
Computer Science Journal of Moldova, vol.24, no.2(71), 2016

The general prioritization framework

Alexey Malishevsky

Abstract
This paper proposes the general prioritization framework for test

case prioritization during regression testing. Regression testing (RT)
is done to ensure that modifications have not created new faults or that
modifications fulfilled their intended purpose by correctlyaltering soft-
ware functionality. Being performed multiple times, RT canhave a
profound effect on the software budget. The test case prioritization or-
ders test cases for execution to reach a certain objective. Usually, such
an objective is to detect faults as early as possible during the testing
process. Many prioritization techniques have been developed that suc-
cessfully reach this objective. However, most of these techniques were
developed and studied independently from each other despite the fact
that they have many similarities. This article presents theframework
that allows to represent known prioritization techniques.Thus, it helps
to improve existing and devise new techniques. Also, it allows to im-
plement a single tool that emulates any prioritization technique by just
setting the correct parameters. The proposed framework includes the
combination/condensation (CC) structure and the structure functions
includingelement combination functions, condensation functions, and
a super-group combination function. By defining two such structures
together with the corresponding structure functions, one for computing
award values and one for their update, any known prioritization tech-
nique can be expressed. A general prioritization algorithmis presented
that can express any known prioritization technique.

Keywords: Prioritization, regression testing, software testing, pri-
oritization framework, test case prioritization.

1 Introduction

Each time a software system is modified and is to be released, it is regression
tested. Regression testing (RT) is similar to testing in general: it involves

c©2016 by A. Malishevsky

192

The general prioritization framework

executing tests and checking the results for correctness. RT, however, is done
to ensure that modifications have not created new faults or that modifications
fulfilled their intended purpose by correctly altering software functionality.

Being performed multiple times, RT can have a profound effect on the
software budget. Because RT itself accounts for a large percentage of soft-
ware cost [1, 9], even small reductions in RT cost can have a profound effect
on the software cost.

If engineers must execute all test cases, which order of testcases should
be used? One test order can be better than another under some metric. Test
case prioritization orders a test suite to maximize some objective function
defined on test orderings. The test case prioritization problem is defined as
follows: given a test suiteT , the set of permutationsPT of T , and a function
f from PT to the real numbers; the problem is to findT ′ ∈ PT such that
(∀T ′′) (T ′′ ∈ PT) (T ′′ 6= T ′) [f(T ′) ≥ f(T ′′)], wherePT is the set of
possible prioritizations (orders) ofT , and f is an objective function that,
applied to any such order, yields anordering qualityvalue for that order.

There are many possible goals for prioritization. For example, testers
may wish to increase the coverage of code in the system under test at a faster
rate, increase their confidence in the reliability of the system at a faster rate,
or increase the rate at which test suites detect faults in that system during
regression testing. In the definition of the test case prioritization problem,f
represents a quantification of such a goal.

In the literature, many prioritization techniques have been proposed and
their effectiveness studied. We will mention just a few of them. Elbaum et al.[6,
7, 8] and Rothermel et al. [15, 16] proposed a set of modification-, coverage-,
and fault-exposing-potential-based prioritization techniques. Elbaum et al.
[5] incorporated tests costs and fault severities in prioritization. Malishevsky
et al. [11] proposed the cost-benefits model for prioritization. Do et al. [4]
introduced time constraints into prioritization. Mei et al. [12] applied pri-
oritization to service-oriented business applications. Do et al. [3] explored
the usage of mutation faults in prioritization. Bryce et al.[2] utilized pri-
oritization for event-driven software. Raju et al. [14] based prioritization of
test cases on four factors such as the rate of fault detection, requirements
volatility, fault impact, and implementation complexity.Zhang et al. [18]
used integer linear programming for time-aware prioritization. Also, Walcott

193

A. Malishevsky

et al. studied time-aware prioritization in [17]. Mirarab et al. [13] employed
Bayesian Networks for the test case prioritization. Hla et al. [10] used particle
swarm optimization methods for prioritization.

Most of the proposed prioritization methods were developedand studied
independently from each other despite the fact that they hada lot of simi-
larities. We exploited these similarities among prioritization techniques to
develop a unifying prioritization framework. This framework can express ev-
ery prioritization technique developed so far. Its main benefits include the
ability to facilitate creation of new prioritization techniques and their analy-
sis, while providing a standard way of looking at techniques. This framework
allows us to implement a general prioritization algorithm whose parameters
can instantiate various prioritization techniques. It allows rapid prototyping
of and research on a variety of new prioritization techniques with minimal
coding, while shortening the time to study them, encouraging experimenta-
tion with development of new techniques, and reducing the number of errors
that might occur if every technique is to be implemented fromscratch.

2 Combination/Condensation Structure

We now formally define the combination/condensation (CC) structure on
which our framework is based. We first define anelemente. An element
represents a single piece of data used by a prioritization technique. For ex-
ample, an elemente ∈ E can represent coverage information for a given
statements, modification information (number of lines changed) for function
f , or the fault-exposing-potential for locationl. A single element, however,
represents this information for thewhole test suite; thus, it contains such data
for every test from the test suite. We also define the setE as the set of all
elements used in the combination/condensation structure.

We definesub-elementet to be a constituent part of elemente corre-
sponding to a given testt. We represent anelemente ∈ E as a tuple
< e1, e2, ..., e|T | > of size |T |, whereT is a test suite. For example, if
elemente represents coverage information for statements, each sub-element
et represents coverage information for statements with respect to test caset.

A vectorv in our structure is a one dimensional array of elements. More
formally, v =< c1, c2, ..., c|v| >, where∀cl 1 ≤ l ≤ |v| ∃e ∈ E cl ≡ e.

194

The general prioritization framework

We define a set of elements that comprise a vectorv to beEv.
We define agroupG to be a tuple of vectors,G =< v1, v2, ..., v|G| >.
We defineV to be a set of all vectors across all groups.

⋃
v∈V Ev ⊆ E,

but this subset may be proper: some elements may not belong toany vector.
We define such elements asfree (e is free iff ∀v ∈ V e /∈ Ev). All vectors
that belong to the same group must becompatible, defined as having the same
number of elements. Vectors across different groups need not be compatible.

For each groupG, we defineMG = (mi,j) to be the matrix whose
columns are the vectors inG, somi,j represents thei-th component of the
j-th vector inG.

Finally, on the top level, asuper-groupSG is defined as a set of groups.
Informally, each element represents a single item of information used by

a prioritization technique. It may include function coverage, test costs [5],
module criticalities [5], change information [7], or fault-exposing-potential
information [6]. Vectors usually represent sets of elements that are treated
in the same way, such as coverage, change information, fault-exposing-
potential, etc. Groups usually represent sets of vectors used to compute a
single component of the final value (produced by the structure).

Next, we define several functions that operate on this CC structure. First,
for each groupG containing|G| vectors, we define anelement combination
function

fG
elementcombine(x1, x2, ..., x|G|, α) (1)

This function takes a sliceMG
i,1...|G| (an array< x1, x2, ..., x|G| > wherexl is

thei-th component of thel-th vector inG). This function also has argumentα
which will be explained later. Each group has its own function fG

elementcombine.
Next, for each groupG, we define acondensation function

fG
condensation(y1, y2, ..., yk, α), (2)

wherek is the number of elements in each vector in groupG. This function
takes the array< y1, y2, ..., yk >, where eachyi is the result of applying
anelement combinefunction to thei-th slice of matrixMG (defined earlier)
(yi = fG

elementcombine(mi,1,mi,2, ...,mi,|G|, α) ∀i, 1 ≤ i ≤ k), and an
argumentα (explained later). Each group has its owncondensation function.

195

A. Malishevsky

Finally, we define asuper-group combination function

fgroup combine(z1, z2, ..., z|SG|, α) (3)

This function takes an array< z1, z2, ..., z|SG| > (zj corresponds to group
Gj ∈ SG) and an argumentα (explained later). Eachzj is produced by a

condensation function: zj = f
Gj

condensation(y1, y2, ..., yk, α).
We call theelement combination function, condensation function, and

super-group combination function; structure functions(SF).
We call this sub-element/element/vector/group/supergroup structure, to-

gether with the structure functions, acombination/condensation structure.
LetCCF be a particular combination/condensation structure. We define

a functionFCC(CCF,E, α) which takesCCF , setE of elements, and an
argumentα (explained later), and produces the result of applying the structure
functions to the elements ofE.

3 Framework and algorithm

In the framework that we now present, we use an iterative approach in which
we apply combination/condensation structures to compute award values1 and
to alter elements each time a new test is selected. The main idea is to mod-
ify elementse ∈ E, given a newly selected test. This framework uses two
CC structures: one,CCFaward, for award value computation and another,
CCFupdate, for updating elements fromE, whereE is the set of all elements
used in the framework.

To compute award values, for each testt ∈ T , we obtain at =
FCC(CCFaward, E, t). To select the test with the best award value, we com-
putets = fbest(~a). Functionfbest takes a vector of award values~a and finds
the test (id) with the best award value.

After a new test is selected, the framework algorithm updates all elements
e ∈ E. To compute a new value for an elemente, several steps are taken.
First, for each testtu ∈ T and for each elemente ∈ E, we computeutue =
FCC(CCFupdate, E,< ts, tu, e >), using CC structureCCFupdate, wherets
is the test selected in the previous step. Second, we update every element

1An award value is the measure of test case’s “worth”.

196

The general prioritization framework

Algorithm 1 The prioritization framework algorithm.
1: Initialize elements inE
2: List = ǫ
3: for all tu ∈ T do
4: for all e ∈ E do
5: x

tu
e ← fupdate(e

tu , FCC(CCFupdate, E,< nil, tu, e >))
6: end for
7: end for
8: for all tu ∈ T do
9: for all e ∈ E do

10: val(etu)← x
tu
e

11: end for
12: end for
13: loop
14: for all t ∈ T do
15: at ← FCC(CCFaward, E, t)
16: end for
17: ts ← fbest(~a)
18: if ats = nil then
19: HALT
20: end if
21: Add ts into List
22: for all tu ∈ T do
23: for all e ∈ E do
24: x

tu
e ← fupdate(e

tu , FCC(CCFupdate, E,< ts, tu, e >))
25: end for
26: end for
27: for all tu ∈ T do
28: for all e ∈ E do
29: val(etu)← x

tu
e

30: end for
31: end for
32: end loop

e ∈ E for every testtu ∈ T val(etu) = fupdate(e
tu , utue). We defineval(x) to

be the value ofx.
The framework is applied as follows: determine the set of elementsE in

all structures, determine the CC structureCCFaward for award computation
containing a subset ofE, determine CC structureCCFupdatefor update com-
putation containing a subset ofE, determine initial values for all elements
in E, determine a function for element updatingfupdate, decide on a sorting
function fbest, and finally, apply the framework algorithm that initializes all
elements and computes award values, selects a test, and updates elements
until the halting condition is satisfied.

The framework algorithm that implements prioritization techniques is
presented as Algorithm 1. Lines 3-7 compute initial values for every ele-
ment. Lines 8-12 set element values to the values computed inlines 3-7.

197

A. Malishevsky

Group2

V1 V2V1

Group1

V2

fepF5
fepF4
fepF3
fepF2
fepF1

covF5
covF4
covF3
covF2
covF1

bfiF5
bfiF4
bfiF3
bfiF2
bfiF1

covF5
covF4
covF3
covF2
covF1

Figure 1. The structure for prioritization techniquefn-bfi-fep-nofb.

Lines 13-32 implement the main loop computing the prioritized test case se-
quence. Lines 14-16 compute test award values. Line 17 finds the test with
the highest award value. Lines 18-20 test the halting condition. Line 19 adds
the selected test to the ordered sequence. Lines 22-26 compute the new val-
ues of elements. Lines 27-31 update the value of every element using values
computed in lines 18-20. We define thenil value to be the lowest award value
a test can have. During comparisons, a test case with award valuenil can be
chosen only if there are no tests inT with award values not equal tonil.

4 An example

Now we will demonstrate how to fit one existing prioritization technique into
the framework. Thefn-bfi-fep-nofb techniqueprioritizes tests in an order
of decreasing values of sum of covered fault-exposing-potential2 of modi-
fied functions [7]. Thus, this technique employs a binary fault index3 and
fault-exposing-potential information. There are two vectors in each of the
two groups: coverage and binary fault index vectors in the first group, and
coverage and fault-exposing-potential vectors in the second group. In each
group, corresponding elements of that group’s two vectors are multiplied and
summed. Then, for each test case, an award value is created asa tuple con-
sisting of two values, one from each group; this is used to order test cases.
Award values, being tuples, are compared element-wise: first elements are
used for sorting, and, in a case of a tie, second elements are compared. The

2The probability that a given test case reveals a fault in a given location, if one exists [7].
3Binary fault index is the metric on a code change [7].

198

The general prioritization framework

combination/condensation structure for the award value computation for this
technique is presented in Figure 1 where theelement combinationfunction is
multiplication, thecondensationfunction is summation, and thegroup com-
bination function is tuple creation.CovFi is the binary function coverage
information for functionFi, bfiF i is the binary fault index for functionFi,
andfepF i is the fault exposing potential for functionFi. Each ofcovF i,
bfiF i, andfepF i is a vector of size|T | whose components correspond to
test cases from test suiteT . As we can see, these techniques fit easily into the
framework.

5 Conclusions

We exploited similarities among prioritization techniques to develop a uni-
fying prioritization framework. This framework can express prioritization
techniques developed so far. This framework helps to createnew prioritiza-
tion techniques and analyse them, while providing a standard way of looking
at techniques. This framework allows us to implement a general prioritization
algorithm whose parameters can instantiate various prioritization techniques.
It allows rapid prototyping of techniques and research on a variety of new
techniques with minimal coding, shortening study time, encouraging experi-
mentation with development of new techniques, and reducingthe number of
errors that might occur if a technique is to be implemented from scratch.

References

[1] B. Beizer, Software Testing Techniques. Van Nostrand Reinhold, New
York, NY, 1990.

[2] R. Bryce, S. Sampath, and A. Memon, “Developing a single model and
test prioritization strategies for event-driven software.” IEEE Trans. on
Softw. Eng., Vol. 37, No. 1, pp. 48–64, Jan.-Feb. 2011. Available: doi:
10.1109/TSE.2010.12.

[3] H. Do and G. Rothermel, “On the use of mutation faults in empir-
ical assessments of test case prioritization techniques.”IEEE Trans.
Softw. Eng., Vol. 32, No. 9, pp. 733–752, Sep. 2006. Available: doi:
10.1109/TSE.2006.92.

199

A. Malishevsky

[4] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects of
time constraints on test case prioritization: A series of controlled ex-
periments.”IEEE Trans. on Softw. Eng., Vol. 36, No. 5, pp. 593–617,
Sep./Oct. 2010. doi: 10.1109/TSE.2010.58.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating varying
test costs and fault severities into test case prioritization.” in Proc. of the
Intern. Conf. on Softw. Eng., 2001, pp. 329–338 .

[6] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test case prioritization:
A family of empirical studies.”IEEE Trans. of Softw. Eng., Vol. 28, No.
2, pp. 159–182, Feb. 2002.

[7] S. Elbaum, P. Kallakuri, A. G. Malishevsky, G. Rothermel, and S. Kan-
duri, “Understanding the effects of changes on the cost-effectiveness of
regression testing techniques.”Journal of Software Testing, Verification,
and Reliability, Vol. 13, No. 2, pp. 65–83, June 2003.

[8] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky, “Se-
lecting a cost-effective test case prioritization technique.” Softw. Qual-
ity J., Vol. 12, No. 3, pp. 185–210, Sep. 2004. Available: doi:
10.1023/B:SQJO.0000034708.84524.22.

[9] C. Ghezzi, M. Jazayeri, and D. Mandrioli,Fundamentals of Software
Engineerijng. 1st ed., Upper Saddle River, NJ: Prentice Hall, 1991.

[10] K. Hla, Y. Choi, and J. Park, “Applying particle swarm opti-
mization to prioritizing test cases for embedded real time soft-
ware retesting.” inIEEE 8th Intern. Conf. on Computer and In-
form. Technology Workshops, pp. 527–532, 2008. Available: doi:
10.1109/CIT.2008.Workshops.104.

[11] A. Malishevsky, G. Rothermel, and S. Elbaum, “Modelingthe cost-
benefits tradeoffs for regression testing techniques.” inProceedings of
the International Conference on Software Maintenance, 2002, pp. 204–
213.

[12] L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse, “Test case prior-
itization for regression testing of service-oriented business applica-
tions.” in Proc. of the 18th Intern. Conf. on World Wide Web, WWW
’09, 2009 pp. 901–910, New York, NY, USA: ACM. Available: doi:
10.1145/1526709.1526830.

[13] S. Mirarab and L. Tahvildari, “An empirical study on bayesian network-
based approach for test case prioritization.” in2008 1st Intern. Conf. on

200

The general prioritization framework

Softw. Testing, Verification, and Validation, 2008, pp. 278–287, Avail-
able: doi: 10.1109/ICST.2008.57.

[14] S. Raju and G.V. Uma, “An efficient method to achieve effective test
case prioritization in regression testing using prioritization factors.”
Asian J. of Inform. Tech., Vol. 11, No. 5, pp. 169–180, 2012. Available:
doi: 10.3923/ajit.2012.169.180.

[15] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri, and X. Qiu,
“On test suite composition and cost-effective regression testing.”ACM
Trans. Softw. Eng. Methodol., Vol. 13, No. 3, pp. 277–331, July 2004.
Available: doi: 10.1145/1027092.1027093.

[16] Gregg Rothermel, Sebastian Elbaum, Alexey Malishevsky, Praveen
Kallakuri, and Brian Davia, “The impact of test suite granularity on
the cost-effectiveness of regression testing.” inProc. of the 24th Intern.
Conf. on Software Engineering, 2002, pp. 230–240.

[17] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer,
and Robert S. Roos, “Time-aware test suite prioritization.” in Proc.
of the 2006 Intern. Symp. on Softw. Testing and Analysis, ISSTA
’06, 2006, pp. 1–12, New York, NY, USA: ACM. Available: doi:
10.1145/1146238.1146240.

[18] L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-case
prioritization using integer linear programming.” inProc. of the 18th
Intern. Symp. on Softw. Testing and Analysis, 2009, pp. 213–224. Avail-
able: doi: 10.1145/1572272.1572297.

Alexey Malishevsky Received March 29, 2016

Institution: ESC “Institute for Applied System Analysis” National Technical University of
Ukraine “KPI”
Address: building 35, 37 Prospect Peremohy, 03056, Kyiv, Ukraine
Phone: +380504101177
E–mail:alexeym s@yahoo.com

201

