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Abstract

We plan to develop a systematic framework for assembling large-
scale computational biological models by reusing and combining al-
ready existing modelling efforts. Our goal is to build a software plat-
form that will compile large-scale biomodels through successive inte-
grations of smaller modules. The modules can be arbitrary executable
programs accompanied by a set of (I/O) interface variables;they may
also have an internal structure (such as a metabolic network, interac-
tion network, etc.) that yields its executable part in a welldefined
way. Firstly, wherever possible, modules with the compatible inter-
nal structure will be joined by combining their structure and by pro-
ducing new larger executable modules (like, combining two metabolic
networks, etc.). Then, irrespective of the underlying internal structure
and modelling formalisms, all the modules will be integrated through
connecting their overlapping interface variables. The resulting com-
posed model will be regarded as an executable program itselfand it
will be simulated by running its submodules in parallel and synchroniz-
ing them via their I/O variables. This composed model in its turn can
also act as a sub-module for some other even large composite model.
The major goal of this project is to deliver a powerful large-scale mod-
eling methodology for the primary use in the fields of Computational
Systems Biology and Bioinformatics.
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1 Introduction

Predictive and comprehensive models of biological cells are highly signifi-
cant for the understanding and engineering biological systems. Such large-
scale whole-cell models have the potential to direct experiments in molecular
biology, facilitate computer-aided design and simulationin synthetic biology,
and enhance personalized therapeutic methods.

The ultimate goal of our research is to develop and implementa generic
technique that will allow for automatic building of custom large-scale multi-
level comprehensive models that are able to describe accurately a biological
phenomenon of interest with a desired level of details. The main idea here
stays in reusing and integrating of already existing disparate modeling efforts
into more representative, and therefore, more accurate, simulations of the tar-
geted phenomenon. The models will be organized into a hierarchical struc-
ture by their levels of abstraction, so that a user can easilynavigate through
the hierarchy and choose the appropriate levels of details for the resulting
integrated model.

In Computational Systems Biology a large number of individual teams
of researchers target isolated subsystems and processes from living cells for
modeling and simulation. In many cases, different researchers model inde-
pendently overlapping, highly related or even the same cellular structures and
processes. Moreover, those computational models focus on some particular
cellular sub-systems while ignoring cross-talks with the other sub-systems
and the other factors that also influence the sub-system under studies. A step
forward towards building representative cellular models will be to join the
disparate efforts of different modelers and build complex large-scale models
via integration of already existing ones.

The greatest challenge here comes from the fact that different research
teams come with their own concepts, abstraction levels, formalisms and
methodology preferences as well as with their own technological limitations
for their models. They contribute to the literature a mass ofknowledge in
the form of models and simulations in different formats, level of details and
data types. One has to overcome those challenges in order to bring numer-
ous modeling and simulation efforts into a significantly more representative
larger comprehensive model that will capture all the features of initial models
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and will agree still with all the respective initial experimental data.

Our method will involve searching for a common ground of integration
between models, regardless of their formalisms and implementation. That
common ground can be used to join models automatically into asingle com-
prehensive simulation system. This will allow models to be integrated on
several levels of details, depending on the required analysis. We will base
our developments on a formal framework for integration of models of dif-
ferent formalisms, implementations and level of details that was presented
in [1].

A software implementation of an integrated whole-cell model was pre-
sented in [2]. A model Mycoplasma genitalium was obtained through joining
of 28 different independent computational submodels, where each submodel
represents some specific cellular process [2]. The model described the dy-
namics of every molecule over the entire life cycle and accounts for the spe-
cific function of every annotated gene product. Each submodel was using
formalism most appropriate to its functioning and existingknowledge. The
submodels were assumed to run approximately independentlyon a short time
scales. Simulations were performed by running through a loop in which the
submodels were run independently at each time step but depended on the
values of variables determined by the other submodels at theprevious time
step. The simulation software worked as a set of communicating running in
parallel Matlab programs, where each program implements a submodel. The
whole-cell software managed to predict the observed experimental data very
accurately as well as it helped also to discover new previously unknown cel-
lular behaviors. In the similar spirit, we will let for coordinated synchronized
execution of different simulation instances within our simulation framework.

In our research, we propose a follow-up for the effort of developing large-
scale biological model building techniques and model integration [1], [2]. We
will represent a model as an executable simulating program that can be in-
tegrated with the other executable simulating programs standing for other
models via a well defined API. We will allow for hierarchical type of model
integration, that is, a number of complex models obtained due to previous
integrations of simpler models can also be integrated together and form even
more complex models.The practical outcome of our research will be a soft-
ware modeling platform that will provide a systematic framework for integra-

120



Large-scale executable biology . . .

tion and coordinated execution of different simulation instances, each simu-
lating different parts of the biological phenomenon of interest. We are going
to validate our methodology and computational platform through building a
prototype for a whole-cell model of the life cycle of either yeast or E.coli, two
of the most studied model organisms [3], [4]. Existing data in well-curated
model database such as Biomodels [5] should be enough at least for a rough
prototype of such a whole-cell model.

2 Background

A formal framework for integration of models of different formalisms, imple-
mentations and level of details was presented in [1]. The framework involves
searching for a common computational ground between the models that will
allow to integrate them, regardless of their formalism and implementation,
across different methodologies into a single agent-based simulation system.
Our abstract model descriptor will be based in particular onthe concept of
behavioral inclusion trees from [1].

Parameter fitting of a model to the experimental data is formulated as a
global optimization problem. The goal is to tweak parameters of the model
in such way that the predicted behavior of the model is as close as possible
to the experimental data. The objective function here showshow far are the
simulated data points from the experimental ones and takes as arguments the
set of parameters to fit. The optimization goal is to find values of the parame-
ters where the objective function reaches the global optimum (minimum). In
particular, COPASI provides functionality for quantitative ODE-based model
parameter estimation. It allows to fit both reaction kineticrate parameters as
well as initial concentrations of the metabolites.

Quantitative model refinement is an essential step in the model develop-
ment cycle. Starting with a high level, abstract representation of a biological
system, one often needs to add details to this representation to reflect changes
in its constituent elements. Any such refinement step has twoaspects: one
structural and one quantitative. The structural aspect of the refinement de-
fines an increase in the resolution of its representation, while the quantitative
one specifies a numerical setup for the model that ensures itsfit preservation
at every refinement step. The refinement should be done so as toensure the
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preservation of the numerical properties of the model, suchas its numerical
fit and validation. In [6]–[10] there were presented methodsfor quantitative
model refinement in a number of modeling frameworks, such as ODE-based
models, rule-based models, Petri net models, guarded command language.
We plan to use quantitative refinement when bringing different models to the
same level of details.

A number of efforts towards integrating a plethora of publicly avail-
able molecular-scale experimental measurements that render intracellular
molecule functions and interactions has facilitated data-driven large-scale
model development [11]. For instance, in [11] there was developed a toolkit
called Moksiskaan that can integrate information about theconnections be-
tween genes, proteins, pathways, drugs and other biological entities from a
large number of databases. As the result, one can obtain a comprehensive
network model encompassing signaling, metabolic, gene regulatory, etc. in-
tracellular relations. We will employ Moksiskaan for collecting a vast range
of biological data needed for model construction and fitting.

Anduril [12] is an open source component-based workflow framework
for scientific data analysis developed at the ComputationalSystems Biology
Laboratory, University of Helsinki. Anduril also providesAPI that allows in-
tegrating rapidly various existing software tools and algorithms into a single
data analysis pipeline. An Anduril pipeline comprises a setof interconnected
executable programs (called components) with well-definedI/O ports, where
an output port of a component may be connected to the input ports of some
number of other components. (for example, see Figure 1). During execution
of a pipeline, a component will be executed as soon as all the input data are
provided by the up-stream components. After execution of the component,
its results become available for the downstream componentsthat can be ex-
ecuted in their turn as soon as all the necessary input data are provided for
them. Anduril is highly scalable computational platform, it runs well both
on desktop personal computers as well as on powerful supercomputers and
clusters. Anduril can run multiple processes in parallel and its pipelines can
be scaled for a distributed execution across the network. The size of Anduril
pipelines can range from several component instances that could run in few
seconds up to thousands of component instances requiring several days of
execution. We will base our model integration platform on Anduril.
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Figure 1. Example of an Anduril workflow (pipeline). Workflow is a set oftasks
(component instances) organized in a directed network. Each component instance
has some defined set of inputs and outputs, where outputs of aninstance are con-
nected to inputs of some other instances. Instances withoutany inputs import data
into the workflow. Instances without any outputs normally output the workflow’s
computation results. For example, herematrixA andmatrixB are instances of a com-
ponentRandomMatrix that is a program generating a random matrix; instancemean
of componentCSVTransformer calculates mean for each row of matrices coming
from matrixA andmatrixB instances; instancescatterPlot generates a specific plot
for the matrices frommatrixA andmatrixB, etc.

3 Integration of computational models

We are planning to obtain a software platform, that will allow a user to specify
the input data (like set of initial models with their software implementations,
model and environment parameters, abstraction levels, experimental data to
fit to, etc.) for some target biological phenomenon and to query for prediction
on some target features of the behavior of the modeled biological system (for
instance, a time course for concentrations of some biochemical species, the
time of cell growth in particular environmental conditions, etc.).

Here, we focus on developing model refinement and integration tech-
niques for biological computational models. This project is a first step to-

123



Vladimir Rogojin, Ion Petre

wards building a system that, based on a user query, will allow collecting and
reuse existing biological computational models in order togenerate automat-
ically custom case-specific comprehensive models for particular biological
phenomenon at the desired abstraction level. We will develop a methodology
that will allow minimizing or avoiding refitting the initialmodels to their cor-
responding experimental data while performing model refinement and model
integration activities.

Our research is a follow-up for the effort of developing large-scale bio-
logical model building techniques and model integration [1],[2]. Particularly,
we will allow for an arbitrary nature of a modeling formalismand its imple-
mentation. A model will be represented by an executable simulating program
and can be integrated with the other executable simulating programs standing
for other models via a well defined API. We will allow for hierarchical type
of model integration, that is, a number of complex models obtained due to
previous integrations of simpler models can also be integrated together and
form even more complex models. We will allow for a high level of scalabil-
ity and flexibility in the sense that a model can be tuned to a particular use
case to fit the expected/desired behavior and to incorporatethe desired level
of details. In particular, we will employ here the previous practices related to
numerical model parameter fitting [13] and model refinement [6]–[10].

We will address the following challenges:

1. Develop and implement intra-formalism integration methods for a
number of different formalisms across different abstraction levels. That
is, we are aiming to develop a systematic approach for automatic ab-
straction level adjustment via refinement and building a single model
through joining a number of initial models, while working within the
same formalism;

2. Develop and implement inter-formalism integration methods;

3. Deploy a generic (plug&play) platform that allows to “plug” compu-
tational models into the composite model, refine them and obtain the
respective large-scale models and simulations.
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4 Methods

We discuss here the methods that we are planning to apply in our research.

4.1 Abstract model descriptor

We will develop a methodology to describe in an abstract way models so that
it will be possible to decide automatically how to join the models and how
to instantiate the resulting integrated model. Thisabstract model descrip-
tor will abstract from the model type (discrete or continuous, stochastic or
deterministic), the modeling frameworks and models implementations.

The model descriptor will include such concepts as anentity (formalizes a
real world physical object), aprocess (represents an activity involving one or
more entities), avariable (a measurable/observable and/or affectable property
of an entity or process). An entity may consist of a number of other entities,
a process can be split in subprocesses, a variable may characterize/affect the
current state of an entity or a process. Also, an entity may bean abstraction of
some other entity and a process may be an abstraction of some other process.

We regard the abstract model descriptor as a digraph with annotated nodes
and edges, Figure 2. In order to enable automatic integration of models basing
on their descriptors, the user has to map nodes and edges of the descriptors to
the corresponding components of the models or simulating instances. The ex-
act way, how this mapping should be performed will depend on the particular
type, formalism and implementation of each of the models.

4.2 Model integration and simulation

Here, the user should provide a set of initial models to integrate along with
their abstract descriptors and mappings between the modelsand their descrip-
tors. We remind, that we regard a model as an executable program or as a
formal construct (a set of chemical reactions, signaling pathways, gene reg-
ulatory nets, etc.) together with its well-defined mapping onto an executable
simulation instance.

We consider the following steps for integrating multiple user-provided
models into one:
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Figure 2. Schematic representation of abstract model descriptor. Anentity can be
a part of/abstraction of some other entity, a process can be apart of/abstraction of
some other process and a variable can be a part of/abstraction of some other variable.
Thepart-of relation is represented by a triple-line edge on the plot, and abstraction-
of is represented as a dotted line. Entity can participate in a process. The relation
participates-in is represented by solid line. A variable can be regarded as aninterface
to the state of an entity or process. The relationinput/output (I/O) is represented by
a double-line edge.

1. For all the models for which we have formally defined constructs,
decide what constructs can be combined and how (for instance, two
metabolic networks can be joined into one). We need to develop meth-
ods for joining models with the “compatible” internal structures into
one model with its internal structure being a union of the original struc-
tures. See for example Figure 3. The internal structures will be joined
through their overlapping components. Those overlapping components
from two different structures that are at different levels of details will
be brought to the same abstraction level via model refinementtech-
niques [6]–[10]. The internal structure integration methodology and
model refinement process strictly depend on the formalism being used,
and we will develop the integration and refinement techniques for a
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Figure 3. Example of integration of two models within the same formalism into
one. The result: modified classic Lotka-Volterra Pray-Predator model [14] with two
types of prey. The model is regarded in terms of chemical reactions (reaction rates
and initial species concentrations are omitted here). One of the initial models de-
scribes dynamics (basically proliferation) of two types ofprey. The other initial
model describes predator’s dynamics and its relation to prey specie (note that this
model does not consider different types of prey species). During the integration pro-
cess, the predators’ model gets refined in order to include relations to the two types
of prey species, then sets of reactions from the prey and the refined predator models
get united.

number of classical formalisms (such as mass-action based ODEs, Petri
nets, Boolean logic networks, etc.) separately. As the result of such in-
tegration of models with the compatible internal structures we will get
one simulation instance that captures the behavior of the original mod-
els;

2. The user may provide a set of experimental data to fit the initial mod-
els. Fit the models to the user-provided time series data where neces-
sary. Translate the resulting formal models into executable simulation
instances;

3. Basing on the abstract model descriptors, decide connections between
the executable simulation instances. The connections can be uni- or bi-
directional. Here, a connection will also mean translationof an output
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from a source simulation instance into an appropriate inputformat for
the destination simulation instance. The type of translation will be de-
cided automatically basing on the classes of the source and destination
instances.

As the result, the integrated model will be the set of executable simulation
instances with the scheme of their interconnections. The integrated model
can be considered as a simulation instance itself and can be further integrated
with the other models.

During the simulation the simulation instances will send toeach other
synchronizing messages that include the current states of some of their com-
ponents as well as their contexts. The connection scheme defines which in-
stance sends messages to which instances and what components states are
included in each of the messages. In particular, the states of entities, pro-
cesses and variables will be communicated. The abstract model descriptor
of each of the initial models will be used to identify the overlapping or re-
lated components between different models. This information will be used
to decide what components of the respective models should berefined, and
what connections to form between instances. If in one of the models one
identifies a set of components that is a refinement of a component from some
other model, then one has to perform the respective refinement in the other
model in order to obtain a set of the components that coincides exactly with
the components from the former model. The refinement procedure depends
on what type, formalism and model implementation is used in the respective
model. When having same component (at the same level of abstraction) in
two different models, one can form a connection between those two models
that specifies in particular what components in these modelsare connected
(also, probably, in which direction). One also associates to the connection a
data transformer/adapter in order to transform the representation of states of
the model component between the respective formalisms and data formats.
See Figures 4, 5, 6 and 7 for an example of combining two simulation in-
stances basing on their abstract descriptors.

The set of connections between a pair of instances defines what compo-
nents communicate their states to the partner model within amessage. Also,
the context of one model that is being sent to the other model along with the
states includes the simulated time point in order to synchronize two models.

128



Large-scale executable biology . . .

Figure 4. An abstract model descriptor for the prey population dynamics and its
mapping to the internal model structure (set of reactions and species)

Figure 5. An abstract model descriptor for the predator population dynamics (in-
cluding population growth/decay and prey consumption) andits mapping to the in-
ternal model structure
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Figure 6. An abstract model descriptor for the predator population dynamics that
was refined with two types of prey in order to have overlappingcomponents between
submodels from (a) and (b) at the same level of details

Figure 7.Basing on the abstract model descriptors for submodels from(a) and (b) it
was decided to refine submodel for (b) into (c), and the overlapping components were
detected between (a) and (c), that are “Prey1” and “Prey2” entities, “Population1
size” and “Population2 size” variables. Hereby, we establish connection between
simulation instances corresponding to (a) and (c) that update each other with the
states of “Prey1”, “Prey2”, “Population1 size” and “Population2 size” components.
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We will develop an API which the simulation instances shouldhandle in
order to exchange messages with each other during the simulation. When a
simulation instance receives a message, it should decide how to update its
internal states of the respective components, especially in the case when the
received message brings set of states contradicting the instance’s own internal
states.

4.3 Software implementation

We will produce a software platform that will construct a large-scale model
through integration and refinement of the existing models.

Our platform will be built on top of the Anduril workflow framework due
to the fact that Anduril provides systematic computationalenvironment for
rapid integration of existing computational tools and algorithms into an or-
ganized pipeline. An integrated model will be implemented as an Anduril
pipeline, where components will represent the initial simulation instances,
and connections between the components will represent connections between
the respective models/instances. We also note, that an Anduril pipeline can
serve as a component to be included in the other pipeline. In other words, An-
duril will allow integrating a complex model within the other more complex
model.

A simulation instance will be a software program wrapping the respec-
tive existing simulation software for the respective model, while handling
the API to communicate to other instances and updating the local states of
the instance according to the states received from the otherinstances. Also,
the wrapper has to handle translation of states between different abstraction
levels. In particular, we can incorporate COPASI as a dynamically linked li-
brary and access all of its simulation and parameter estimation functionality
from our simulation instance program, that can “talk” to other instances and
input/output data into/from the COPASI-simulated model from/to the other
simulation instances. Petri nets can be simulated with S4 Snoopy modeling
software that we are going to access from the respective simulation instance
via well-define API of S4. Simulation instances for the Rule-Based mod-
eling will use BioNetGen software as a command-line tool, orincorporate
directly BioNetGen program code. We will use CellNetAnalyzer Matlab li-
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brary in the simulation instance for Boolean networks. Generally speaking,
any third-party simulation software can be incorporated into our integrative
simulation framework via a wrapping program that handles our API for the
communication with the other simulation instances. Schematically, this idea
is represented in Figure 8.

Figure 8.Scheme of the general organization of simulation instances. Each simu-
lation instance simulates a model of some biological phenomena (for instance, bio-
chemical networks, signaling networks, DNA transcription, RNA translation, etc.)
probably in some well-defined formalism (for instance, mass-action based ODE
model, Petri nets, Boolean networks, etc.) that is being implemented/simulated by
some software (for instance, COPASI for ODE, Snoopy for Petri nets, CellNetAn-
alyzer for Boolean networks, etc.) A simulation instance consists of the original
simulating software and the wrapper that translates between the simulation software
and the messages for the other simulation instances.

5 Discussion

As the result, this project should deliver a powerful methodology for con-
struction of large-scale models via integration of existing models and data.
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The methodology will combine model refinement and integration tech-
niques and assumes both data- and hypotheses-driven model construction ap-
proaches.

We believe that our research will contribute to the scientific modeling
community through the development of a methodology for connecting dif-
ferent computational biological models irrespective of their formalisms, con-
cepts and implementations. The platform that we are planning to implement
will allow to build large-scale models and run comprehensive simulations by
joining independent modeling and simulation efforts from agreat number
of research biomodeling projects. As the result, one will beable to build
rapidly and easily large-scale custom models from a set of already existing
models that will satisfy user-specific particular needs. Inparticular, the exper-
imental biologist researchers should be the first to benefit from our platform
due to the fact that comprehensive large-scale modeling canhelp in discov-
ering new features of cellular processes without the need toconduct multi-
ple expensive laboratory experiments. We may list among theother stake-
holders bioinformaticians, medical-related researchers, synthetic biologists,
bio-engineers, pharmacologists and any one else who needs to run expensive
bio-experiments in-vivo or in-vitro.
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