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Abstract

In her thesis, Mosina introduced the concept of mean-set of
random (graph-) group-variables and generalized Strong Law of
Large Numbers (SLLN) to (graphs) groups, which she used for
cryptanalysis of authentication schemes. This attack called the
mean-set attack is presented here. It allows to break the Sibert
authentication scheme on braid groups without solving the under-
lined difficult problem. We propose an amelioration to this attack
and its implementation on the platform CRAG. We carry some
experiments and we present the results. These results are dis-
cussed and they confirm those obtained by Mosina and Ushakov
with a considerable gain of time.
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1 Introduction

During these last years, several cryptosystems among which the au-
thentication schemes based on difficult problems in braid groups were
proposed. Indeed, Sibert and al. [21] presented authentication schemes
based on the conjugacy problem, the Diffie-Helmann-type conjugacy
problem, the root problem; in [3], Dehornoy designed an authentica-
tion scheme using the shifted conjugacy problem; Lal and Chaturvedi
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proposed in [8] two authentication schemes presumably based on the
difficulty of the root problem; Shpilrain and Ushakov also offered in
[20] an authentication scheme whose security is based on the hardness
of the twisted conjugacy search problem, etc. The security of these
authentication schemes relies on the difficulty to solve the underlined
algorithmic problems. So, the robustness of these schemes is ensured by
their resistance to the known cryptanalysis methods. Several methods
to attack the authentication schemes were suggested in the literature
[5, 6, 9, 10, 11, 23]. Mostly, these methods try to solve the difficult
problem used to design the scheme.

In 2009 in her thesis, Natalia Mosina presented a new probabilistic
approach to prove the vulnerability of the authentication protocols on
the braid groups [14, 15, 16] without solving the underlying problem.
So, given a group G with a probability measure induced by random
G-variables, Mosina defined the mean-set of random G-elements. She
stated and proved the Strong Law of Large Numbers (SLLN) on G,
and gave an algorithm to compute the mean-set of a sequence of inde-
pendent and identically distributed (i.i.d.) random G-variables. Using
these tools, she developed an approach called mean-set attack that
breaks the Sibert and al. authentication scheme, without solving the
difficult problem used to design the protocol. She then implemented
the attack and carried some experiments on the n-string braid group
Bn with the software package CRAG. In her approach, Mosina consid-
ered the relative frequency as the probability distribution on the group
Bn. However in [21], Sibert and al. suggested the use of the uniform
law to generate the braids and the bits in the authentication protocol.

In this work, we present the Mosina’s probabilistic approach and
a restricted form which uses the uniform law. We derive a simplified
mean-set attack algorithm that we implement on CRAG. We perform a
series of experiments and discuss the results obtained. We see that they
confirm those obtained by Mosina with a considerable gain of time.
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2 Probability on groups

2.1 Mean set of a random G-variable

Let G = 〈X〉 be the group generated by a non empty set X. Let CG(X)
be the Cayley graph associated to G. Let (Ω,F , P ) be a probability
space and ξ : Ω→ G a random G-variable.

• A probability distribution is a function µ : G → [0, 1] on ξ such
that:

µ(g) = µξ(g) = P ({ω ∈ Ω | ξ (ω) = g}, g ∈ G);

• The weight function is the function Mξ : G→ R defined by

Mξ(g) =
∑

s∈G

d2(g, s)µ(s),

where d(g, s) is the distance between g and s in the Cayley graph
CG(X) of G.

• The domain domain(M) of the weight function M is defined by:

domain(M) =

{

g ∈ G |
∑

s∈G

d2(g, s)µ(s) <∞

}

.

The weight function Mξ is totally defined if for all vertices g ∈ G,
Mξ(g) <∞ i.e. domain(M) = G.

Definition 2.1. Let ξ be a random G-variable such that Mξ(·) is
totally defined. The set E(ξ) of vertices g ∈ G having the smallest
value of Mξ i.e.

E(ξ) = {g ∈ G : Mξ(g) ≤Mξ(u),∀u ∈ G}

is called mean-set of ξ.

Since d(a, b) = d(ga, gb) for all a, b, g ∈ G we have:
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Proposition 2.1 (Shift Property). Let G = 〈X〉 be the group gen-
erated by a non empty set X and let g ∈ G. Suppose (Ω,F , P ) is a
probability space and let ξ : Ω → G be a random G-variable on Ω.
Then ξg defined by ξg(ω) = gξ(ω) is a random G-variable and we have
E(ξg) = gE(ξ).

2.2 The Strong Law of Large Numbers (SLLN)

Definition 2.2. Let ξ1, . . . , ξn be a sequence of i.i.d. random G-
variables with ξi : Ω→ G defined on a probability space (Ω,F , P ).

• The relative frequency

µn(g) = µn(g, ω) =
|{i | ξi(ω) = g, 1 ≤ i ≤ n}|

n

is the probability with which g occurs in the random sample
ξ1, . . . , ξn. µn defines a probability distribution on G.

• The sampling weight function is the function Mn : G→ R defined
by

Mn(g) =
∑

s∈G

d2(g, s)µn(s),

where d(g, s) is the distance between g and s in the Cayley graph
CG(X) of G.

• The sample mean-set of ξ1, . . . , ξn is the set Sn defined by

Sn = S(ξ1, . . . , ξn) = {g ∈ G : Mn(g) ≤Mn(u),∀u ∈ G}.

We now state the SLLN generalized to graphs and groups which
shows the convergence of the sample mean-set Sn to the mean-set E(ξ)
when n→∞.

Theorem 2.1. Let G = 〈X〉 be the group generated by a non empty set
X, where its associated Cayley graph CG(X) is connected and locally
finite. Let {ξi}

∞
i=1 be a sequence of i.i.d. random G-variables. If the
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weight function Mξ1(·) is totally defined and E(ξ1) = {g} for some
vertex g ∈ G, then

lim
n→∞

S(ξ1, . . . , ξn) = E(ξ1)

with probability 1.

For more details, see [14, 15].

Let G = 〈X〉 be a group and G1 = {g1, . . . , gn} be a subset of group
G with cardinality n. In [16], the following polynomial algorithm to
compute the mean-set of G1 is described.

Algorithm 2.1. Computation of the mean-set in a group

Input: the group G by its set X of generators and a subset G1 =
{g1, ..., gn} of G.
Output: An element g of G having the smallest weight function.
Computations:

A. Choose a random element g ∈ G according to some probability
measure µ on G.

B. If for every x ∈ X±1,Mn (g) ≤Mn (gx), then output g.

C. Otherwise put g ← gx, where x ∈ X±1 is an element minimizing
the value of Mn (gx) and go to step B.

The computation of Sn, the mean-set of the sample G1, poses some
problems:

• The computation of the set {M(g) : g ∈ G} requires at least
O(|G1|

2) elementary operations. This computation is practically
impossible when n is too large;

• The computation of the distance function d(·, ·) is difficult in some
groups like the braid groups.
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However, Algorithm 2.1 presented above allows to solve the first
problem. Indeed, it is a direct descent heuristic algorithm and it com-
putes the sample mean-set since the weight function Mn comes from a
sequence of random elements of G1. The second problem is the compu-
tation of the distance between two elements in G. An approximation of
the computation of the distance is described in [12]. Although it does
not guarantee an optimal solution, this approximation sometimes has
been used in a series of attacks.

3 Cryptanalysis of the authentication protocol

We now present the probabilistic approach used by Mosina to attack
an authentication protocol in the braid groups [16].

3.1 The Sibert and al. authentication protocol

The authentication is a procedure that permits the user to convince the
interlocutor of its identity. So, it involves two parties: the Prover (user)
and the Verifier (interlocutor). The Prover provides the purported
identity to the Verifier, and then both the Prover and the Verifier
should corroborate and act simultaneously such that the Verifier should
be convinced of the identity of the Prover. Only the Prover knows the
secret value corresponding to his public one, and it is the proper use
of this secret value which allows to convince the Verifier of its identity.

For n ≥ 2, the n-string braid group denoted Bn is the group with
the following presentation:

Bn =

〈

σ1, . . . , σn−1

∣

∣

∣

∣

σiσj = σjσi for |i− j| ≥ 2
σiσjσi = σjσiσj for |i− j| = 1

〉

. (1)

We present the Sibert and al. authentication protocol. The security
level of this protocol is parametered by the size of the used braids and
by the rank of the group Bn.

Protocol 3.1. Let n be an integer, let b be a braid in Bn and let h be
a hash function. b is written on its normal form or handle reduction
form.
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Phase I. Keys generation

Private key: Alice chooses a secret braid s ∈ Bn

Public key: Alice publishes (b, b
′

) with b′ = h(s−1bs)
Phase II. Authentication phase: repeat k times
Engagement: Alice choses a random braid r and sends x = h(r−1b′r)
to Bob;
Challenge: Bob sends a random bit ǫ to Alice;
Answer:

• If ǫ = 0, Alice sends y = r to Bob and Bob checks if x =
h(y−1b′y);

• If ǫ = 1, Alice sends y = h(sr) to Bob and Bob checks if x =
h(y−1by).

3.2 Mean-set attack

In this section we present the mean-set attack on the protocol 3.1 de-
scribed above (see also [16] or [14]).

3.2.1 Principle

If observe the Sibert and al. protocol 3.1, wee see that the Prover
sends to the Verifier sequence of two types of random elements: r and
sr, where r is a randomly generated element and s is the secret of the
Prover. An Intruder (Eve) can intercept and arrange the answers of
the challenges in a table similar to Table 1.

We obtain two sets R0 and R1 of elements, corresponding to ǫ = 0
and ǫ = 1 respectively. R0 = {ri1 , . . . , ril} and R1 = {srj1 , . . . , srjt},
where all the elements ri (i = 1, . . . , k = l+t) are distributed according
to a probability law µ. The objective of Eve is to retrieve the secret s
using the intercepted sequences R0 and R1.

SupposeG = Z. In this case, we writeR1 = {s+rj1, . . . , s+rjt}, and

we can compute the empirical average r0 =
1
l

∑l
m=1 rim of elements of

R0 ⊂ Z and the empirical average r1 =
1
t

∑t
p=1(s+rjp) = s+ 1

t

∑t
p=1 rjp

of elements of R1 ⊂ Z. By the SLLN (Section 2.2, Theorem 2.1), if the
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Table 1. Principle of the mean-set attack

Tour Challenge Answers type
# 1

Answers type
# 2

1 ǫ = 1 – sr1
2 ǫ = 0 r2 –

3 ǫ = 0 r3 –

4 ǫ = 1 – sr4
5 ǫ = 0 r5 –

. . . . . . . . . . . .

k ǫ = 0 rl –

sequence R0 is too large, then r0 tends to the mathematical expectation
E(µ) of the distribution µ in Z. Similarly, if the sequence R1 is too
large, then r1 tends to s+ E(µ). Hence, by subtracting the limit of r0
to the limit of r1 we obtain an approximation of the secret s.

So, in this case, where G = Z, we can compute the secret thanks
to the following three properties:

(AV1) (SLLN for real-valued random variables): If {ξi}
∞
i=1 is a sequence

of real i.i.d. random variables and if E(ξ1) <∞, then

1

n

n
∑

i=1

ξi→E(ξ1)

with probability 1 when n→∞.

(AV2) (Shift Property): For all real random variable ξ, we have

E(c+ ξ) = c+ E(ξ),

where c is a constant.

(AV3) (Efficient computation): The average 1
n

∑n
i=1 ξi is efficiently com-

putable.
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Now, this method can be generalized to some infinite groups where
these three properties (AV1), (AV2) and (AV3) are defined similarly
and are satisfied. Indeed let G be an infinite group.

• For a random G-variable ξ : Ω→ G, define a set E(ξ) ⊆ G called
mean-set;

• For a set of n random G-variables ξ1, . . . , ξn, define a set Sn =
S(ξ1, . . . , ξn) ⊆ G called the sample mean-set of ξ1, . . . , ξn.

Hence, we have the shift property E(sξ) = sE(ξ) and a generalization
of the SLLN for groups in the sense that S(ξ1, . . . , ξn) converges to
E(ξ1) when n → ∞, with probability 1. Moreover, suppose that the
sample mean-set S(ξ1, . . . , ξn) is efficiently computable. Then Eve can
form the sets S(srj1, . . . , srjn−k

) and S(ri1 , . . . , rik) and compute

S(srj1, . . . , srjn−k
) · [S(ri1 , . . . , rik)]

−1,

which contains s with high probability when n is sufficiently large.

Below is the algorithm of the mean-set attack designed by Mosina.

3.2.2 Attack algorithm

Algorithm 3.1. The mean-set attack Algorithm
Input: the Prover public key (t, w) and the sequences R0 and R1;
Output: an element z such that t = zwz−1 or ’Failure’.
Computation:

A. Apply Algorithm 2.1 to R0 and get g0.

B. Apply Algorithm 2.1 to R1 and get g1.

C. If g1g
−1
0 satisfies t = (g1g

−1
0 )−1w(g1g

−1
0 ), then retrieve g1g

−1
0 .

Otherwise output Failure.
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4 An amelioration of the mean-set attack

As mentioned by Sibert and al. in [21], we now consider the uniform
law as the probability distribution used to generate r and ǫ in the
protocol 3.1. We need to redefine the parameters of Section 2.2 for this
restriction.

• Taking a sample S of k elements in Bn, the probability for an
element to appear more than once in S is negligeable (since the
probability distribution is uniform and |Bn| =∞); we then have
the relative frequency

µk(g) = µk(g, ω) =
1

k
,

where g ∈ S.

• The sample weight is

Mk(g) =
1

k

∑

i∈S

d2(g, i),

where d(·, ·) is the distance function in Bn.

• The sample mean-set is

Sk = S(ξ1, . . . , ξk) =

= {g ∈ Bn :
∑

i∈S

d2(g, i) ≤
∑

i∈S

d2(u, i), ∀u ∈ Bn}.

The SLLN is then stated as follows:

Theorem 4.1. Let Bn be the n-string braid group and let {ξi}
∞
i=1 be a

sequence of i.i.d. random Bn-variables. If Mξ1(·) is totally defined and
E(ξ1) = {g} for an element g ∈ Bn, then

lim
k→∞

Sk = E(ξ1) = {g}.
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Proof. Similar to the proof of theorem 2.1 which can be seen in [14,
15].

Now take a sequence of sample elements in Bn. We can approxi-
mate the mean-set of random Bn-variables. We experiment Mosina’s
algorithm 3.1 on CRAG by varying (n) the number of strings, (L) the
length of the secret keys and (k) the number of elements in the sample.
The results are presented in Tables 2–3.

T.T represents the ratio for obtaining the trivial braid e as element
of the mean-set (on 100 tests).

T.T =
|{gi|short(gi) = e}|

100

with gi the element of the mean-set for the i-th test and short(gi) is
the shortest normal or reduced element representing gi.

DLMoy represents the average length of the braids when the ele-
ment of the mean-set is different from the trivial braid.

DLmoy =
1

100 − TT ∗ 100

∑

g∈S

lX(g),

where S is the set of the elements which are different from the trivial
braid and lX(g) represents the length of the element gwith respect toX.

Table 2. Experimental results of the approximation of the mean-set of
a random B5-variable

L\k 20 40 80 160

T.T DLMoy T.T DLMoy T.T DLMoy T.T DLMoy

10 65% 1,08 92% 1 100% 0 100% 0

20 45% 1,66 88% 1,8 96% 1 100% 0

30 45% 3,3 60% 1,7 89% 1,45 98% 1

40 21% 5,87 48% 5,11 64% 3,5 89% 8

50 14% 13,03 29% 6,7 71% 6,06 88% 5

An analysis of these results shows that the element of the mean-set
of a random Bn-variable is either the trivial braid or either a braid
which is very closed to the trivial braid (see that DLMoy tends to 0
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Table 3. Experimental results of the approximation of the mean-set of
a random B10-variable

L\k 20 40 80 160

T.T DLMoy T.T DLMoy T.T DLMoy T.T DLMoy

10 85% 1,33 97% 1 100% 0 100% 0

20 49% 1,29 92% 0,99 100% 0 100% 0

30 46% 1,59 93% 1,01 100% 0 100% 0

40 31% 1,42 88% 1,66 97% 1 100% 0

50 29% 2,8 74% 1,8 98% 1 100% 0

when T.T tends to 100). Hence we can deduce the following proposi-
tion:

Proposition 4.1. Let Bn be the n-string braid group and let g ∈ Bn.
Let (Ω,F , P ) be a probability space and let {ξgi }

∞
i=1 be a sample of

random Bn-variables. Then for the random Bn-variable ξ
g
i defined by

ξ
g
i (ω) = gξi(ω), we have

lim
k→∞

Sk(ξ
g
1 , ...ξ

g
k) = g lim

k→∞
Sk(ξ1, ...ξk) = g.

This proposition means that limn→∞ S(ξ1, . . . , ξn) = E(ξ1) = e,
where e is the trivial braid in Bn. We then pose the following conjec-
ture:

Conjecture 4.1. Let Bn be the n-string braid group. Let (Ω,F , P )
be a probability space and let ξ : Ω → Bn a random Bn-variable.
Then E(ξ) = {g}, where the normal form short(g) of g is such that
short(g) = e, the trivial braid in Bn.

Thus, from the set R1 defined in Section 3.2.1, one can compute
the set

S(srj1 , . . . , srjk)

which contains element s with a very high probability when k is large.

We can then rewrite the attack Algorithm 3.1 as follows.
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Algorithm 4.1. The revisited mean-set attack Algorithm
Input: the Prover public key (t, w) and a sequence R1

Output: an element g such that t = gwg−1 or ’Failure’
Computation:

A. Apply Algorithm 2.1 to R1 and get g.

B. If g satisfies t = g−1wg, then retrieve g. Else Failure.

The experimental results, implemented on CRAG with this revis-
ited mean-set attack Algorithm 4.1, are presented in Tables 4–6. Here,
we vary n the number of strings, the length L of the words and the
number k of tours in the algorithm (or elements in the sample).

Table 4. Experimental results of the attack Algorithm 4.1 in B5

L\k 20 40 80 160
10 66% 95% 100% 100%
20 55%, 85%, 95% 100%
30 13% 38% 67%, 100%

Table 5. Experimental results of the attack Algorithm 4.1 in B10

L\k 20 40 80 160
10 73% 99% 100% 100%
20 60%, 95%, 100% 100%
30 45% 90% 100%, 100%

Table 6. Experimental results of the attack Algorithm 4.1 in B20

L\k 20 40 80 160
10 94% 100% 100% 100%
20 89%, 100%, 100% 100%
30 65% 97% 100%, 100%

On these tables, we see that the rate of success increases when
the values of k increase. The length of the key influences the rate
of success. Also, the success rate increases with the rank (number of
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strings) of the group . These results, as those on Tables 2 and 3, confirm
Mosina and Ushakov’s obtained in [16]. Moreover we obtain a slight
rise of the success rate, compared to Mosina. Furthermore, we gain in
computation time since we need to compute only the mean-set of the
set R1, instead of computing for R0 and R1. Note that the computation
of the mean-set is timely significant when k and L are large.
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Birkhäuser Basel, 2008.

[14] N. Mosina. Probability on graphs and groups: theory
and applications, Ph.D. thesis, Columbia University,
2009. Available at http://www.math.columbia.edu/ thad-
deus/theses/2009/mosina.pdf.

[15] N. Mosina, A. Ushakov. Strong law of large numbers on graphs
and groups, Groups Complexity Cryptology, Vol. 3 Issue 1 (2011)
67–103.

[16] N. Mosina, A. Ushakov. Mean-set attack: cryptanalysis of Sibert
and al. authentication protocol, J. Math. Cryp. 4, (2010) 149–174.

[17] R.L Rivest, A. Shamir, L.M Adleman. A method for obtaining
digital signatures and public-key cryptosystems, Communication
of ACM, 21 (1978) 120–126.

[18] C.E. Shannon. Communication theory of secrecy systems, Bell Sys-
tem Technical Journal, 28 (1949) 656–715.

[19] P.W. Shor. Polynomial-time algorithm for prime factorization and
discrete logarithms on a quantum computer, SIAM J. Comp. 26(5)
(1997) 1484–1509.

374



Probability on groups and cryptography

[20] V. Shpilrain, A. Ushakov. An authentication scheme based on the
twisted conjugacy problem, Applied Cryptography and Network
Security, Lecture Notes in Computer Science Volume 5037, (2008)
366–372.

[21] H. Sibert, P. Dehornoy, M. Girault. Entity authentication schemes
using braid word reduction, Proc. Internat. Workshop on Coding
and Cryptography, 153–164, Versailles, 2003 OR Discrete applied
Mathematics 154, (2006), 420–436.

[22] M.R. Spiegel. Probabilits et statistique. Neuvime tirage, MC Graw-
Hill, Paris (1992).

[23] B. Tsaban. On an authentication scheme based on the root problem
in the braid group, arXiv:cs/0509059 v2, (2007)

[24] M. Welschenbach. Cryptography in C and C++ , Second Edition,
2005.

Sidoine Djimnaibeye, Daniel Tieudjo, Received May 20, 2015
Norbert Youmbi

Sidoine Djimnaibeye, Daniel Tieudjo
Department of Mathematics and computer science
The University of Ngaoundere
P.O. Box 454 Ngaoundere – Cameroon
E–mail: dosiusher@yahoo.fr, tieudjo@yahoo.com

Norbert Youmbi
School of Science, Department of Mathematics
Saint Francis University
117 Evergreen Dr, Loretto PA, 15940 USA
E–mail: NYoumbi@francis.edu

375


