Computer Science Journal of Moldova, 4. no.2(71), 2016

The general prioritization framework

Alexey Malishevsky

Abstract

This paper proposes the general prioritization frameworktést
case prioritization during regression testing. Regrestigting (RT)
is done to ensure that modifications have not created nets fauthat
modifications fulfilled their intended purpose by correetitgring soft-
ware functionality. Being performed multiple times, RT daave a
profound effect on the software budget. The test case pization or-
ders test cases for execution to reach a certain objectsaally, such
an objective is to detect faults as early as possible duhiegesting
process. Many prioritization techniques have been deeeldpat suc-
cessfully reach this objective. However, most of thesergles were
developed and studied independently from each other @ettfact
that they have many similarities. This article presentsftamework
that allows to represent known prioritization techniquesus, it helps
to improve existing and devise new techniques. Also, itvedldo im-
plement a single tool that emulates any prioritization teghe by just
setting the correct parameters. The proposed framewohkdas the
combination/condensation (CC) structure and the stradtmctions
includingelement combination functionsondensation functionsnd
a super-group combination functioBy defining two such structures
together with the corresponding structure functions, oneédmputing
award values and one for their update, any known prioritpatech-
nigue can be expressed. A general prioritization algorithpresented
that can express any known prioritization technique.

Keywords: Prioritization, regression testing, software testings, pr
oritization framework, test case prioritization.

1 Introduction

Each time a software system is modified and is to be releasedegression
tested. Regression testing (RT) is similar to testing inegahn it involves

©2016 by A. Malishevsky

192

The general prioritization framework

executing tests and checking the results for correctnégshdwvever, is done
to ensure that modifications have not created new faultsabntiodifications
fulfilled their intended purpose by correctly altering sedte functionality.

Being performed multiple times, RT can have a profound éffecthe
software budget. Because RT itself accounts for a largeeptage of soft-
ware cost [1, 9], even small reductions in RT cost can have®pnd effect
on the software cost.

If engineers must execute all test cases, which order otsssts should
be used? One test order can be better than another under setne Mest
case prioritization orders a test suite to maximize someativp function
defined on test orderings. The test case prioritization Iprobis defined as
follows: given a test suité’, the set of permutation87 of 7', and a function
f from PT to the real numbers; the problem is to fifid € PT such that
vy (r" e PT) (T" # T') [f(T") > f(T")], wherePT is the set of
possible prioritizations (orders) &f, and f is an objective function that,
applied to any such order, yields ardering qualityvalue for that order.

There are many possible goals for prioritization. For examnesters
may wish to increase the coverage of code in the system ueslteaitta faster
rate, increase their confidence in the reliability of theteysat a faster rate,
or increase the rate at which test suites detect faults insygtem during
regression testing. In the definition of the test case pization problem,f
represents a quantification of such a goal.

In the literature, many prioritization techniques haverbpeoposed and
their effectiveness studied. We will mention just a few @fith Elbaum et al.[6,
7, 8]and Rothermel etal. [15, 16] proposed a set of modificati coverage-,
and fault-exposing-potential-based prioritization t@ghes. Elbaum et al.
[5] incorporated tests costs and fault severities in pizadion. Malishevsky
et al. [11] proposed the cost-benefits model for priorit@at Do et al. [4]
introduced time constraints into prioritization. Mei et H?2] applied pri-
oritization to service-oriented business applications dbal. [3] explored
the usage of mutation faults in prioritization. Bryce et[al] utilized pri-
oritization for event-driven software. Raju et al. [14] bdgrioritization of
test cases on four factors such as the rate of fault deteatmuirements
volatility, fault impact, and implementation complexitZhang et al. [18]
used integer linear programming for time-aware priortiaa Also, Walcott

193

A. Malishevsky

et al. studied time-aware prioritization in [17]. Mirarabad. [13] employed
Bayesian Networks for the test case prioritization. Hld.48] used particle
swarm optimization methods for prioritization.

Most of the proposed prioritization methods were develoged studied
independently from each other despite the fact that theyahlmd of simi-
larities. We exploited these similarities among priogtipn technigues to
develop a unifying prioritization framework. This frameska@an express ev-
ery prioritization technique developed so far. Its maindfgs include the
ability to facilitate creation of new prioritization tecigues and their analy-
sis, while providing a standard way of looking at techniquiss framework
allows us to implement a general prioritization algorithrhose parameters
can instantiate various prioritization techniques. low rapid prototyping
of and research on a variety of new prioritization techngquéth minimal
coding, while shortening the time to study them, encoug@xperimenta-
tion with development of new techniques, and reducing thebuer of errors
that might occur if every technigue is to be implemented fsaratch.

2 Combination/Condensation Structure

We now formally define the combination/condensation (C@)cstire on
which our framework is based. We first define @lemente. An element
represents a single piece of data used by a prioritizatiomique. For ex-
ample, an element € E can represent coverage information for a given
statement, modification information (number of lines changed) fordtian
f, or the fault-exposing-potential for locatidn A single element, however,
represents this information for tighole test suitethus, it contains such data
for every test from the test suite. We also define thelfsas the set of all
elements used in the combination/condensation structure.

We definesub-element! to be a constituent part of elementcorre-
sponding to a given test We represent ajlemente € E as a tuple
< el é?, ..., elTl > of size|T|, whereT is a test suite. For example, if
elemente represents coverage information for statememtach sub-element
e! represents coverage information for statementth respect to test cage

A vectorv in our structure is a one dimensional array of elements. More
formally, v =< C1, €2y ey Clo| >, whereVeg, 1 <1< |v] Je€E ¢ =e.

194

The general prioritization framework

We define a set of elements that comprise a vectorbe F,,.

We define agroup G to be a tuple of vectorsy =< vy, v2, ..., viq| >-

We definel’ to be a set of all vectors across all group$,., £, C E,
but this subset may be proper: some elements may not belany/teector.
We define such elements fise (¢ is free iff Vo € V e ¢ E,). All vectors
that belong to the same group mustdoenpatible defined as having the same
number of elements. Vectors across different groups neteblencompatible.

For each group, we defineMg = (m; ;) to be the matrix whose
columns are the vectors i@, som; ; represents théth component of the
j-th vector inG.

Finally, on the top level, auper-groupSG is defined as a set of groups.

Informally, each element represents a single item of infdiom used by
a prioritization technique. It may include function covgeatest costs [5],
module criticalities [5], change information [7], or fawlkposing-potential
information [6]. Vectors usually represent sets of eleraeghat are treated
in the same way, such as coverage, change information,-daptising-
potential, etc. Groups usually represent sets of vectaed ts compute a
single component of the final value (produced by the stre¢tur

Next, we define several functions that operate on this CCtstre. First,
for each groug= containing|G| vectors, we define aelement combination
function

G
felementcombind 1, T2, -'-axIG\aa) 1)

This function takes aslchG Gl (an array< @1, 2, ..., x| > wherez; is

thei-th component of theth vector inG). This function also has argumert

which will be explained later. Each group has its own funti. entcombine
Next, for each groug-, we define aondensation function

f(%ndensatio(ﬁglv Y2, -y Yk 0‘)7 (2)

wherek is the number of elements in each vector in gréupThis function
takes the arrayx y1, 4o, ...,yr >, wWhere eachy; is the result of applying
anelement combin&inction to thei-th slice of matrix) (defined earlier)
(i = fgemenicombine(m@l’miv?’""mi7|G\’a) Vi, 1 <4< k) andan
argumentx (explained later). Each group has its oeendensation function

195

A. Malishevsky

Finally, we define auper-group combination function

fgroupcombine(zla R2y e z|SG|704) 3)

This function takes an array 21, 22, ..., 2js5¢| > (2; corresponds to group
G; € SG) and an argument (explained later). Each; is produced by a

condensation functiorz; = fiﬁdensaﬁogyl, Y2, ey Yhy Q).

We call theelement combination functiprrondensation functignand
super-group combination functipstructure functiongSF).

We call this sub-element/element/vector/group/supengrstructure, to-
gether with the structure functionscambination/condensation structure

Let CCF be a particular combination/condensation structure. \Vileele
a function Fo(CCF,E, o) which takesCCF, setE of elements, and an
argumentx (explained later), and produces the result of applying thetire
functions to the elements &f.

3 Framework and algorithm

In the framework that we now present, we use an iterativecagmbr in which

we apply combination/condensation structures to compugedavalue$ and

to alter elements each time a new test is selected. The mednisdto mod-

ify elementse € F, given a newly selected test. This framework uses two
CC structures: one¢’C Fawarg for award value computation and another,
C'C Fypdate for updating elements from, wherekE is the set of all elements
used in the framework.

To compute award values, for each teste T, we obtaina; =
Foo(CC Fawarg E, t). To select the test with the best award value, we com-
putets = fhes{@). Function fpesitakes a vector of award valuésand finds
the test (id) with the best award value.

After a new test is selected, the framework algorithm uplatieelements
e € E. To compute a new value for an elementseveral steps are taken.
First, for each test, € T and for each elemenrt € E, we computeul: =
Foo(CCFypdate E, < ts,ty,e >), using CC structur€’'C Fypgate Wheret,
is the test selected in the previous step. Second, we updetg element

1An award value is the measure of test case’s “worth”.

196

The general prioritization framework

Algorithm 1 The prioritization framework algorithm.

1: Initialize elements ik
List = ¢
for all t,, € T do
for all e € E do
xteu — fupdat({et“’vFCC(CCFupdate E, < nil, ty,e >))
end for
end for
for all t,, € T do
for all e € E do
10: val(etv) « ztv
11: end for
12: end for
13: loop
14: for allt € T'do
15: at < Foo(CCFayarg E, 1)
16: end for
17: ts < foes(@)
18: if a;, = nilthen
19: HALT
20: end if
21: Add ts into List
22: for all t,, € T'do

23: for all e € E do

24: zh fupdatéet“ s Foeo(CCFypdate B, < ts,tu,e >))
25: end for

26: end for

27: for all t,, € T'do

28: for all e € E do

29: val(etn) + ziv

30: end for

31: end for

32: end loop

e € E for every test,, € T val(e') = fupdade™, ul*). We defineval (z) to
be the value of:.

The framework is applied as follows: determine the set ahelasE in
all structures, determine the CC structdr'€’ Fyarq for award computation
containing a subset df, determine CC structur€C Fypgatefor update com-
putation containing a subset &f, determine initial values for all elements
in E, determine a function for element updatitfighdate decide on a sorting
function fpes; and finally, apply the framework algorithm that initializall
elements and computes award values, selects a test, anttsgiiements
until the halting condition is satisfied.

The framework algorithm that implements prioritizatiorchaiques is
presented as Algorithm 1. Lines 3-7 compute initial valuesdvery ele-
ment. Lines 8-12 set element values to the values computéideis 3-7.

197

A. Malishevsky

Groupl Group2
Vi V2 V1 \

covFl DbfiFl covFl fepFl
covF2 DbfiF2 covF2 fepF2
covF3 DbfiF3 covF3 fepF3
covF4 DbfiF4 covF4 fepF4
covF5 DbfiF5 covF5 fepF5

Figure 1. The structure for prioritization technigimebfi-fep-nofb

Lines 13-32 implement the main loop computing the pricetizest case se-
guence. Lines 14-16 compute test award values. Line 17 firedtest with
the highest award value. Lines 18-20 test the halting camdit.ine 19 adds
the selected test to the ordered sequence. Lines 22-26 tergunew val-
ues of elements. Lines 27-31 update the value of every elensary values
computed in lines 18-20. We define th& value to be the lowest award value
a test can have. During comparisons, a test case with awhrelwd can be
chosen only if there are no testsihwith award values not equal ial.

4 An example

Now we will demonstrate how to fit one existing prioritizatitechnique into
the framework. Thdn-bfi-fep-nofb techniquerioritizes tests in an order
of decreasing values of sum of covered fault-exposingsiaé of modi-
fied functions [7]. Thus, this technique employs a binanitfandex® and
fault-exposing-potential information. There are two eestin each of the
two groups: coverage and binary fault index vectors in that §roup, and
coverage and fault-exposing-potential vectors in the me@youp. In each
group, corresponding elements of that group’s two vectasraultiplied and
summed. Then, for each test case, an award value is createtliple con-
sisting of two values, one from each group; this is used terotest cases.
Award values, being tuples, are compared element-wise: efiesnents are
used for sorting, and, in a case of a tie, second elementoarpared. The

2The probability that a given test case reveals a fault in arglecation, if one exists [7].
3Binary fault index is the metric on a code change [7].

198

The general prioritization framework

combination/condensation structure for the award valuepzdation for this
technique is presented in Figure 1 wheredhament combinatiofunction is
multiplication, thecondensatiorfunction is summation, and thgroup com-
bination function is tuple creationCovFi is the binary function coverage
information for functionF'i, bfiF'i is the binary fault index for functiots,

and fepF'i is the fault exposing potential for functiofii. Each ofcovFi,
bfiFi, and fepFi is a vector of sizdT'| whose components correspond to
test cases from test suifé As we can see, these techniques fit easily into the
framework.

5 Conclusions

We exploited similarities among prioritization technigu® develop a uni-
fying prioritization framework. This framework can expsegrioritization

techniques developed so far. This framework helps to creakeprioritiza-

tion techniques and analyse them, while providing a stahday of looking

at techniques. This framework allows us to implement a gépeioritization

algorithm whose parameters can instantiate various pration techniques.
It allows rapid prototyping of techniques and research omrgety of new
techniques with minimal coding, shortening study time,cemaging experi-
mentation with development of new techniques, and redutiagiumber of
errors that might occur if a technique is to be implementechfscratch.

References

[1] B. Beizer, Software Testing Techniquedan Nostrand Reinhold, New
York, NY, 1990.

[2] R. Bryce, S. Sampath, and A. Memon, “Developing a singtelet and
test prioritization strategies for event-driven softwatEEE Trans. on
Softw. Eng.Vol. 37, No. 1, pp. 48-64, Jan.-Feb. 2011. Available: doi:
10.1109/TSE.2010.12.

[3] H. Do and G. Rothermel, “On the use of mutation faults inpgm
ical assessments of test case prioritization techniqgue€E Trans.
Softw. Eng. Vol. 32, No. 9, pp. 733-752, Sep. 2006. Available: doi:
10.1109/TSE.2006.92.

199

A. Malishevsky

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “Th#feets of
time constraints on test case prioritization: A series oftcaled ex-
periments.”IEEE Trans. on Softw. Eng\Vol. 36, No. 5, pp. 593-617,
Sep./Oct. 2010. doi: 10.1109/TSE.2010.58.

S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorgorg varying
test costs and fault severities into test case prioritrdtin Proc. of the
Intern. Conf. on Softw. Eng2001, pp. 329-338 .

S. Elbaum, A. Malishevsky, and G. Rothermel, “Test caserjpization:
A family of empirical studies.IEEE Trans. of Softw. Eng\ol. 28, No.
2, pp. 159-182, Feb. 2002.

S. Elbaum, P. Kallakuri, A. G. Malishevsky, G. Rothermaatd S. Kan-
duri, “Understanding the effects of changes on the cosistiffeness of
regression testing techniqueddurnal of Software Testing, Verification,
and Reliability Vol. 13, No. 2, pp. 65-83, June 2003.

S. Elbaum, G. Rothermel, S. Kanduri, and A. G. MalishgysiSe-
lecting a cost-effective test case prioritization techeitj Softw. Qual-
ity J, Vol. 12, No. 3, pp. 185-210, Sep. 2004. Available: doi:
10.1023/B:SQJO.0000034708.84524.22.

C. Ghezzi, M. Jazayeri, and D. Mandriokundamentals of Software
Engineerijng 1st ed., Upper Saddle River, NJ: Prentice Hall, 1991.
K. Hla, Y. Choi, and J. Park, “Applying particle swarm top
mization to prioritizing test cases for embedded real tinodt-s
ware retesting.” inl[EEE 8th Intern. Conf. on Computer and In-
form. Technology Workshopgp. 527-532, 2008. Available: doi:
10.1109/CIT.2008.Workshops.104.

A. Malishevsky, G. Rothermel, and S. Elbaum, “Modelitige cost-
benefits tradeoffs for regression testing techniquesProceedings of
the International Conference on Software Maintenar¥2, pp. 204—
213.

L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse, “Test case prio
itization for regression testing of service-oriented bass applica-
tions.” in Proc. of the 18th Intern. Conf. on World Wide W&@gWW
‘09, 2009 pp. 901-910, New York, NY, USA: ACM. Available: doi
10.1145/1526709.1526830.

S. Mirarab and L. Tahvildari, “An empirical study on kesfan network-
based approach for test case prioritization.2@08 1st Intern. Conf. on

200

The general prioritization framework

[14]

[15]

[16]

[17]

[18]

Softw. Testing, Verification, and ValidatioR008, pp. 278-287, Avail-
able: doi: 10.1109/ICST.2008.57.

S. Raju and G.V. Uma, “An efficient method to achieve efffe test
case prioritization in regression testing using prioatian factors.”
Asian J. of Inform. Tech\ol. 11, No. 5, pp. 169-180, 2012. Available:
doi: 10.3923/ajit.2012.169.180.

G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kalldkand X. Qiu,
“On test suite composition and cost-effective regressistinig.” ACM
Trans. Softw. Eng. MethodpMol. 13, No. 3, pp. 277-331, July 2004.
Available: doi: 10.1145/1027092.1027093.

Gregg Rothermel, Sebastian Elbaum, Alexey Malishgvékraveen
Kallakuri, and Brian Davia, “The impact of test suite grarity on
the cost-effectiveness of regression testingPioc. of the 24th Intern.
Conf. on Software Engineering002, pp. 230-240.

Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfharem
and Robert S. Roos, “Time-aware test suite prioritizatiam. Proc.
of the 2006 Intern. Symp. on Softw. Testing and AnalySSTA
'06, 2006, pp. 1-12, New York, NY, USA: ACM. Available: doi:
10.1145/1146238.1146240.

L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei, “Time-awaesttcase
prioritization using integer linear programming.” Proc. of the 18th
Intern. Symp. on Softw. Testing and Analy2R09, pp. 213-224. Avalil-
able: doi: 10.1145/1572272.1572297.

Alexey Malishevsky Received March 29, 2016

Institution: ESC “Institute for Applied System Analysis”aional Technical University of
Ukraine “KPI”

Address: building 35, 37 Prospect Peremohy, 03056, Kyivaiie

Phone: +380504101177

E-mail:al exeyms@ahoo. com

201

