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Abstract

We extend known structural theorems, primarily a result of
Axenovich and Iverson, for the strict edge colorings of the com-
plete graph Kn which avoid monochromatic and rainbow trian-
gles to discover recursive relationships between the chromatic
spectra of the bihypergraphs modeling this coloring problem. In
so doing, we begin a systematic study of coloring properties of
mixed hypergraphs derived from coloring the edges of a com-
plete graph Kn in such a way that there are no rainbow copies
of Kr and no monochromatic copies of Km, where n > r > 3,
n > m > 3. We present the chromatic spectra of the bihyper-
graph models of Kn for 4 6 n 6 12 and r = m = 3. This study
fits in the larger context of investigating mixed hypergraph struc-
tures that realize given spectral values, as well as investigations
of the sufficiency of the spectral coefficients in obtaining recur-
sive relationships without the need to subdivide them further
into terms that count finer distinctions in the feasible partitions
of the hypergraph. The bihypergraphs arising in this simplest
case where r = m = 3 have spectra that are gap free and which
do allow a recursive relationship, albeit a complicated one. The
continuation of this project in future work will examine if both of
these facts remain true for derived Ramsey Mixed Hypergraphs
corresponding to larger r and m.
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1 Definitions

A hypergraph H = (X, E) is a collection of vertices X = {xi|i ∈ I}
and a collection of hyperedges E = {ej ⊆ X|j ∈ J}. A coloring of H
is a mapping f : X → [k], where [k] = {1, ..., k}. The inverse image
f−1(i) is a color set defined by the coloring f and the collection of
the nonempty color sets defined by f gives a partition of X. When
f is a surjection, the coloring is said to be strict. Below, all colorings
are assumed to be strict unless stated otherwise. In mixed hypergraph
coloring ( [14]–[16]) there are subsets C and D of the hyperedge set
E which place conditions on colorings. A coloring f is proper if it
assigns the same color to at least two vertices in each hyperedge in C
and different colors to at least two vertices in each hyperedge in D.
Hence, a hyperedge in C cannot be rainbow (all vertices of distinct
colors), and a hyperedge in D cannot be monochrome (all vertices of
the same color). For convenience, we refer to the hyperedges in C
and D as C-edges and D-edges. The partitions of X corresponding to
proper colorings are the feasible partitions of H. A mixed hypergraph
H = (X, C,D) is a bihypergraph when E = C = D, thereby requiring
both coloring conditions on every hyperedge of H.

Mixed hypergraph coloring has many diverse applications. The
monograph [16] gives an overview of many of these applications, such
as list colorings without lists and problems in resource allocation, data
base management, and molecular biology. As it is shown in [10], mixed
hypergraphs can be used to efficiently model many graph coloring prob-
lems including homomorphisms of simple graphs and multigraphs; cir-
cular colorings; (H,C,K)-colorings; locally surjective, locally bijective,
and locally injective homomorphisms; L(p, q)-labelings; the channel as-
signment problem; and T-colorings and generalized T-colorings. There
are also applications of mixed hypergraph coloring to issues regarding
cybersecurity. One such reference is a recent PhD thesis [12] giving
algorithms for scalable fault tolerance.

It is well-known, see [16], that the chromatic polynomial P =
P (H) = P (H, λ), which is the function that counts the number of,
not necessarily strict, proper λ-colorings of H, can be expressed in the
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form

P =
n
∑

i=1

Riλ
i , (1)

where |X| = n and λi = λ(λ− 1) · · · (λ− i+ 1) is the falling factorial.
Note that the falling factorial counts the number of colorings of the
complete graph on i vertices. The coefficients Ri in (1) count the
number of feasible partitions of H using i nonempty subsets. Without
coloring conditions, given by defining the sets C and D in E , Ri is the
Stirling number of the second kind S(n, i) and their sum is the nth Bell
number Bn counting the number of partitions of a set of order n. See,
for example, [7]. With coloring conditions, we have the trivial bound
Ri 6 S(n, i). The collection of these coefficients {R1, ..., Rn} is called
the chromatic spectrum of H. The smallest value of i for which Ri is
nonzero is the (lower)-chromatic number χ(H) and the largest value of
i for which Ri is nonzero is the upper-chromatic number χ(H). If all
Ri are nonzero for χ(H) 6 i 6 χ(H), the spectrum is said to be gap
free. The set of indices for which the spectral coefficients are nonzero
is the feasible set of H. Not only are gaps possible, but any finite set
of positive integers is the feasible set of some mixed hypergraph if and
only if the set omits 1, or includes 1 and is gap free. See [8].

The splitting-contraction algorithm [14]–[16] finds the chromatic
polynomial of any mixed hypergraph, but it has a high level of computa-
tional complexity that makes it impractical to use in large hypergraphs.
In [13], we use an extension to the splitting-contraction algorithm in
the special case of complete uniform interval mixed hypergraphs to find
recursive relationships between their chromatic polynomials, where the
recursion is on the order of their vertex sets. Recursive relationships
for the chromatic polynomials naturally include recursive relationships
for the chromatic spectrum values. Our main results here regard a col-
lection of bihypergraphs which model a particular question in Ramsey
Theory. We find recursive relationships for the individual chromatic
spectral values of these bihypergraphs directly, and do not consider
further the full chromatic polynomials. By focusing on the chromatic
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spectra, we are focused on the growth patterns of the collections of fea-
sible partitions. We give two different ideas of equivalence of colorings
to distinguish between the objects counted by the chromatic spectral
values and coloring patterns that are the same in a weaker sense.

Two colorings f and g are isomorphic if there is a permutation σ
of the vertex set X so that f = g ◦σ. Two k-colorings are equivalent if
there is a permuation θ of the colors [k] so that f = θ ◦ g. Equivalent
colorings give the same feasible partition, whereas isomorphic colorings
only give the same coloring pattern. Since the chromatic spectral values
count the number of nonequivalent colorings, or isomorphic colorings
with multiplicity, we say nonequivalent colorings are distinct.

2 Background of a Ramsey Problem

Let f : E(Kn) → [k] be an edge coloring of the complete graph on n
vertices. Let Gm and Gr be two graphs. The coloring f is said to
be (Gm, Gr)-good if there is no monochrome subgraph isomorphic to
Gm and no rainbow subgraph isomorphic to Gr. Define the derived
Ramsey Mixed Hypergraph HR = (E(Kn), C(Gr),D(Gm)) to be the
mixed hypergraph with vertex set corresponding to the edge set of
Kn, C-edges corresponding to the copies of Gr in Kn, and D-edges
corresponding to the copies of Gm in Kn. In a more general setting this
concept was first introduced by Voloshin in 2002 in [16, p.157] under
the name of “derived mixed hypergraph of a hypergraph H = (X, E)”.
In this language, for example, the classic graph Ramsey number R(p, p)
(the smallest integer n such that any 2-coloring of E(Kn) contains a
monochromatic copy of Kp in color 1 or a monochromatic copy of Kp in
color 2) is the smallest integer n such that the lower chromatic number
χ(HR) = χ(E(Kn), ∅,D(Kp)) > 2.

Clearly, a (Gm, Gr)-good edge coloring f of Kn is a proper color-
ing of the mixed hypergraph HR. Axenovich and Iverson [1] define
maxR(n;Gm, Gr) and minR(n;Gm, Gr) to be the maximum and min-
imum number of colors, respectively, in a (Gm, Gr)-good edge coloring
of Kn. These numbers are the upper and lower chromatic numbers of
HR. Further, let F (k;Gm, Gr) be the largest value of n for which there
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is a (Gm, Gr)-good edge k-coloring of Kn. These kinds of numbers have
been studied by many authors in Ramsey and anti-Ramsey Theory, see
for example [3]–[5], [9].

For the remainder we work with the particular case when Gm
∼=

Gr
∼= K3. As such, it should be understood that good colorings in the

following are (K3,K3)-good edge colorings of a complete graph. By an
easy induction argument, it can be seen that maxR(n;K3,K3) = n−1.
In [6] the authors show that every good (n−1)-coloring can be obtained
as a kind of product of two good colored cliques. In [3], Chung and
Graham prove that

F (k;K3,K3) =

{

5k/2 if k is even

2 · 5(k−1)/2 if k is odd
(2)

by examining the monochrome neighborhoods of a fixed vertex x, de-
fined by Ni(x) = {y|f(xy) = i}. They also remark that a similar analy-
sis shows that the colorings in the extremal cases can be described using
a recursive process with two kinds of products on colored cliques with
two and five factors. Axenovich and Iverson in [1] give a more detailed
account of these extremal colorings by using product structures on sets
of colorings that equate to the products described by Chung and Gra-
ham. Axenovich and Iverson also give a proof examining monochrome
neighborhoods, and use a structural lemma begun in an earlier paper
by Axenovich and Jamison [2]. In the next section we state their lemma
and show that it, in fact, gives a description of all good edge colorings
of Kn using the same kind of product structures, but we need a product
with four factors in addition to the products with two and five factors.
Note that we favor the perspective of products of colored subgraphs,
as described by Chung and Graham, as opposed to the products of
sets of colorings in Axenovich and Iverson. These products are built
by designating color patterns on the join edges of an underlying join of
the factors. Though we refer to these as product structures, they are
actually multivalued products that are more clearly described as blow
ups of the coloring patterns used on the join edges. That perspective
was taken by Axenovich and Iverson in their products of sets of color-
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ings. We explicitly define these products after listing the isomorphism
classes of the good colorings for K2 through K5.

The structural theorem on the good edge colorings gives recursive
relationships between the chromatic spectral values of the correspond-
ing bihypergraphs. The recursion is on n, the size of the underlying
complete graphs which generate this family of derived 3-regular bihy-
pergraphs. Many authors have examined complexity issues and ro-
bustness of mixed hypergraphs, and it is known that even 3-regular
bihypergraphs provide diverse models with a lot of complexity. Even
the computation of the chromatic spectrum of 3-regular bihypergraphs
is a hard problem. For example, in [13], the bihypergraph case for
uniform complete interval hypergraphs, which have a relatively simple
structure, is shown to be much harder than the cases where all the
hyperedges are C-edges or all D-edges. In the latter cases simple re-
cursive relationships are found for all sizes of the uniform edges, but
for bihypergraphs only recursive relationships are shown for bi-edges
of size 3 or size 4. Our main result is the recursive relationships that
follow from the product structure. However, we can also use the prod-
uct structure to find an explicit formula for the leading coefficient, and
indicate some weak bounds on the growth of the spectral coefficient
of degree n − 2. After commenting on the techniques used to obtain
these results, we conclude with the chromatic spectra corresponding to
K2 through K12, a description of the Java program used to compute
these data using the recursive relationship, and a description of a brute
force sorting algorithm that was also used to count feasible partitions
up through the K11 case.

3 Structure of Good Colorings

In Figure 1 we list the isomorphic colorings, or coloring patterns, for
all of the good colorings of K2 through K5. With each figure we list
the number of distinct colorings in that isomorphism class.

The coloring patterns in Figure 1 can be obtained by hand, though
it can be tedious work to get the patterns for K5. They also result from
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Figure 1. The isomorphism classes of (K3,K3)-good coloring patterns
for K2 through K5 and the number of distinct colorings in each class.
The designated patterns are the prime patterns used to define products
that generate all good colorings of any Kn.
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the forthcoming structural theorem. The three patterns in Figure 1 in
the three boxes are the prime patterns used to define the necessary
product structures.

Let the symbol [r0, r1] represent any of the colored complete graphs
obtained by replacing the vertices in the prime coloring of K2 with
colored complete graphsKr0 andKr1 where the factors are edge colored
with colors different from that used in the original K2. The resulting
complete graph Kr0+r1 is the join of the two underlying factors with
each of the join edges colored by the color in the original K2. This
is the operation used in [6] and is equivalent to operations appearing
in [3] and [1].

Let the symbol [r0, r1, r2, r3] represent any of the colored complete
graphs obtained by replacing the vertices in any of the six prime color-
ings of K4 with colored complete graphs Kr0 ,Kr1 ,Kr2 , and Kr3 , where
the factors are edge colored with colors different from the two used in
the original K4.

Let the symbol [r0, r1, r2, r3, r4] represent any of the colored com-
plete graphs obtained by replacing the vertices in any of the six prime
colorings of K5 with colored complete graphs Kr0 ,Kr1 ,Kr2 ,Kr3 , and
Kr4 , where the factors are edge colored with colors different from the
two used in the original K5. This is the same operation as the one
defined in [3], but they used just one of the six 2-colorings of K5 and
considered permutations of the factors to obtain the other results of
our multivalued product.

For convienence, when the orders of the factors are known, we al-
ways order the factors so that r0 > r1 > . . . > r4.

The products of sets of colorings defined in [1] give all of these
products and more, but they only use the ones corresponding to these
two and five factor products to describe the extremal coloring patterns
corresponding to (2).

The three distinct good colorings of K3 are obtained from the prod-
uct [2, 1]. The nonprime good colorings of K4 are obtained from [2, 2]
and [3, 1]. Note that the operation [2, 2] gives 2-colorings when the
same color is used on the factors and 3-colorings when different colors
are used on the factors. The first two nonprime good colorings of K5
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shown in Figure 1 are 4-colorings obtained from using the two nonisom-
porphic 3-colorings of K4 in [4, 1]. The last good 4-coloring pattern is
obtained from [3, 2]. The five good 3-coloring patterns of K5 are given
by [4, 1], [4, 1], [3, 2], [3, 2], and [2, 1, 1, 1], respectively. The two noni-
somorphic good 4-coloring patterns given by [4, 1] come from the two
nonisomorphic good 2-colorings of K4. However, the two nonisomor-
phic good 4-coloring patterns given by [3, 2] come from the two choices
of colors on K2. See Section 4 to see feasible partitions of the labeled
edge set of K5 corresponding to these coloring patterns.

We now show that these three operations are enough to generate
all of the good colorings for any Kn.

Following Axenovich and Iverson, we define a monochromatic pair
and a mixed pair of subsets of vertices of an edge colored complete
graph. Let f be a good coloring of Kn and let A and B be subsets
of V (Kn). Put c(A,B) equal to the set of colors f assigned to edges
ab for any a ∈ A and b ∈ B. A pair (A,B) is monochromatic if
c(A,B) = {i}. The pair is mixed if there are partitions A = A′ ∪ A′′

and B = B′ ∪ B′′ with c(A′, B′) = c(B′, B′′) = c(B′′, A′′) = i and
c(A′, B′′) = c(A′, A′′) = c(A′′, B′) = {j}. The sets A′ and B′ may be
empty, but not both. See Figure 2.

Lemma 1. [Axenovich/Iverson] Let v ∈ V (Kn) and Vi = Ni(v).
Order the colors so that Vi 6= ∅ for i = 1, . . . ,m. Then there is a re-
ordering such that:

a) c(Vi, Vj) = {i, j} and the pair (Vi, Vj) is either monochromatic
or mixed,

b) If (Vi, Vj) is monochromatic, then c(Vi, Vj) = {i},

c) If (Vi, Vj) is mixed, then j = i+ 1,

d) If there is a mixed pair (Vi, Vj), then neither (Vi−1, Vi) or
(Vi+1, Vi+2) is mixed.
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A′ B′

B′′A′′

B′

B′′A

Figure 2. A mixed pair A and B.

An edge coloring is lexical if there is an ordering of the vertex set
so that each edge vivj is assigned color i whenever i < j. As Axenovich
and Iverson comment, their lemma classifies good colorings as blow
ups of lexical colorings, with the possible exceptions of mixed pairs of
consecutive sets. A set can be in only one mixed pair. See Figure 3.

Theorem 1. Any good colored Kn is obtained uniquely as one of the
products from [r0, r1], [r0, r1, r2, r3], or [r0, r1, r2, r3, r4], with r0 > r1 >
. . . > r4 and with good-colorings on each factor.

Proof Choose a vertex v ∈ V (Kn) and order the monochrome neigh-
borhoods of v as in the conclusion of Lemma 1.

Suppose m = 1. Then V (Kn) − v = N1(v) and the colored Kn is
realized by [n− 1, 1] with the join edges colored by color 1.

Suppose m > 2. There are two cases to consider. See Figure 3.

If (V1, V2) is a monochromatic pair, then c(V1, Vj) = {1} for all j > 1
and the colored Kn is realized by a product with two factors given by
the induced subgraphs Kn[v ∪

⋃m
i=2 Vi] and Kn[V1].

If (V1, V2) is a mixed pair, then c(V1, Vj) = {1} for all j > 2,
c(V2, Vj) = {2} for all j > 2, and the colored Kn is realized by a prod-
uct with four or five factors, depending on whether one of the subsets
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of the partitions of V1 or V2 is empty. The factors are the subgraphs
induced by V ′

1 , V
′′

1 , V
′

2 , V
′′

2 , and v ∪
⋃m

i=3 Vi.

The uniqueness follows immediately, since the colors on the join
edges of the products are incident to every vertex in each of the three
product structures.

v

V ′

1

V ′

2

V ′′

2

V ′′

1

V ′

3

V ′

4

V ′′

4

V ′′

3

. . .

Figure 3. The product structures of any good coloring for Theorem 1.
When V ′

1 and V ′

2 are both empty, the product has two factors. When
V ′

1 is empty, the product has four factors. Otherwise the product has
five factors.

There are no restrictions on the size of the factors in Theorem 1.
When each factor is K1, we get the three prime coloring patterns of
Figure 1. Considering the possible arithmetic partitions of 5 of sizes
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2, 4, and 5, the patterns shown in Figure 1 form a complete list of the
good coloring patterns for K5.
If we color each factor using one fewer color than its order, we have
that each product can have up to (r0 − 1) + (r1 − 1) + (1) = n − 1,
(r0−1)+(r1−1)+(r2−1)+(r3−1)+(2) = n−2, or (r0−1)+(r1−1)+(r2−
1)+(r3−1)+(r4−1)+(2) = n−3 colors. The full structural theorem
then immediately gives the result of [6] that the good colorings using
the maximum number of colors n− 1 are only obtained from products
with two factors with the maximum number of colors used on each
factor and these sets of colors are distinct. The minimum number of
colors is the maximum of the lower chromatic numbers corresponding
to the factors plus 1 if there are two factors, or plus 2 if there are
four or five factors. These minimums clearly cannot decrease as the
order increases. Further, it is inductively clear, using products with
two factors, that the spectra of these derived bihypergraphs are gap
free. We are interested to see if any of the derived Ramsey Mixed
Hypergraphs, for some combination of Kr and Km, realize gaps in their
chromatic spectra. We plan to investigate that possibility in future
research continuing the project begun in this paper.

Define Rn
i to be the coefficients of the chromatic spectrum of the

derived Ramsey Bihypergraph of Kn with bi-edges corresponding to
the triangles of Kn.

Theorem 2. The leading coefficient Rn
n−1 is (2n − 3)!!

Theorem 2 follows immediately from the following lemma.

Lemma 2. Each distinct good (n − 2)-coloring of Kn−1 extends to
(2n − 3) distinct good (n− 1)-colorings of Kn.

Proof It is easy to check that each of the 3 distinct good 2-colorings
of K3 extends to 5 distinct good 3-colorings of K4. Now assume the
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statement of the lemma is true for all orders up through n− 1. Hence,
each good (r− 1)-coloring of Kr extends to 2(r+1)− 3 = 2r− 1 good
r-colorings of Kr+1 for r = 1, . . . , (n−2). Pick any v ∈ V (Kn) and any
good (n− 2)-coloring of Kn−1 applied to Kn − v. From the structural
theorem and comment following it, this coloring can be obtained as a
product [r, s] with r + s = n − 1 using r − 1 colors on the first factor
and s − 1 distinct colors on the second factor. For convenience let’s
say the color on these join edges is green. To increase the number of
colors used on Kn, at least one of the edges joining v to Kn−1 must
be a new color, say red. To avoid creating rainbow triangles, there are
two possibilities: all of these edges can be red, or some of these edges
joining v to one of the factors Kr or Ks are red while all of the edges
joining v to the other factor are green. From the induction hypothesis
we see there are 1+(2r−1)+(2s−1) = 2n−3 possible good colorings
of Kn produced from the selected good (n− 2)-coloring of Kn−1.

The reasoning in the proof of Lemma 2 extends to products with
four and five factors, however we can only obtain a much weaker result
than that of Theorem 2.

Theorem 3. The coefficient Rn
n−2 is greater than (2n − 5)Rn−1

n−3.

Proof Theorem 3 is equivalent to the statement: each distinct good
(n − 3)-coloring of Kn−1 extends to at least (2n − 5) distinct good
(n − 2)-colorings of Kn.

We begin the induction with K5. The prime 2-colorings of K4 each
extend to 5 good 3-colorings of K5 when we join a single vertex to
K4. However, each of the nonprime 2-colorings of K4 extends to 7
good 3-colorings of K5. Without subdividing this collection of good
colorings, we have the weak relationship that R5

3 > 5R4
2. Note we

are also ignoring any 3-colorings of K5 that are extensions of good 3-
colorings of K4. Now assume the statement of the claim is true for all
orders up through n − 1. Pick any v ∈ V (Kn) and any good (n − 3)-
coloring of Kn−1 applied to Kn − v. From the structural theorem and
comment following it, this coloring can be obtained as a product with
two factors or as a product with four factors.
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Treating first the cases when the coloring on Kn−1 is a product with
four factors, we again note that each of the factors must be colored with
the maximum number of colors ri−1, and there must be a new color, say
red, used on at least one of the join edges leading to v when we extend
this coloring to a coloring of Kn. It could be the case that all of the
edges joining v to Kn−1 are red. Otherwise, let’s begin by assuming the
red edges lead to only one factor, say Kr0 . To avoid rainbow triangles,
the edges joining v to another factor, say Kr1 , must all be colored using
the color on the edges joining the two factors Kr0 and Kr1 . Since we
can replace r1 with r2 or r3 in the previous observation, we also see
that these are in fact the only possible patterns; either all of the edges
are red, or there are only red edges leading to one factor and the edges
leading to the other factors are determined by the product structure.
As in the proof of Lemma 2, this good (n−3)-coloring on Kn−1 extends
to 2r0−1+2r1−1+2r2−1+2r3−1+1 = 2n−5 good (n−2)-colorings
on Kn.

In the cases when the good coloring on Kn−1 is a product with
two factors, and noting that we are requiring a new color be used on
at least one edge joining v to Kn−1, there are three subcases possible.
Either one of the factors is colored with the maximum number of colors
ri − 1 while the other is colored with one fewer than the maximum
number, rj − 2, and the colors used on the factors are distinct; or both
factors are colored with the maximum number of colors but share one
color. In the first subcase we use the inductive hypothesis that each
good (ri − 2)-coloring of Kri extends to at least (2ri − 3) distinct good
(ri−1)-colorings of Kri+1 to get that this good (n−3)-coloring of Kn−1

extends to at least 1+2ri− 3+2rj − 1 = 2n− 5 good (n− 2)-colorings
of Kn. In the last subcase, we have that the good coloring extends
to at least 1 + 2r0 − 1 + 2r1 − 1 = 2n − 3 good colorings. Not only
is 2n − 3 greater than 2n − 5, but particular colorings that use the
shared color on all of the edges incident with one vertex of each of the
two factors permit additional extensions with edges joining v to these
vertices possibly colored with this shared color. This completes the
proof.
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Though any good coloring of Kn must be an extension of a good col-
oring of Kn−1, Theorem 3 shows the need to analyze the details of a
particular coloring pattern on Kn−1 to determine how many extensions
it allows. That analysis is even more complex when we do not increase
the number of colors used. Chung and Graham show, in obtaining (2),
that if we do not increase the number of colors used, the number of
good colorings increases for a while and then decreases to zero. In [13]
we first subdivide each spectral coefficient into terms correpsonding to
individual patterns and then piece the subdivisions together to find
recursive relationships between the spectral coefficients themselves. In
this case, with these derived bihypergraphs, the product structure with
only three prime patterns immediately produces a recursive relation-
ship between the spectral coefficients. The details of the contributions
made by different coloring patterns are inherent in this relationship
with the repetition of all of the coefficients throughout the formula.
This formula permits relatively efficient computation of the spectral
coefficients, but does not easily permit more insight, of the form given
above, of the growth patterns of these values.

To state the general recursions we need more terms. Since the re-
cursion is very large, we use a single sigma representing summations
over multiple parameters.

Let P2, P4, and P5 be the sets of arithmetic partitions of n of size
2, 4, and 5 with terms arranged in nonincreasing order. Elements of
these sets form the products [r0, r1], [r0, r1, r2, r3], and [r0, r1, r2, r3, r4].

Let D
[r0,r1]
2 ,D

[r0,r1,r2,r3]
4 , and D

[r0,r1,r2,r3,r4]
5 be the number of ways of

decomposing Kn as the join of the factors Kri in the respective case.
The numbers D∗

i are functions of a particular arithmetic partition and
are multinomial coefficients divided by factorials corresponding to num-
bers of repeated terms in the partition.
We use Cn

k = n!/k!/(n−k)! for the binomial coefficient n choose k and
Pn
k = n!/(n − k)! for the number of permutations of k objects chosen

from n objects.
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Theorem 4. The general coefficient Rn
c is given by

D
[n−1,1]
2 Rn−1

c−1 + 6D
[n−3,1,1,1]
4 Rn−3

c−2 + 6D
[n−4,1,1,1,1]
5 Rn−4

c−2+
∑

P2,r1>1

D
[r0,r1]
2 Rr0

p Rr1
q Cp

z1P
q
z1+

∑

P4,r1>1,r2=1

6D
[r0,r1,1,1]
4 Rr0

p Rr1
q Cp

z2P
q
z2+

∑

P4,r2>1,r3=1

6D
[r0,r1,r2,1]
4 Rr0

p Rr1
q Rr2

r Cp
uP

q
uC

t1
w P r

w+

∑

P4,r3>1

6D
[r0,r1,r2,r3]
4 Rr0

p Rr1
q Rr2

r Rr3
s Cp

uP
q
uC

t1
v P r

vC
t2
x P s

x+

∑

P5,r1>1,r2=1

6D
[r0,r1,1,1,1]
5 Rr0

p Rr1
q Cp

z2P
q
z2+

∑

P5,r2>1,r3=1

6D
[r0,r1,r2,1,1]
5 Rr0

p Rr1
q Rr2

r Cp
uP

q
uC

t1
w P r

w+

∑

P5,r3>1,r4=1

6D
[r0,r1,r2,r3,1]
5 Rr0

p Rr1
q Rr2

r Rr3
s Cp

uP
q
uC

t1
v P r

vC
t2
x P s

x+

∑

P5,r4>1

6D
[r0,r1,r2,r3,r4]
5 Rr0

p Rr1
q Rr2

r Rr3
s Rr4

t Cp
uP

q
uC

t1
v P r

vC
t2
j P s

j C
t3
y P t

y ,

where t1 = p+q−u, t2 = p+q−u+r−v, t3 = p+q−u+r−v+s− j,
z1 = p+q−c+1, z2 = p+q−c+2, w = t1+r−c+2, x = t2+s−c+2,
y = t3 + t− c − 2, and each of the sums is over all possible choices of
colors on the factors so that the total number of colors used is c − 2
(except the first sum which has c−1 colors) and over each of the possible
numbers of intersections of colors between the factors.

Proof We only explain the last summation, as the earlier terms fol-
low from a similar counting argument, where we must separate cases
based on how many factors of each product are K1. The last sum gives
the good c-colorings obtained from products with five factors which
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are all bigger than K1. The symbol D∗

5 is the number of ways of de-
composing Kn with these factors, and there are six distinct coloring
patterns possible on the edges joining these factors for each decom-
position and each of the possible coloring patterns on the individual
factors. We must multiply by the numbers of distinct good colorings
of the factors with p, q, r, s, and t colors used on each of the factors,
where p + q + r + s + t > c − 2. The first two factors may share u
colors. If so, we must multiply by the number of ways of choosing the
common u colors from the p colors used on the first factor when we
color the second factor. Moreover, we get different coloring patterns by
permuting these common colors amongst themselves in the coloring of
the second factor. The third factor may share v colors with the union
of the first two factors. The fourth factor may share j colors with the
union of the first three factors. The term y is the number of colors
the fifth factor must share with the previous four factors, given the
particular choices made on the colors of the previous factors.

In the context of finding the chromatic polynomial, or chromatic
spectrum, the above recursion is interesting for the complexity of the
recursion that can exist even for a 3-regular bihypergraph. Perhaps
most interesting are the factors of 6 that represent a subset of the good
2-colorings and not the entire spectral value R4

2. Are there other exam-
ples of ordered families of mixed hypergraphs which exhibit recursive
relationships which require a finer decomposition than that which is
given by the full chromatic spectrum? In the example given above, that
finer level of decomposition only required subdividing one set of feasi-
ble partitions. Are there other families that require subdividing more
of the spectral values in recursive relationships? In [13] we conjecture
that this may be the case for uniform complete interval bihypergraphs
with edge size bigger than 4.
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4 The spectra for K2 through K12

Corollary 1. The chromatic spectrum values for the derived Ramsey
Bihypergraphs corresponding to K2 through K12 are as follows:

K2: [1]
K3: [0, 3]
K4: [0, 9, 15]
K5: [0, 6, 165, 105]
K6: [0, 0, 846, 2790, 945]
K7: [0, 0, 3402, 42273, 49770, 10395]
K8: [0, 0, 10836, 557928, 1604925, 961695, 135135]
K9: [0, 0, 19278, 6972966, 44972172, 55829655, 20210715, 2027025]
K10: [0, 0, 14742, 81569754, 1201982166, 2778115725, 1906370235, 460971000,

34459425]
K11: [0, 0, 0, 875500164, 31404779406, 130507877808, 151891001955,

65874757410, 11365685100, 654729075]
K12: [0, 0, 0, 8588423844, 808974051732, 6002106197472, 11277243566820,

7842349288620, 2338009242030, 301618981125, 13749310575]

The data in Corollary 1 were computed using Java following the
recursive relationships in Theorem 4. After first generating the sets
of arithmetic partitions P2, P4, and P5 and computing the number of
decompositions D2,D4, and D5 for each such partition, one follows the
cases of the recursion to compute the number of distinct good color-
ings contributed by each arithmetic partition. This program can be
extended to find the spectra corresponding to larger Kn using big in-
tegers to avoid errors created due to loss of memory in Java with long
variables after K12. Using longs, Java takes less than 2 seconds (on
a Dell desktop with an Intel(R) Core(TM) i7 CPU 860 processor) to
compute these spectral values.

We also computed most of the data in Corollary 1 using brute force
sorting algorithms to count all good colorings via feasible partitions.
Once labels and an ordering of the edges of Kn are chosen, restricted
growth strings encode the feasible partitions, see [11] for instance. We
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choose to label the edges lexically, which means we first label all the
edges incident to vertex 0 and then the remaining edges incident to
vertex 1 etc. To illustrate this ordering, the distinct good edge colorings
of K5 used as the representatives of the isomorphism classes shown in
Figure 1 correspond to the following feasible partitions:

{{0, 3, 4, 7, 9}, {1, 2, 5, 6, 8}}

{{0, 4, 7}, {1, 2, 5}, {3, 6, 8, 9}}, {{0, 7}, {1, 2, 4, 5}, {3, 6, 8, 9}},
{{0, 9}, {1, 4}, {2, 3, 5, 6, 7, 8}}, {{0}, {1, 4, 9}, {2, 3, 5, 6, 7, 8}},
{{0}, {1, 4, 7, 9}, {2, 3, 5, 6, 8}}

{{0}, {1, 4}, {2, 5, 7}, {3, 6, 8, 9}}, {{0}, {1, 2, 4, 5}, {3, 6, 8, 9},
{7}}, {{0}, {1, 4}, {2, 3, 5, 6, 7, 8}, {9}}

By labeling edges lexically, one can easily determine the labels on
all of the triangles. Generate the first n−1 entries of the growth string.
Upon the generation of the nth entry we encounter a condition on the
strings due to a triangle. We then continue with the process only if
this condition, that exactly two colors are used, is met. As we gener-
ate each additional term of the string we encounter more triangles and
only continue the generation of the string if the corresponding condi-
tions are met. The number of triangles encountered at each stage of
the string generation goes up by one once the first index on the edge
increases. Strings are counted if they make it to the end of the gener-
ation process based on their highest entry, and these counts give the
chromatic spectral values. Using the same machine as above, it took
3.5 hours to run the sorting algorithm for K10, and it took 75 days to
run the sorting algorithm for K11. Comparing the total number of fea-
sible partitions with the total number of possible partitions, counted by
Bell numbers, we get approximate densities of 100, 60, 11.82, 0.23, 3.33×
10−4, 2.23× 10−8, 5.31× 10−14, 3.40× 10−21, 4.64× 10−30, 1.09× 10−40,
and 3.68×10−53 percent respectively. With a decrease in density in the
order of 1010 and the corresponding increase in computing time to run
the sorting algorithms, and another decrease in density in the order of
1013 going from K11 to K12, we chose not to run the sorting algorithm
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for K12.

Our code is available to the reader upon request.
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