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Large-scale executable biology using rapid
integration of computational modéls

Vladimir Rogoijin, lon Petre

Abstract

We plan to develop a systematic framework for assemblirgglar
scale computational biological models by reusing and caimgial-
ready existing modelling efforts. Our goal is to build a s@fte plat-
form that will compile large-scale biomodels through sissbee inte-
grations of smaller modules. The modules can be arbitraggutable
programs accompanied by a set of (1/O) interface varialhey;, may
also have an internal structure (such as a metabolic nefwadscac-
tion network, etc.) that yields its executable part in a vasfined
way. Firstly, wherever possible, modules with the compatibter-
nal structure will be joined by combining their structuredasy pro-
ducing new larger executable modules (like, combining tvetaholic
networks, etc.). Then, irrespective of the underlyingrinéé structure
and modelling formalisms, all the modules will be integdatierough
connecting their overlapping interface variables. Theiltesy com-
posed model will be regarded as an executable program #gellfit
will be simulated by running its submodules in parallel ayxichroniz-
ing them via their I/O variables. This composed model inutstcan
also act as a sub-module for some other even large composielm
The major goal of this project is to deliver a powerful laiggale mod-
eling methodology for the primary use in the fields of Compateal
Systems Biology and Bioinformatics.

Keywords: computational biomodelling, multiscale whole-cell
modeling, model integration, model refinement, executhini®gy.
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1 Introduction

Predictive and comprehensive models of biological cekstaghly signifi-
cant for the understanding and engineering biologicalesyst Such large-
scale whole-cell models have the potential to direct expenits in molecular
biology, facilitate computer-aided design and simulatioaynthetic biology,
and enhance personalized therapeutic methods.

The ultimate goal of our research is to develop and impleraageneric
technique that will allow for automatic building of custoarde-scale multi-
level comprehensive models that are able to describe aetueabiological
phenomenon of interest with a desired level of details. Thérndea here
stays in reusing and integrating of already existing dsfgamodeling efforts
into more representative, and therefore, more accuratelaiions of the tar-
geted phenomenon. The models will be organized into a luieical struc-
ture by their levels of abstraction, so that a user can easiWygate through
the hierarchy and choose the appropriate levels of detailshe resulting
integrated model.

In Computational Systems Biology a large number of indigaildieams
of researchers target isolated subsystems and processesiviing cells for
modeling and simulation. In many cases, different resesiscmodel inde-
pendently overlapping, highly related or even the sameleelstructures and
processes. Moreover, those computational models focusroe particular
cellular sub-systems while ignoring cross-talks with tlleeo sub-systems
and the other factors that also influence the sub-systenr ghatiies. A step
forward towards building representative cellular modelb lae to join the
disparate efforts of different modelers and build complegé-scale models
via integration of already existing ones.

The greatest challenge here comes from the fact that ditfessearch
teams come with their own concepts, abstraction levelandtisms and
methodology preferences as well as with their own techncébdimitations
for their models. They contribute to the literature a maskrawledge in
the form of models and simulations in different formats eleof details and
data types. One has to overcome those challenges in ordeingpriumer-
ous modeling and simulation efforts into a significantly moepresentative
larger comprehensive model that will capture all the fezgwof initial models
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and will agree still with all the respective initial expeemtal data.

Our method will involve searching for a common ground of gmégion
between models, regardless of their formalisms and imphatien. That
common ground can be used to join models automatically isiogle com-
prehensive simulation system. This will allow models to begrated on
several levels of details, depending on the required aisaly&e will base
our developments on a formal framework for integration ofdels of dif-
ferent formalisms, implementations and level of detailst thvas presented
in [1].

A software implementation of an integrated whole-cell mModas pre-
sented in [2]. A model Mycoplasma genitalium was obtainedugh joining
of 28 different independent computational submodels, @leach submodel
represents some specific cellular process [2]. The modekibded the dy-
namics of every molecule over the entire life cycle and antotor the spe-
cific function of every annotated gene product. Each subineds using
formalism most appropriate to its functioning and existkmpwledge. The
submodels were assumed to run approximately independam#yshort time
scales. Simulations were performed by running through p Inavhich the
submodels were run independently at each time step but degemn the
values of variables determined by the other submodels gtréhgous time
step. The simulation software worked as a set of communigatinning in
parallel Matlab programs, where each program implementbaedel. The
whole-cell software managed to predict the observed exygtal data very
accurately as well as it helped also to discover new prelyjautknown cel-
lular behaviors. In the similar spirit, we will let for coaréted synchronized
execution of different simulation instances within our glation framework.

In our research, we propose a follow-up for the effort of digpimg large-
scale biological model building techniques and model irgggn [1],[2]. We
will represent a model as an executable simulating progrerhdan be in-
tegrated with the other executable simulating programsdstg for other
models via a well defined API. We will allow for hierarchicgpe of model
integration, that is, a number of complex models obtaineel tduprevious
integrations of simpler models can also be integrated begetnd form even
more complex models.The practical outcome of our reseaiittbeva soft-
ware modeling platform that will provide a systematic framoek for integra-
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tion and coordinated execution of different simulatiortamees, each simu-
lating different parts of the biological phenomenon of iegt. We are going
to validate our methodology and computational platfornotigh building a
prototype for a whole-cell model of the life cycle of eitheragst or E.coli, two
of the most studied model organisms [3], [4]. Existing datavell-curated
model database such as Biomodels [5] should be enough afdeasrough
prototype of such a whole-cell model.

2 Background

A formal framework for integration of models of differentrfoalisms, imple-
mentations and level of details was presented in [1]. Thadmork involves
searching for a common computational ground between theslmdigiat will
allow to integrate them, regardless of their formalism amglementation,
across different methodologies into a single agent-basedlation system.
Our abstract model descriptor will be based in particulatt@nconcept of
behavioral inclusion trees from [1].

Parameter fitting of a model to the experimental data is fétated as a
global optimization problem. The goal is to tweak paransetdrthe model
in such way that the predicted behavior of the model is achsspossible
to the experimental data. The objective function here shwowsfar are the
simulated data points from the experimental ones and takasgaments the
set of parameters to fit. The optimization goal is to find valokthe parame-
ters where the objective function reaches the global optirfminimum). In
particular, COPASI provides functionality for quantitetiODE-based model
parameter estimation. It allows to fit both reaction kinesite parameters as
well as initial concentrations of the metabolites.

Quantitative model refinement is an essential step in theehraelelop-
ment cycle. Starting with a high level, abstract repregentaof a biological
system, one often needs to add details to this represantatieflect changes
in its constituent elements. Any such refinement step hasaspects: one
structural and one quantitative. The structural aspechefréfinement de-
fines an increase in the resolution of its representatiofilewe quantitative
one specifies a numerical setup for the model that ensurésgteservation
at every refinement step. The refinement should be done soeastioe the
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preservation of the numerical properties of the model, schis numerical
fit and validation. In [6]-[10] there were presented methfodsyuantitative
model refinement in a number of modeling frameworks, suchRE-Dased
models, rule-based models, Petri net models, guarded cothiaaguage.
We plan to use quantitative refinement when bringing differeodels to the
same level of detalils.

A number of efforts towards integrating a plethora of pupliavail-
able molecular-scale experimental measurements thaeranttacellular
molecule functions and interactions has facilitated dhibeen large-scale
model development [11]. For instance, in [11] there was ld@exl a toolkit
called Moksiskaan that can integrate information aboutcth@nections be-
tween genes, proteins, pathways, drugs and other biologitiies from a
large number of databases. As the result, one can obtain prebensive
network model encompassing signaling, metabolic, genglatay, etc. in-
tracellular relations. We will employ Moksiskaan for callmg a vast range
of biological data needed for model construction and fitting

Anduril [12] is an open source component-based workflow é&aork
for scientific data analysis developed at the ComputatiSyatems Biology
Laboratory, University of Helsinki. Anduril also providégl that allows in-
tegrating rapidly various existing software tools and @tfjens into a single
data analysis pipeline. An Anduril pipeline comprises ao$étterconnected
executable programs (called components) with well-deflf@gborts, where
an output port of a component may be connected to the inpté pbsome
number of other components. (for example, see Figure 1)inD@xecution
of a pipeline, a component will be executed as soon as allnijna idata are
provided by the up-stream components. After execution efcbmponent,
its results become available for the downstream comporibatan be ex-
ecuted in their turn as soon as all the necessary input datpravided for
them. Anduril is highly scalable computational platformruns well both
on desktop personal computers as well as on powerful supgnders and
clusters. Anduril can run multiple processes in parall@ &s pipelines can
be scaled for a distributed execution across the network.si4e of Anduril
pipelines can range from several component instances dldd cun in few
seconds up to thousands of component instances requiriegaselays of
execution. We will base our model integration platform ordArnil.
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Figure 1. Example of an Anduril workflow (pipeline). Workflow is a set tafsks
(component instances) organized in a directed networkh Eamponent instance
has some defined set of inputs and outputs, where outputs ioktmce are con-
nected to inputs of some other instances. Instances widmguinputs import data
into the workflow. Instances without any outputs normallypaut the workflow’s
computation results. For example, hemarixA andmatrixB are instances of a com-
ponentRandomMatrix that is a program generating a random matrix; instanean

of componeniCSVTransformer calculates mean for each row of matrices coming
from matrixA and matrixB instances; instanceatterPlot generates a specific plot
for the matrices fronmatrixA andmatrixB, etc.

3 Integration of computational models

We are planning to obtain a software platform, that willalluser to specify
the input data (like set of initial models with their softwamplementations,
model and environment parameters, abstraction levelgrempntal data to
fit to, etc.) for some target biological phenomenon and toygfar prediction
on some target features of the behavior of the modeled baalbgystem (for
instance, a time course for concentrations of some bioaterapecies, the
time of cell growth in particular environmental conditiomsc.).

Here, we focus on developing model refinement and integragch-
niques for biological computational models. This projectifirst step to-
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wards building a system that, based on a user query, willvattalecting and
reuse existing biological computational models in ordeyenerate automat-
ically custom case-specific comprehensive models for qudati biological
phenomenon at the desired abstraction level. We will dpvalmethodology
that will allow minimizing or avoiding refitting the initiahodels to their cor-
responding experimental data while performing model refieiet and model
integration activities.

Our research is a follow-up for the effort of developing Exgrale bio-
logical model building technigues and model integratign[£l. Particularly,
we will allow for an arbitrary nature of a modeling formalisand its imple-
mentation. A model will be represented by an executableIsiting program
and can be integrated with the other executable simulatingrams standing
for other models via a well defined API. We will allow for hiechical type
of model integration, that is, a number of complex modelsioletd due to
previous integrations of simpler models can also be integréogether and
form even more complex models. We will allow for a high levEékoalabil-
ity and flexibility in the sense that a model can be tuned tortiquéar use
case to fit the expected/desired behavior and to incorptnatdesired level
of details. In particular, we will employ here the previouagices related to
numerical model parameter fitting [13] and model refinem6Rk¢[[L0].

We will address the following challenges:

1. Develop and implement intra-formalism integration noelh for a
number of different formalisms across different abstmactevels. That
is, we are aiming to develop a systematic approach for autorab-
straction level adjustment via refinement and building glsimodel
through joining a number of initial models, while workingthin the
same formalism;

2. Develop and implement inter-formalism integration noeith

3. Deploy a generic (plug&play) platform that allows to “glucompu-
tational models into the composite model, refine them andiolthe
respective large-scale models and simulations.
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4 Methods

We discuss here the methods that we are planning to applyriresearch.

4.1 Abstract model descriptor

We will develop a methodology to describe in an abstract wagels so that
it will be possible to decide automatically how to join the daets and how
to instantiate the resulting integrated model. Téstract model descrip-
tor will abstract from the model type (discrete or continuousclsastic or
deterministic), the modeling frameworks and models im@etations.

The model descriptor will include such concepts asrdity (formalizes a
real world physical object), process (represents an activity involving one or
more entities), &ariable (a measurable/observable and/or affectable property
of an entity or process). An entity may consist of a numbertbéoentities,
a process can be split in subprocesses, a variable may tdrarefaffect the
current state of an entity or a process. Also, an entity magniebstraction of
some other entity and a process may be an abstraction of dberepoocess.

We regard the abstract model descriptor as a digraph withtated nodes
and edges, Figure 2. In order to enable automatic integrafimmodels basing
on their descriptors, the user has to map nodes and edgesadshriptors to
the corresponding components of the models or simulatistgiites. The ex-
act way, how this mapping should be performed will depencherptrticular
type, formalism and implementation of each of the models.

4.2 Mods integration and simulation

Here, the user should provide a set of initial models to irEgalong with
their abstract descriptors and mappings between the madeéltheir descrip-
tors. We remind, that we regard a model as an executablegmogr as a
formal construct (a set of chemical reactions, signalingppays, gene reg-
ulatory nets, etc.) together with its well-defined mappingpcan executable
simulation instance.
We consider the following steps for integrating multipleerprovided

models into one:
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abstraction of |
|

abstraction of

Figure 2. Schematic representation of abstract model descriptoreriity can be
a part of/abstraction of some other entity, a process cangataof/abstraction of
some other process and a variable can be a part of/abstratsome other variable.
Thepart-of relation is represented by a triple-line edge on the plad,aostraction-
of is represented as a dotted line. Entity can participate iroagss. The relation
participates-inis represented by solid line. A variable can be regarded asenfiace
to the state of an entity or process. The relatigout/output (1/O) is represented by
a double-line edge.

1. For all the models for which we have formally defined camnss,
decide what constructs can be combined and how (for instance
metabolic networks can be joined into one). We need to dpvaleth-
ods for joining models with the “compatible” internal sttues into
one model with its internal structure being a union of thgioal struc-
tures. See for example Figure 3. The internal structurdseijoined
through their overlapping components. Those overlappimyponents
from two different structures that are at different levelgletails will
be brought to the same abstraction level via model refinerresti-
niques [6]-[10]. The internal structure integration metblogy and
model refinement process strictly depend on the formalisnghesed,
and we will develop the integration and refinement techrsgioe a
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prey, = 2 prey,
prey, — 2 prey, prey, — 2 prey,
prey, —» prey; +prey, prey, — 2 prey,

prey, - prey;+prey,
prey, — prey,+prey,

predator + prey, — predator
predator + prey, — predator

prey, — prey,+prey,

predator + prey, — 2 predator + prey,
predator + prey, — 2 predator + prey,
predator — @

predator + prey — predator
predator - @
predator + prey — 2 predator + prey

Figure 3. Example of integration of two models within the same forsraliinto
one. The result: modified classic Lotka-Volterra Pray-Rtedmodel [14] with two
types of prey. The model is regarded in terms of chemicalti@az (reaction rates
and initial species concentrations are omitted here). Grbeoinitial models de-
scribes dynamics (basically proliferation) of two typespoéy. The other initial
model describes predator’s dynamics and its relation tg gppecie (note that this
model does not consider different types of prey species)inguhe integration pro-
cess, the predators’ model gets refined in order to includéoas to the two types
of prey species, then sets of reactions from the prey ancefireed predator models
get united.

number of classical formalisms (such as mass-action baB&sPetri
nets, Boolean logic networks, etc.) separately. As thdtresauch in-
tegration of models with the compatible internal strucsune will get
one simulation instance that captures the behavior of tiggnat mod-
els;

2. The user may provide a set of experimental data to fit thialimhod-
els. Fit the models to the user-provided time series dataevheces-
sary. Translate the resulting formal models into execetaivhulation
instances;

3. Basing on the abstract model descriptors, decide caonedbetween
the executable simulation instances. The connectionseanib or bi-
directional. Here, a connection will also mean translatban output
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from a source simulation instance into an appropriate ifgumat for
the destination simulation instance. The type of trarmtatvill be de-
cided automatically basing on the classes of the source estthdtion
instances.

As the result, the integrated model will be the set of exdatateimulation
instances with the scheme of their interconnections. Ttegiated model
can be considered as a simulation instance itself and caurthef integrated
with the other models.

During the simulation the simulation instances will senceézh other
synchronizing messages that include the current statemmd of their com-
ponents as well as their contexts. The connection schemeedefihich in-
stance sends messages to which instances and what congpstast are
included in each of the messages. In particular, the stdtestities, pro-
cesses and variables will be communicated. The abstracelndedcriptor
of each of the initial models will be used to identify the deeping or re-
lated components between different models. This inforomatvill be used
to decide what components of the respective models shoutdfieed, and
what connections to form between instances. If in one of tloelets one
identifies a set of components that is a refinement of a cormpdreem some
other model, then one has to perform the respective refineimehe other
model in order to obtain a set of the components that coisatactly with
the components from the former model. The refinement proeedepends
on what type, formalism and model implementation is usetiéréspective
model. When having same component (at the same level ofaalistr) in
two different models, one can form a connection betweeretitvs models
that specifies in particular what components in these mattelconnected
(also, probably, in which direction). One also associatethé¢ connection a
data transformer/adapter in order to transform the reptasen of states of
the model component between the respective formalisms atadfdrmats.
See Figures 4, 5, 6 and 7 for an example of combining two simonlan-
stances basing on their abstract descriptors.

The set of connections between a pair of instances defineilscohgo-
nents communicate their states to the partner model withiressage. Also,
the context of one model that is being sent to the other mddegawith the
states includes the simulated time point in order to syniheotwo models.
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Figure 4. An abstract model descriptor for the prey population dymanaind its
mapping to the internal model structure (set of reactionksmecies)
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Figure 5. An abstract model descriptor for the predator populatiomagiyics (in-
cluding population growth/decay and prey consumption)igthapping to the in-
ternal model structure
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Figure 6. An abstract model descriptor for the predator populatiomadyics that
was refined with two types of prey in order to have overlappmmponents between
submodels from (a) and (b) at the same level of details
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Figure 7.Basing on the abstract model descriptors for submodels fa)mnd (b) it
was decided to refine submodel for (b) into (c), and the opgiteg components were
detected between (a) and (c), that are “Preyl” and “Prey#ities), “Populationl
size” and “Population2 size” variables. Hereby, we essibtionnection between
simulation instances corresponding to (a) and (c) that igpdach other with the
states of “Prey1”, “Prey2”, “Populationl size” and “PoptidaZ2 size” components.
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We will develop an APl which the simulation instances shdwddle in
order to exchange messages with each other during the siomul&vhen a
simulation instance receives a message, it should decidetdhapdate its
internal states of the respective components, especratlyel case when the
received message brings set of states contradicting tteoes own internal
states.

4.3 Softwareimplementation

We will produce a software platform that will construct agesscale model
through integration and refinement of the existing models.

Our platform will be built on top of the Anduril workflow frameork due
to the fact that Anduril provides systematic computatiosaironment for
rapid integration of existing computational tools and alfpms into an or-
ganized pipeline. An integrated model will be implementedaa Anduril
pipeline, where components will represent the initial datian instances,
and connections between the components will represenections between
the respective models/instances. We also note, that anri\pieline can
serve as a component to be included in the other pipelinghbr @vords, An-
duril will allow integrating a complex model within the othmore complex
model.

A simulation instance will be a software program wrapping tbspec-
tive existing simulation software for the respective modehile handling
the APl to communicate to other instances and updating tte ktates of
the instance according to the states received from the oteamces. Also,
the wrapper has to handle translation of states betweegreliff abstraction
levels. In particular, we can incorporate COPASI as a dynaltyi linked li-
brary and access all of its simulation and parameter esoméainctionality
from our simulation instance program, that can “talk” toetinstances and
input/output data into/from the COPASI-simulated modehifto the other
simulation instances. Petri nets can be simulated with b3nmodeling
software that we are going to access from the respectivelaimm instance
via well-define API of S4. Simulation instances for the RBlsed mod-
eling will use BioNetGen software as a command-line toolinaorporate
directly BioNetGen program code. We will use CellNetAnayatlab li-
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brary in the simulation instance for Boolean networks. Galhespeaking,
any third-party simulation software can be incorporatdd ur integrative
simulation framework via a wrapping program that handlesAdel for the
communication with the other simulation instances. Schiealdy, this idea
is represented in Figure 8.

Intercommunication between
simulation instances

Wrapper
Wi
rapper forsa Wrapper

for COPASI for CNA
Snoopy
Accessing Accessing Accessing CNA
COPASI as SNOOPY as as a MATLAB
external external library
library via API library via API

COPASI model SNOOPY model CNA model

Figure 8. Scheme of the general organization of simulation instanEash simu-

lation instance simulates a model of some biological phesran{for instance, bio-
chemical networks, signaling networks, DNA transcripfi®@NA translation, etc.)
probably in some well-defined formalism (for instance, rrastion based ODE
model, Petri nets, Boolean networks, etc.) that is beindempnted/simulated by
some software (for instance, COPASI for ODE, Snoopy forifetts, CellNetAn-

alyzer for Boolean networks, etc.) A simulation instancegists of the original
simulating software and the wrapper that translates bettheesimulation software
and the messages for the other simulation instances.

5 Discussion

As the result, this project should deliver a powerful metslody for con-
struction of large-scale models via integration of exgtinodels and data.
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The methodology will combine model refinement and integrattech-
nigues and assumes both data- and hypotheses-driven noodéluction ap-
proaches.

We believe that our research will contribute to the scientifiodeling
community through the development of a methodology for eating dif-
ferent computational biological models irrespective @ittiormalisms, con-
cepts and implementations. The platform that we are plant@nmplement
will allow to build large-scale models and run compreheasivmulations by
joining independent modeling and simulation efforts frongraat number
of research biomodeling projects. As the result, one willabé& to build
rapidly and easily large-scale custom models from a setrefdl existing
models that will satisfy user-specific particular needsdrticular, the exper-
imental biologist researchers should be the first to berrefih four platform
due to the fact that comprehensive large-scale modelindhefmin discov-
ering new features of cellular processes without the neemholuct multi-
ple expensive laboratory experiments. We may list amongpther stake-
holders bioinformaticians, medical-related researchgrsthetic biologists,
bio-engineers, pharmacologists and any one else who needs &xpensive
bio-experiments in-vivo or in-vitro.
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