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William J. Greenberg

Abstract

In this paper I address two questions: (1) What distinguishes
proper classes from sets? (2) Are proper classes and quantum
particles individuals?

Against the familiar response to (1) that proper classes are too
big to be sets, I propose that it is not a difference in size that dis-
tinguishes such collections but a difference in individuation. The
linchpin of my proposal and centerpiece of an NBG-like fragment
of class and set theory (“NBG”: von Neumann-Bernays-Gödel),
is an Axiom of Restricted Extensionality according to which sets
are individuated by their members but proper classes are not.
This setting (I call it NBG−) I show to be equi-consistent with
its NBG counterpart.

I answer (2) by exhibiting a parallelism in NBG− between
proper classes and quantum particles, the former unindividuated
by their members and the latter unindividuated by their rela-
tional properties. Since both violate the (weak) principle of the
identity of indiscernibles as well as the principle of reflexive iden-
tity, in NBG− neither proper classes nor quantum particles are
individuals.

1 Three Principles

Modulo the deductive apparatus of First-Order Logic with Weak Iden-
tity1, Russell’s Paradox follows from three principles: Unrestricted

c©2015 by W. J. Greenberg
1In FOL=W : x = y → y = x and (x = y & y = z) → x = z are theses but x = x

is not. Every proof in FOL=W is a proof in FOL=. So FOL=W is a sub-theory of
FOL=.
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Extensionality, Restricted Comprehension, and Unrestricted Pairing.
Concerning the first of these Michael Potter writes:

Various theories of [classes] have been proposed since the 1900s. What

they all share is the axiom of extensionality, which asserts that if x

and y are [classes] then

∀z(z ∈ x ↔ z ∈ y) → x = y.

The fact that they share this is just a matter of definition: objects

which do not satisfy extensionality are not [classes]. ([12])

Restricted Comprehension says that for every condition P (x), some
y contains just the sets satisfying P (x).

∃y∀x(x ∈ y ↔ (set x & Px)).

And Unrestricted Pairing says that for every w, u and some y:
identity-with-w or identity-with-u is necessary and sufficient for mem-
bership in y:

∀x(x ∈ y ↔ (x = w ∨ x = u)).

Individually, each of these is plausible. But no consistent theory
features all three. For (A,B,C) prove (D),2 engendering Russell’s Para-
dox.

21. ∀z(z ∈ x ↔ z ∈ y) → x = y Unrestricted Extensionality

2. ∃y∀x(x ∈ y ↔ (set x & Px)) Restricted Comprehension

3. ∀t∀w∃y∀x(x ∈ y ↔ (x = t ∨ x = w)) Unrestricted Pairing

4. ∀t∀w∀x∃y(x ∈ y ↔ x = t ∨ x = w) 3, Quantifier Shift
5. ∀x∃y(x ∈ y ↔ x = x) 4,UI
6. ∀x∃y(x = x → x ∈ y) 5
7. ∀x[x = x → ∃y(x ∈ y)] 6
8. ∀x(x = x) → ∀x∃y(x ∈ y) 7
9. ∀x(x = x) Corollary of 1
10. ∀x∃y(x ∈ y) 8,9
11. ∀x(set x) 10, definition of set
12. ∃y∀x(x ∈ y ↔ Px) 2,11
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(A) ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) (Unrestricted Extensionality)
(B) ∃y∀x(x ∈ y ↔ set & Px) (Restricted Comprehension)
(C) ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted Pairing)
(D) ∃y∀x(x ∈ y ↔ Px) (Unrestricted Comprehension)

(D) can be avoided by replacing (B) with (B′), as in Zermelo Set
Theory;

(B′) ∀z∃y∀x(x ∈ y ↔ (x ∈ z & Px)) (Separation)

or by replacing (C) with (C’) as in NBG*, a sub-theory of NBG;

(C′) ∀w∀u((set w & set u) → (Restricted

∃y∀x(x ∈ y ↔ (x = w ∨ x = u))) Pairing)

or by replacing (A) with (A′), as in NBG−: an NBG-like theory with
Restricted Extensionality and Unrestricted Pairing :

(A′) ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → (Restricted
((set x & set y) ↔ x = y)) Extensionality)

(B) ∃y∀x(x ∈ y ↔ (set x & Px)) (Restricted
Comprehension)

(C) ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted
Pairing)

2 Proper Classes in NBG−

From (A′) it follows that identity is reflexive for sets (T1) but irreflexive
for proper classes (T2).

T1: ∀x(x = x ↔ set x)

T2: ∀x(¬(x = x) ↔ prop x)3

From (B) it follows that there is a class of non-self-membered sets (T3),
T3: ∃y∀x(x ∈ y ↔ (set x & ¬(x ∈ x))),

which is not a set but a proper class (T4) – and thus not self-identical
(T5).

3Prop x
def
= ¬(set x)
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T4: ∀y(∀x(x ∈ y ↔ (set x & ¬(x ∈ x))) → prop y)

T5: ∀y(∀x(x ∈ y ↔ (set x & ¬(x ∈ x))) → ¬(y = y))

Hence there is no universe class (T6).
T6: ¬∃y∀x(x ∈ y)

(A′, B) secure an empty class (T7); a pair class (T8: aka C); a sum
class (T9); a power class (T10); a class of self-identicals (T11); and a
class of sets (T12).

T7: ∃y∀x¬(x ∈ y) (Empty Class)4

T8: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Pair Class)5

T9: ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) (Sum Class)6

T10: ∀z∃y∀x(x ∈ y ↔ (set x & (Power Class)
∀w(w ∈ x → w ∈ z)))

T11: ∃y∀x(x ∈ y ↔ x = x) (Class of Self-Identicals)7

T12: ∃y∀x(x ∈ y ↔ set x) (Class of Sets)

41. ∀x(x ∈ y ↔ (set x & ¬(x = x))) B, EI
2. ∃x(x ∈ y) ↔ ∃x(set x & ¬(x = x)) 1
3. ∀x(set x ↔ x = x) A′

4. ¬∃x(x ∈ y). 2, 3
51. Show ∀a∀b∃y∀x(x ∈ y ↔ x = a ∨ x = b)
2. Show ∃y∀x(x ∈ y ↔ x = a ∨ x = b)
3. ∀a∀b∃y∀x(x ∈ y ↔ (set x & (x = a ∨ x = b))) B
4. x ∈ y ↔ (set x & (x = a ∨ x = b)) 3, UI, EI
5. (x = a ∨ x = b) → x = x “=” is weakly reflexive
6. x = x → set x A′

7. (x = a ∨ x = b) → set x 5, 6
8. (x = a ∨ x = b) → x ∈ y 4,6,7
9. x ∈ y → (x = a ∨ x = b) 4
10. x ∈ y ↔ (x = a ∨ x = b) 8, 9
11. ∀x(x ∈ y ↔ x = a ∨ x = b) 10, UG
12. ∃y∀x(x ∈ y ↔ x = a∨ x = b) 11, EG: Cancel Show line 2
13. ∀a∀b∃y∀x(x ∈ y ↔ x = a∨ x = b) 2, UG: Cancel Show line 1
61. Show ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w))
2. ∀z∃y∀x(x ∈ y ↔ (set x & ∃w(w ∈ z & x ∈ w)))
3. ∃w(w ∈ z & x ∈ w) → set x
4. ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) Cancel Show line 1
71. ∃y∀x(x ∈ y ↔ (set x & x = x)) B
2. set x ↔ x = x A′

3. ∃y∀x(x ∈ y ↔ x = x) 1, 2
4. ∃y∀x(x ∈ y ↔ set x) 2,3
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Remark 1 : “Set x” doesn’t appear on the right-hand side of T8 or
T9 because it is redundant.

Remark 2 : From T8 it follows that the “singleton” of a non-self-
identical is empty.8

3 Some Classes Are Not Sets

Conventional wisdom decrees that some classes are not sets, either
because they are infinite totalities “too large” to be sets ([8], 44 ff ;
[11], 264 ff ), or because their members “are not all present at any rank
of the iterative hierarchy”. ([7], 104) According to John Bell, however,
infinite totalities are not problematic per se. He writes:

. . . set theory. . . as originally formulated, does contain contradictions,

which result not from admitting infinite totalities per se, but rather

from countenancing totalities consisting of all entities of a certain ab-

stract kind, “manys” which, on pain of contradiction, cannot be re-

garded as “ones”. So it was in truth not the finite/infinite opposition,

but rather the one/many opposition, which led set theory to incon-

sistency. This is well illustrated by the infamous Russell paradox,

discovered in 1901. ([1], 173)

My treatment of Russell’s paradox squares with Bell’s observation.
Restricted Comprehension provides for classes of non-self-membered
sets, but on pain of contradiction these “manys” cannot be treated
as “one”, as would be the case if they were subject to Unrestricted

Extensionality. Indeed, from Restricted Comprehension it follows that
every predicate is associated with (perhaps empty) classes of sets which
satisfy it. In NBG− (and its extensions), whether such “manys” can
be “ones” – that is, sets – depends not on their size or rank, but on
whether their “oneness” would spawn contradiction ([1], op. cit.).

8“Consider a thing, a say, and its unit set {a}. . . If anything x is not a member
of the unit set {a} then that thing x is not a. And conversely, if anything x is not
a then that thing x is not a member of the unit set {a}.” ([3], 82)
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4 Proper Classes, Sets, and Models

Suppose ∀z(z ∈ x ↔ z ∈ y). Are x and y identical? Are x and y sets?
Unlike NBG*, in NBG− identity and set-hood go hand-in-hand: equi-
membered x and y are identical iff these are sets.9 But from (A′,B)
it does not follow that equi-membered classes are sets. Therefore, al-
though (A′,B) prove T7-T12, they do not make equi-membered classes
identical: unlike sets, classes are not individuated by their members.

(A′,B) are satisfied by a non-self-identical, non-element. But such
an entity violates model-theoretic restrictions enunciated by Ruth Mar-
cus, who in “Dispensing With Possibilia”writes:

The notion of an individual object or thing is an indispensable prim-

itive for theories of meaning grounded in standard model theoretic

semantics. One begins with a domain of individuals, and there are no

prima facie constraints as to what counts as an individual except those

of a most general and seemingly redundant kind. Each individual must

be distinct from every other and identical to itself (emphasis added).

([9], 39)

5 NBG− and NBG*

NBG− and NBG∗ are deviations10 of one another, for ¬∀x(x = x) is a
theorem of NBG− and ∀x(x = x) a theorem of NBG*. I will now show
that NBG* and NBG− are definitional extensions of one another as
well. To show this I will define “=” in terms of “I” and “∈” in NBG*,
and “I” in terms of “∈” in NBG−; and then show that NBG* ⊢ NBG−,
and NBG− ⊢ NBG*.

9In Elementary Logic, Mates writes, “. . . we have explicated the term ’relation’
in such a way that whatever cannot be a member of a set cannot be related by any
relation. Thus insofar as identity is a relation in this sense, such a thing cannot even
stand in this relation to itself. This would hold not only of the set of all objects that
are not members of themselves, but also of sets described by phrases that give no
hint of impending difficulties. The problem is closely related to Russell’s Antinomy,
and once again every way out seems unintuitive.” ([10], 157-8)

10“One system is a deviation of another if it shares the vocabulary of the first,
but has a different system of theorems/valid inferences.” ([5], 3)

334



Extensionality, Proper Classes, and Quantum Non-Individuality

NBG*:
(∈) 1*: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ∀z(x ∈ z ↔ y ∈ z))
(I) 2*: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy)

3*: ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y))
(Set) 4*: ∃y∀x(x ∈ y ↔ (set x & Px))

5*: ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu)))

(Def) D1*: set x
def
= ∃y(x ∈ y)

D2*: x = y
def
= (xIy & set x & set y)

NBG− :
(∈) 1−: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ∀z(x ∈ z ↔ y ∈ z))
(=) 2−: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y))

3−: ∀x∀y(x = y → ∀z(z ∈ x ↔ z ∈ y))
(Set) 4−: ∃y∀x(x ∈ y ↔ (set x & Px))

(Def) D1−: set x
def
= ∃y(x ∈ y)

D2−: xIy
def
= ∀z(z ∈ x ↔ z ∈ y)

NBG* ⊢ NBG−: Since 1− = 1* and 4− = 4*, to show that NBG*
⊢ NBG− I will show that NBG* ⊢ 2−, 3−

Proof of 2−:

1. Show ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y))

2. ∀z(z ∈ x ↔ z ∈ y) Assume
3. Show (set x & set y) ↔ x = y

4. x = y
def
= (xIy & set x & set y) D2*

5. x = y → (set & set y) 4
6. Show (set x & set y) → x = y

7. set x & set y Assume
8. Show x = y

9. xIy & set x & set y 2*, 2, 7
10. x = y 9, D2*: Cancel Show line 8
11. (set x & set y) → x = y 7, 8: Cancel Show line 6
12. (set x & set y) ↔ x = y 5, 6: Cancel Show line 3

13. ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y)) 2, 3: Cancel
Show line 1
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Proof of 3− :
1. Show ∀x∀y(x = y → ∀z(z ∈ x ↔ z ∈ y))
2. x = y Assume
3. Show ∀z(z ∈ x ↔ z ∈ y))

4. x = y
def
= (xIy & set x & set y) D2*

5. xIy 2, 4
6. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 3*
7. ∀z(z ∈ x ↔ z ∈ y) 5, 6: Cancel Show line 3
8. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 2, 3: Cancel Show line 1

NBG− ⊢ NBG∗: Since 1− = 1* and 4− = 4*, to show that
NBG− ⊢ NBG∗ I will show that NBG− ⊢ 2*, 3*,5*.

Proof of 2*:
1. Show ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy)
2. ∀z(z ∈ x ↔ z ∈ y) Assume
3. Show xIy

4. xIy
def
= ∀z(z ∈ x ↔ z ∈ y) D2−

5. xIy 2, 4: Cancel Show line 3
6. ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy) 2, 3: Cancel Show line 1

Proof of 3*:
1. Show ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y))

2. xIy
def
= ∀z(z ∈ x ↔ z ∈ y) D2−

3. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 2: Cancel Show line 1

Proof of 5*:

1. Show ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu)))

2. set w & set u Assume
3. Show ∃y∀x(x ∈ y ↔ (xIw ∨ xIu))
4. ∃y∀x(x ∈ y ↔ (set x & Px)) 4−

5. ∃y∀x(x ∈ y ↔ (set x & x = w ∨ x = u)) Instance of 4
6. (x = w ∨ x = u) → set x 1−

7. x ∈ y → set x D2−

8. ∃y∀x(x ∈ y ↔ (x = w ∨ x = u)) 5, 6, 7
9. x = w ↔ ∀z(z ∈ x ↔ z ∈ w) 3−

10. x = u ↔ ∀z(z ∈ x ↔ z ∈ u) 3−

11. ∃y∀x(x ∈ y ↔ (∀z(z ∈ x ↔ z ∈ w) ∨ ∀z(z ∈ x ↔ z ∈))) 8, 9, 10

12. ∃y∀x(x ∈ y ↔ xIw ∨ xIu) 11, D2−: Cancel
Show line 3

13. ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu))) 2, 3: Cancel
Show line 1
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Each a definitional extension of the other, NBG* and NBG−are
accordingly equi-consistent. The question thus arises, Which of these
two systems – NBG* (in which identity is reflexive and proper classes
are individuated by their members), or NBG− (in which identity is non-
reflexive and proper classes are not individuated by their members) –
should be employed as a setting for theories in which all sets are classes,
but some classes are not sets?

6 Classes Into Sets

(5−, 6−, 7−, 8−) constitute – as sets: pair classes, sum classes, power
classes, and sub-classes of sets. For it follows from (5−, 6−, 7−, 8−)
that these are individuated by their members.

5−: ∀y(∀x(x ∈ y ↔ (x = a ∨ x = b)) → set y) (Pair Set)
6−: ∀z∀y(∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) → set y) (Sum Set)
7−: ∀z∀y(∀x(x ∈ y ↔ (set x & ∀w(w ∈ x → w ∈ z))) → set y) (Power Set)
8−: ∀z∀y(∀x(x ∈ z → x ∈ y) → (set y → set z)) (Subsets)

To guarantee an empty set, Z and its extensions require an axiom
of infinity or an axiom of set existence; and Lemmon’s NBG requires
an axiom, “set ∅”. ([6], 46) In NBG− no such apparatus is required,
for (1−, 2−, 5−) guarantee an empty set.

Thus (1−, 2−, 5−) prove T13,

T13: ∀y(∀x¬(x ∈ y) → set y) (Empty Set)

which together with T7: ∃y∀x¬(x ∈ y) establish a unique empty set.

Proof of T13:

Suppose y empty. From (T7, T8, 5−) we have

∃z(set z & ∀x(x ∈ z ↔ x = y)),

and so by EI: set z & ∀x(x ∈ z ↔ x = y). Hence ∃x(x ∈ z) ↔ ∃x(x =
y). Now suppose, contrary to T13, that y is a proper class. Then
¬(y = y), ¬∃x(x = y), and ¬∃x(x ∈ z), so that z and y have the same
members. So because z is a set, from T14 it follows that y is a set:
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T14: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → (set x ↔ set y)) (Equi-Equi)11

So if y is a proper class, y is a set. Hence y is a set.

7 NBG− and Foundation

4− provides for a class of self-membered sets:

T15: ∃y∀x(x ∈ y ↔ x ∈ x) (Class of self-membered sets)

The Anti-Foundation axiom 9− would constitute this class as a set.

9−: ∀y(∀x(x ∈ y ↔ x ∈ x) → set y) (Anti-Foundation)

But a Foundation axiom such as 9−′ would constitute such a class
as a proper class.

9−′: ∀y(∀x(x ∈ y ↔ x ∈ x) → ¬(set y)) (Foundation)

8 NBG− and the Identity of Indiscernibles

Here is a set-theoretic gloss on the weak version of Leibniz’s principle
of the Identity of Indiscernibles (PII ):

∀x∀y(∀z(x ∈ z ↔ y ∈ z) → x = y) (Unrestricted PII )

Unrestricted PII is refuted in NBG−. For by satisfying ¬(x = x),
proper classes refute ∀x(x = x), a corollary of PII. PII must thus be
restricted, by excluding proper classes from its range of application,
thus:

∀x∀y(∀z(x ∈ z ↔ y ∈ z) → ((set x & set y) ↔ x = y)) (Restricted PII )

And to save pairing and extensionality, which together prove unre-
stricted PII, either pairing or extensionality must be restricted, as in
NBG* or NBG−.

11If x,y are equi-membered, from 1− it follows that x is an element iff y is an
element. So set x iff set y.
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9 Quasi-Set Theories and ¬(x = x)

Quasi-Set theories deal with collections of indistinguishable objects
such as quantum particles. Such theories recognize two kinds of en-
tities: M-Atoms, which “have the properties of standard Ur-elemente

of ZFU”; and m-atoms, which “represent the elementary basic entities
of quantum physics”. To m-atoms “the concept of identity does not
apply.” In Quasi-Set theories “this exclusion is achieved by restricting
the concept of formula: expressions like x = y are not well formed if x
and y denote m-atoms. The equality symbol is not a primitive logical
symbol” ([4], 276]

Whereof they cannot speak, thereof must Quasi-Set theories remain
silent. But by remaining silent about the distinctness of indiscernible
elementary particles, Quasi-Set theories dissimulate a relation whose
trivial proof does nothing to diminish the bearing of the distinctness
of indiscernibles on the Principle of Reflexive Identity (PRI ).

For equi-propertied x and y, suppose ¬(x = y). Because x lacks
identity-with-y and x and y share their properties, y lacks identity-
with-y and x identity-with-x. Hence for equi-propertied x and y: ¬(x =
y) → (¬(x = x) & ¬(y = y)). So distinct quantum particles with
identical relational properties contravene PRI as well as unrestricted
PII.

Except in the land of quasi-sets – where to defend ZFU from
Logic, m-particles representing the elementary basic entities of quan-
tum physics are not allowed to co-occur with the sign for identity.12

10 Summary and Conclusion
A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) (Unrestricted Extensionality)
B: ∃y∀x(x ∈ y ↔ set x & Px) (Restricted Comprehension)
C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted Pairing)

12Dean Rickles writes, “An immediate problem with the denial of primitive iden-
tities is, then, that it is unclear how one is able to support set theory. . . (I owe this
point to Steven French). There are ways of accommodating the denial of primitive
identities through the use of ‘quasi-set theory’ in which the identity relation is not
a wellformed formula for indistinguishable objects (see French & Krause [1999] and
Krause [1992])”. ([13], 106)
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Modulo a background logic in which identity is a partial equivalence
relation, the inconsistency of (A,B,C) can be resolved by replacing B
with B′, as in Z*;

Z*

A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) Unrestricted Exten-

sionality

B′: ∀z∃y∀x(x ∈ y ↔ (x ∈ z &Px)) Separation

C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) Unrestricted Pairing

or by replacing C with C’, as in NBG*;

NBG*

A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) Unrestricted Exten-

sionality

B: ∃y∀x(x ∈ y ↔ (set x & Px)) Restricted Compre-

hension

C′: ∀w∀u((set w & set u) → ∃y∀x(x ∈

y ↔ (x = w ∨ x = u)))
Restricted Pairing

or by replacing A with A’, as in NBG−.

NBG−

A′: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) →

((set x & set y) ↔ x = y))
Restricted Extensio-

nality

B: ∃y∀x(x ∈ y ↔ (∃z(x ∈ z) & Px)) Restricted Comprehen-

sion

C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) Unrestricted Pairing

Z* and NBG* are sub-theories of Z and NBG. NBG− and NBG*
are deviations and definitional extensions of one another.

Highlighting the rivalry of NBG* and NBG−, I have proposed
NBG− – in which identity is reflexive for sets and classical particles, but
irreflexive for proper classes and quantum particles – as a setting for
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class and set theory and framework for quantum non-individuality.13
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