

n>0

n

ZS(G; k)z* the partition polynomial of the graph G. Some basic
k=1
properties of this polynomial were first studied by Korfhage [9] and
later by Brenti et al. [2], [3],[17]. D. Galvin and D.T. Thanh have
recently named this polynomial, the Stirling polynomial [6]. It is worth
noting that F(G;1) = B(G). If S(G;k) = {7}, then F(G;z) = F(x)
is the Bell polynomial which is a very well studied mathematical tool
in combinatorial analysis [4],[13]. When z° is replaced by the falling
factorial ¢ = z(z — 1)(x — 2) ... (z — i + 1), the polynomial F(G;z) =

n

X(G;z) = Z S(G;k)zE is the chromatic polynomial, which gives the
k=1

number of proper colorings of a graph with n vertices, using at most

x colors (see for e.g., [1],[12],[14],[15]). Clearly, there are x(Ey;z) =

n
Z {Z}xk = z" colorings (with no restriction) of E,. We call the
k=1

sequence (S (G p)) the partition sequence. When ¢ = x, the
c<p<|V(G)|
chromatic number, this sequence is referred to as chromatic vector by

Goldman et al. [7] and as chromatic spectrum by Voloshin [16].
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uy U1
U2 V9
us V3
U Vv

Figure 1: Complete Bipartite K (3, 3)

The Bell numbers of special graphs have been well researched [4]-
[6], (8], [10], [18]. Recently, W. Yan [18] showed that the Bell number
of a k-tree on n vertices is B,_j, k > 1; this is the number of k-
nonconsecutive partitions of a set with n elements. This result is a
generalization of that of A. O. Munagi [11] for paths, and the work
of Duncan and Peele [5] for generalized paths and acyclic graphs. We
record these and a few other results for some special graphs G in Table
1; the values found in the table can be obtained through either of the
following;:

: 1 k k—x .
(a) The transformation S(G;k) = ] ;) <x> (=D *x(G;x)

(b) The recursion F(G;x) = F(G — e;x) — F(G/e;x), where G — e
and G/e are the deletion and contraction graph operations on the
edge e in GG, respectively.
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This paper was primarily inspired by the work of the previously men-
tioned authors as it adds to the results listed in Table 1, by extending
those in rows 1, 2 and 6. In Section 2 we give a basic example of a
general case which we present in Section 3.

In Table 1, E,,, K,,, "™, Si™, P,

( ) ,Cp, Wy, K(m,n), and G denote

a null graph, a complete graph, an m-tree, an m-star, an m-path, a
cycle, a wheel, a complete bipartite graph, and the complement of G,

respectively. For basic notions of these graphs see [19].

This table

is adapted from the one produced by Z. Kereskényi-Balogh and G.
Nyul [6].

Table 1. Partition sequences and Bell numbers of some graphs

G Partition sequence B(G)

En ({Z}>p>1 Bu

K, 1

Tm 5™ pim ( )p>m Bu-m

Ch ( e ] 1})p>2 S (-
Wan>4 | (2522, "23{%}) S 2(—1)n2i B
Kmn) | (SN, By By
Sp.n>2 (n )pn 1and()p:n n

Pinz2 ( ) >[2) gjit)lonacci number)
Conz4 | (3(2 )p>[ 2] 0

(Lucas number)
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2 Example

Consider the bipartite graph G = K(3,3) with parts U = {uy, ua,us}
and V = {vy,v2,v3} in Figure 1. Because U = V = Ej, it follows that
each set has the partition sequence ({?}, {g}, {g}) which is (1,3,1) and
the distinct partitions of, say U are:

e rank 1: uiu2U3
e rank 2: ul\uQu;;; ’U,2”U,1’U,3; U3 |U1U2

e rank 3: uq|ug|us

Hence the partition polynomial F(U;z) = F(V;x) = 1a! 4 322 + 123,
Since no element x € U can be in the same block as an element y € V,
a g-partition of G is therefore composed of all the i-partitions of U and
all the j-partitions of V' such that i + j = ¢. If we denote by a; and b;
the terms of the partition sequences of U and V respectively, for each
1 <4,j < 3, then the g-partitions of G form the 3 x 3 array (Table 2).

Table 2. An array of g-partitions of G = K(3,3) with ¢ =2,...,6

by | by | b
aq al b1 aq bg aq b3

a9 a9 b1 a9 bg a9 b3

a3 | azby | agby | azbs

Observe that the indices of the off-diagonal entries add up to ¢, the
power of x in the polynomial F(G;z) = aibiz? + (a1by + agby)x® +
(a1b3 + asby + a3b1)$4 + (CLng + a3b2)$5 + a3b3x6. Since a1 = ag =
by = b3 = 1 and ay = by = 3, it follows that F(G;x) = 122 + 623 +
11z* + 62° + 125 = F(U;x) - F(V;2). The corresponding partition
sequence is (0,1,6,11,6,1) with S(G;1) =0, S(G;2) =1, S(G;3) =
6, S(G;4) = 11, S(G;5) = 6, S(G;6) = 1 and the Bell number is
B(G) =25 =B(V) - B(U).
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3 Bell numbers of complete multipartite graphs

Theorem 1. Suppose G1,...,Gy are graphs, each with a partition vec-
tor (ag,...,ap*), 1 <k <l. IfG=G1V...VG, then the partition
polynomial
ni+...+n ) )
F(G;z) = Z ( Z ajll...a{l>:cq for alll > 1.
q=l (F15e1)
Jit.tii=q

ni
Proof. Whenl =1, F(G;z) = Z a’*z? is the partition polynomial of

q=1

Jj1=q

G =Gy Forl <k <l F(Gpzx)=>" ai;xi, by definition. Now
suppose each of the following k columns represents the terms of each
partition polynomial, F(Gg;x).

atx ar ... alal (1)
az?  adx?r ... a?a?
aylz™ ah?z" ... qta™

Since, for any partition of V(G), no element u € V(G;) can be in
the same block with an element w € V(G;), i # j, this implies that

l
F(G;x) = H F(Gpg;x). Moreover, a term of F'(G;z) that involves, say
k=1
29, is obtained by taking aj*z’* from the k' column and forming the

l
product H a{f:cjk, with the exponents of x satisfying 22:1 Jk = q.

k=1
l

This implies that all the terms of z? are Z H ai’“:cj’“. Because

(J1se0t) k=1

> jk=n
a sum over all the terms of 27 for I < ¢ < Y I, is the polynomial
F(G;x), this gives the result.
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O

Corollary 1. The partition polynomial of a complete l-partite graph
with part sizes n; is

ni+...+ny ny n
F(G;x) = ( {}{})xq
( ) Z Z J1 J
q=l (Js-di)
Jit+...+J1=q
Proof. Because G = K, VK,,V.. .\/Fnl and ai = {”J’“} forl1 <j, k<
[, the result follows from Theorem 1. O

Corollary 2. The partition sequence of a complete l-partite graph with

part sizes n; > 1 1s ( Z {nl}{nl}> o [ >1.
AN W) J )7/ p=

(jlv"'v.]l)
2 k=p
!
Since each F(K,, ;1) = B, and F(G;1) = H F(Kp,;1), the next

k=1
result follows.

Corollary 3. The Bell number of a complete l-partite graph with parts

l
sizes n; is B(G) = HBm-
i=1

Remarks. Observe that Corollaries 2 and 3 generalize the result
on row 6 of Table 1, which extends those of rows 1 and 2. As mentioned
in the introduction, the lower bound for the Stirling numbers of any
l-colorable graph H is its chromatic number x(H) = [. Because every
l-colorable graph H is a subgraph of some complete [-partite graph G,
the previous two results give the upper bounds for S(H; k) and B(H).
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